
INFO0012-2/3 : Project 2 (Parallel programming)

Deadline December 7th, 2015

--- --- --- ---

| X | X | O | X |

--- --- --- ---

| X | O | O | |

--- --- --- ---

| X | O | O | |

--- --- --- ---

| O | | O | X |

--- --- --- ---

Figure 1: Sample display

For this project, you are asked to develop a program that will let the user
play tic-tac-toe against the computer. We will use the following terminology:

• Grid: The representation of the play-board. It is a square of N ×N
tiles on which players can write ’X’s and ’O’s.

• Tile: A space on the grid that can hold an ’X’ or an ’O’.

• Player: A human or a computer program playing the game.

1 Commands

Commands are taken from the console (keyboard) and are of three types.
The user can:

1. Select, at the beginning of a game, whether he wants to play ’X’s or
’O’s;

2. During the game, select a tile (described by its coordinates on the
grid) on which to write his symbol;

3. At the end of the game, restart a new game or exit the program.

1

2 Game rules

• There are two players : the (human) user and the automated player.

• The player writing ’O’s always starts first.

• The players move alternatively.

• A player can only write on an empty tile.

• On a grid of size N ×N , the first player that fills a horizontal, vertical
or diagonal line of size N wins.

• If all tiles have been used and no player has been able to fill a line of
size N , the game ends in a draw.

• A win is preferable to a draw, which is preferable to a loss.

3 The automated player

The automated player is organized as set of processes: one master process
and a set of worker processes. It proceeds according to the algorithm de-
scribed below (for the game to be fun to play, we don’t want it to be too
smart).

• The master process creates P worker processes (the number P being
a parameter of the program). This is done only once.

• At each round, the automated player selects its move as follows.

– For each free tile, the master process assigns it to one of the
worker processes by sending a message to that process;

– When receiving a move to be examined, a worker process does T
(T is another parameter of the program) random simulations of
the rest of the game, i.e. it chooses each of its opponent’s and of
its own moves using a uniform distribution until the game ends
(by a win, a draw or a loss) and records that result;

– The worker process then computes a value for its assigned posi-
tion by adding twice the number of wins to the number of draws
and sends this result to the master process;

– it then waits for another request from the master process, or for
a signal to quit (when the program is being stopped)

– The master process then selects the move with the highest score
(if several moves has the same score, it can choose any of these).

2

4 Implementation

You are asked to write in C a parallel program that plays the game as
described above.

• The size N ∈ [3, 6] of the grid, the number P ∈ [1, 10] of processes
and the number T ∈ [1, 100] of loops should be parameters of your
program.

• The grid is displayed on the console and represented with ’-’, ’|’, ’X’
and ’O’ characters, as in the example given in Figure 1.

• The grid is stored in shared memory; an additional “game manager”
process is used to handle the console inputs and outputs. All processes
have access to the data stored in the shared memory.

• Access to the shared memory will be controlled with semaphores, if
needed. You are not allowed to use active waits (i.e., repeatedly testing
a condition in a loop).

• The user commands (selecting ’X’s or ’O’s, selecting a move, game
restart) are transmitted to “game manager” using terminal I/O.

• Communication between the “game manager” and the “master pro-
cess” of the automated player is handled using only shared memory
and semaphores for synchronization.

• Communication between the master process and the worker processes
is handled using blocking message queues.

5 Submission procedure

• This project must be coded in C using the System V IPCs for the
shared memory, the semaphores and the message queues. The display
will be performed on the console.

• