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Abstract: We present a method for incrementally learning mixture models that avoids the necessity to keep
all data points around. It contains a single user-settable parameter that controls via a novel
statistical criterion the trade-off between the number of mixture components and the accuracy of
representing the data. A key idea is that each component of the (non-overfitting) mixture is in
turn represented by an underlying mixture that represents the data very precisely (without regards
to overfitting); this allows the model to be refined without sacrificing accuracy.

1 INTRODUCTION

Mixture models are used for many purposes in
computer vision, e.g. to represent feature distri-
butions or spatial relations. Given a fixed data
sample, one can fit a mixture model to it us-
ing one of a variety of methods. However, in
many applications, it is not possible or convenient
to fix a model at the outset; one would rather
learn it over time. For example, this would allow
the deployment of generic recognition or tracking
systems with minimal set-up effort, and training
them over time on the task at hand.

However, learning and refining a mixture
model incrementally is not an easy task. How
is a given model to be updated when new data
points arrive? If the data points underlying the
current model have been discarded, then there is
no general answer to this question. On the other
hand, keeping all data around defeats the pur-
pose of learning parametric models incrementally.
Thus, a compromise needs to be found. We need
to keep around enough information to be able to
refine a model without sacrificing model accuracy,
but the quantity of this information should grow

much more slowly than the number of raw data
points.

We address this problem by seeking to rep-
resent the data points with (1) sufficient fidelity
that we can safely discard them, while at the same
time (2) committing to no more predictive preci-
sion as the original data support.

These two objectives are mutually exclusive,
as the former tends to overfit and the latter to
underfit the data. We therefore propose a two-
level representation. The first level seeks to sum-
marize the data with high precision, allowing us
to discard underlying data without significantly
impairing our ability to refine the model. We
therefore call it the precise model. The second
level provides a model that represents no more
detail than is supported by the underlying data
and then avoids counterproductive bias in future
predictions; we call it the uncertain model. Each
uncertain component is then represented by a pre-
cise mixture model that allows it to be split ap-
propriately when it turns out that it oversimpli-
fies the underlying data. In the following develop-
ment, we use Gaussian mixture models, but most
of the principles are applicable to other types of
mixture models.



2 LEVEL 1: THE PRECISE
MIXTURE MODEL

When a GMM is learned from a data set of n ob-
servations, the main difficulty lies in the choice of
the mixture complexity (i.e. the number of Gaus-
sian components in the mixture). The most pop-
ular offline method is Expectation Maximization
(Dempster et al., 1977) for fitting a sequence of
GMMs, each with a specified number of compo-
nents. The optimal model is then selected using
a penalty function (Akaike, 1973; Rissanen, 1978;
Schwarz, 1978). Online fitting is even more dif-
ficult; since the data points have been discarded,
they cannot be used to evaluate the fitted mod-
els. The problem is then addressed through a split
and merge criterion. However, these methods are
either too slow for online learning (Hall and Hicks,
2005), assume that data arrives in chunks (Song
and Wang, 2005) or does not guarantee the fi-
delity of the resulting model (Arandjelovic and
Cipolla, 2005). Here we propose a new efficient
online method that explicitly guarantees the ac-
curacy of the model through a fidelity criterion.

2.1 Update of the Gaussian
Mixture Model

Suppose we have already learned a precise GMM
from the observations up to time t:
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where each Gaussian is represented by its weight
πt

i , its mean µt
i and its covariance Ct

i . We then
receive a new data point represented by its dis-
tribution gt(x;µt, Ct) and its weight πt. Ct here
represents the observation noise. As suggested by
Hall and Hicks (Hall and Hicks, 2005), the new
resulting GMM is computed in two steps:

1. Concatenate – produce a model with N + 1
components by trivially combining the GMM
and the new data into a single model.

2. Simplify – if possible, merge some of the
Gaussians to reduce the complexity of the
GMM.

The GMM resulting from the first step is sim-
ply
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The goal of the second step is to reduce the
complexity of the model while still giving a pre-
cise description of the observations. Hall and
Hicks (Hall and Hicks, 2005) propose to group
the Gaussians using the Chernoff bound to de-
tect overlapping Gaussians. Different thresholds
on this bound are then tested and the most likely
result is kept as the simplified GMM. Since this
method is too slow for an on-line process, we
use a different criterion proposed by Declercq and
Piater (Declercq and Piater, 2007) for their un-
certain Gaussian model. This model provides a
quantitative estimate λ of its ability to describe
the associated data that takes on a value close to 1
if the data distribution is Gaussian and near zero
if it is not. This value, called the fidelity in the se-
quel, is useful to decide if we can merge two given
Gaussians without drifting from the real data dis-
tribution.

2.2 Estimating the fidelity of a
Gaussian model

To estimate the fidelity λ of a Gaussian model,
we first need to compute the distance be-
tween this model and its corresponding data set.
This is done with a method inspired from the
Kolmogorov-Smirnoff test,

D =
1
|I|

∫
I

∣∣∣F̂ (x)− Fn(x)
∣∣∣ dx, (3)

where Fn(x) is the empirical cumulative distri-
bution function of the n observations, F̂ (x) is
the corresponding cumulative Gaussian distribu-
tion, and I is the interval within which the two
functions are compared. To simplify matters, the
distance D is assumed to have a Gaussian dis-
tribution, which leads to the pseudo-probabilistic
weighting function

λ = e
−D2

T2
D , (4)

where TD is a user-settable parameter that rep-
resents the allowed deviation of observed data
from Gaussianity. Whereas the sensitivity of the
Kolmogorov-Smirnov test grows without bounds
with n, λ provides a bounded quantification of the
correspondence between the model and the data.
Therefore, this criterion is more appropriate for
our case since we need to estimate the correspon-
dence of the data with the model and not their
possible convergence to a Gaussian distribution.

Thus, the original data are not required any-
more if we keep in memory an approximation of
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Figure 1: Evolution of the precise mixture model with the number of data points drawn from an arc-shaped
distribution.

their cumulative distribution within a given inter-
val. Since the number of dimensions of the data
space can be large, we compute the distance D
for each dimension separately to keep the compu-
tational cost linear in the number of dimensions.
The total distance is then simply the sum of these
individual distances.

2.3 Simplification of the Gaussian
Mixture Model

To decide whether two Gaussians Gi and Gj can
be simplified into one, we merge them together
and check if the resulting Gaussian has a fidelity
λ close to one, say, exceeding a given threshold
λ+

min = 0.95. The resulting Gaussian is computed
using the usual equations supplemented by the
combination of the cumulative density functions:

π = πi + πj , (5)

µ =
1
π

[πiµi + πjµj ], (6)

C =
πi

π

[
Ci + (µi − µ)T (µi − µ)

]
+

πj

π

[
Cj + (µj − µ)T (µj − µ)

]
, (7)

F (x) =
1
π

[πiFi(x) + πjFj(x)] , (8)

At each time, if the current GMM before
the concatenation is already the simplest possi-
ble precise model of the data, the only Gaussian
that can be merged with another is the one rep-
resenting the new data point. If this Gaussian is
successfully merged, the resulting Gaussian is, in

its turn, the only available candidate for a simpli-
fication. The merging then continues iteratively
until the best candidate merge drops below λ+

min.
This algorithm is very fast since it corresponds,
on average, to two nested loops containing only
one nearest neighbour search and one merge, re-
spectively. We only try to merge the new Gaus-
sian with its nearest neighbour since this is most
likely to provide a precise simplification. While
this approach is simplistic, it gives very good re-
sults in practise while inducing only a low com-
putational cost.

2.4 Discussion

The first row in figure 1 shows a first example of
the evolution of the GMM with data points gen-
erated from an arc-shaped distribution. At the
beginning, none of the Gaussians can be merged
since there is clearly no Gaussian distribution
that can summarize more than one observation
without a significant loss of information. The
complexity of the mixture thus increases by one
with each new data point. As the shape of the dis-
tribution appears more clearly, the simplification
step takes effect, and the number of Gaussians
in the mixture decreases until it converges to a
trade-off between the mixture complexity and its
accuracy. This trade-off is controlled with the pa-
rameter TD defined in equation 4. The larger its
value, the farther the model is allowed to deviate
from the data and the lower the complexity of the
model will be. This dependence will be analyzed
in detail in section 4.

Let us now consider the evolution of the model
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Figure 2: (a) Distribution of D for a number of observations between 1 and 200 estimated over 1000 trials. The
red line represents the mean, the blue the standard deviation, and the green lines the extrema of the samples.
(b) We then choose TD such that the risk of incorrectly splitting the Gaussian is bounded by α.

for data generated from a Gaussian distribution
with a large covariance. Figure 1(l) shows the
mean evolution of the number of Gaussians in the
mixture for a series of 50 tests, and figures 1(g)-
(k) show the evolution for one of these tests. As
one would expect, we first observe an explosion of
the complexity of the model before it converges to
a single Gaussian. This shows that the effort to
faithfully represent the observations leads to gross
overfitting of sparse data. Thus, our method is
useful to summarize past observations but not to
predict future observations. To address predic-
tion, in the following section we propose a 2-level
mixture model containing one level for precise
summary of the data and one for a non-overfitted
representation of the data.

3 LEVEL 2: THE UNCERTAIN
MIXTURE MODEL

Let us consider again the case of a GMM learned
from Gaussian-distributed data. What should be
the value of the parameter TD to guarantee that
the model will always be a one-Gaussian mixture
with a fidelity λ exceeding λ+

min? To answer this
question we have computed the distribution of
the distance D (eqn. 3) for a number of obser-
vations between 1 and 200 estimated over 1000
tests. Figure 2(a) shows the results we obtained.
As expected, the variance of the distance D is
very large when the number of observations is low.
We then have to choose TD such that probability
of incorrectly splitting the Gaussian is bounded
by a constant α. Since TD represents a standard
deviation (eqn. 4), and since empirical estimates
of variance follow a χ2 distribution, we can limit
this probability to, say, α = 0.005, by replacing

TD by an adjusted T̃D defined as

T̃ 2
D =

N

χ2
N−1(α)

TD
2, (9)

where χ2
N−1(α) is the inverse of the cumulative

density function of the χ2 distribution evaluated
at probability α. The new fidelity criterion is then
defined by

exp

(
−D2

T̃ 2
D

)
≥ λ+

min. (10)

We would now like to express this criterion by
a new fidelity criterion λ−min < λ+

min. Substituting
eqn. 9 yields

−D2χ2
N−1(α)

NT 2
D

≥ log λ+
min, (11)

exp

(
−D2

T 2
D

)
≥ exp

(
N log λ+

min

χ2
N−1(α)

)
. (12)

The complexity of the imprecise GMM is then
controlled by the lower threshold on the fidelity

λ−min = exp
(

N log λ+
min

χ2
N−1(α)

)
(13)

that can be precomputed in a table since it only
depends on λ+

min. Thanks to this new threshold,
we are able to avoid the overfitting due to an ex-
plosion of the GMM complexity.

However, even if we have reduced the complex-
ity of the model, we still face the problem of over-
fitting through the Gaussian model itself. Indeed,
the Gaussian learned from a data set corresponds
to the maximum likelihood estimate of these data
and not of the complete distribution: Consider,
for example, the case of a Gaussian learned from
a single observation, it is clear that this Gaussian
is not representative of the complete distribution.
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Figure 3: Evolution of the uncertain mixture model with the number of data points drawn from an arc-shaped
distribution (compare Fig. 1).

Again, the uncertain Gaussian model of Declercq
and Piater (Declercq and Piater, 2007), briefy
summarized next, provides us with a solution to
this problem by accounting for the uncertainty in
the relevance due to a lack of observations.

3.1 The Uncertain Gaussian
Model

The uncertain Gaussian model represents a dis-
tribution with an appropriately weighted sum of
informative (Gaussian) and uninformative (uni-
form) components

q(x) = λ exp
(
−1

2
(x− µ)T C̃−1(x− µ)

)
+(1−λ)

(14)
where C̃ is an augmented covariance that bounds
the risk of underestimating the true covariance,
i.e., P (C̃ ≤ C) = α, where conventionally α =
0.05. Since empirical estimates of variance follow
a χ2 distribution,

C̃ =
n

χ2
n−1(α)

Ĉ, (15)

where n is the number of observations used to
learn the model and Ĉ is its maximum-likelihood
covariance matrix. Thanks to the new threshold
λ−min and the uncertain Gaussian model, we are
now able to learn a GMM that is kept as general
as possible until there is sufficient evidence that
the model can be made more specific.

The drawback of this solution is that it is now
impossible to recover the data from it. For ex-
ample, the data in figure 3(a) suggest that the
underlying distribution is poorly represented by
two Gaussians. Unfortunately, when this fact is
detected, it is already too late: The observations
are not in memory anymore, leaving you with a
poor model that can no longer be refined. This
motivates our two-level mixture model where the
data are represented by the uncertain mixture

model, and where each uncertain Gaussian con-
tains a precise mixture model to describe itself.
Thus, when we want to refine an uncertain Gaus-
sian, we can split it according to its underlying
mixture components.

3.2 Updating a Two-Level
Gaussian Mixture Model

The algorithm used to update the GMM proceeds
along the following steps:

1. Merge the new data point with the nearest
uncertain Gaussian,

2. if the resulting Gaussian has a value of λ be-
low the corresponding λ−min, replace it with
two Gaussians learned from its underlying
GMM with EM (Dempster et al., 1977),

3. else continue to merge the current uncertain
Gaussian with its nearest neighbour until the
resulting Gaussian has a value of λ lower than
the corresponding λ−min.

Merging two uncertain Gaussians also involves
merging their respective underlying mixture mod-
els. This can be done by simply summing the
components from both mixtures, and using the
simplification step only on the precise Gaussian
that contains the new observation. Even if other
precise Gaussians could possibly be merge to-
gether, we leave that for later when they merge
with the current observation. This way, we dis-
tribute the computational cost through different
time instants.

3.3 Discussion

Figure 3 shows an example of the evolution of the
GMM with data points generated from an arc-
shaped distribution. This time the complexity of
the GMM only increases when there is enough ev-
idence that the observed distribution is too com-
plex for the current model. If we compare figure
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Figure 4: Dependency of the number of Gaussians in the mixture model on (a) TD and (b) the observations
order (through the angular velocity). The red line represents the means of the 30 tests for each value, and the
green lines represent the extrema.

3 with figure 1, we see that the two-level GMM
and the precise mixture model converge to the
same distribution. The two-level approach then
provides a more stable non-overfitted model that
can still become more accurate thanks to the pre-
cise model level.

4 EXPERIMENTS

4.1 Empirical Analysis of the
Behaviour of the 2-Level
Model

To analyze the relation between the model com-
plexity and the only parameter TD, we generated
data from a circular distribution for different val-
ues of TD from 0.01 to 0.25. We ran 30 tests
per value of TD and stopped each test after 500
observations. As we can see in figure 4(a), TD

provides us with a simple way to specify the de-
sired trade-off between the model complexity and
its accuracy.

Since the learning is incremental, we may won-
der if the model will always converge to qualita-
tively the same result. We therefore performed
the same experiment with TD = 0.04 and with
angular velocities between 0.01 and 2 rad/frame
for the process that generates the observations.
As shown in figure 4(b), the model complexity is
nearly independent of the order of the observa-
tions.

4.2 A Vision Application

Our method provides an under-fitted probabil-
ity density estimation of the partially observed
distribution. It can then be used to predict fu-
ture observations without exerting strong coun-
terproductive bias. A possible application of our
method is then the online learning of an object
model with the immediate objective of improv-
ing the tracking of this object. This idea was
tested by Declercq and Piater in the context of
the simultaneous learning and tracking of a vi-
sual feature graph models (Declercq and Piater,
2007). The idea is to incrementally learn the rela-
tions between a set of tracked features and to use
those incompletely learned relations to improve
the tracking of the features. While the uncertain
model of Declercq and Piater (2007) is limited to
rigid relations, our present model is able to de-
scribe any relation that can be represented with
a Gaussian mixture model. Figure 5 shows an ex-
ample of the learning of the articulated relation
existing between an upper arm and a forearm.
The method is first tested with TD = 0.04 and a
learning procedure that uses all frames to update
the model (row 1). The same procedure is then
tested using only one in ten frames (row 2). As
the figure shows, the resulting model is not influ-
enced by this difference in the data set (except,
of course, in the difference of covariances due to
a difference of evidence accumulation). The third
row shows the result for a smaller value of TD

which corresponds as expected to a mixture with
more Gaussians.



Figure 5: Evolution of a model learned from a webcam. First row: TD = 0.04. Second row: TD = 0.04 but the
model is only learned from every tenth frame. Third row: TD = 0.02. In each row, the frames no. 70, 110, 220
and 450 are shown.

5 CONCLUSION

We presented a method for incrementally learn-
ing a Gaussian mixture model based on a new
criterion for splitting and merging mixture com-
ponents. This criterion depends on a single user-
settable parameter that allows easy tuning of the
trade-off between the complexity and the accu-
racy of the mixture model. Our two-level ap-
proach provides a solution to the overfitting prob-
lem of small data sets without any compromise
on the model accuracy. As more data arrive, the
mixture complexity can be increased without any
propagation of errors due to a previously underfit-
ted model. As we have demonstrated empirically,
this method is nearly independent of the order in
which the data are observed.
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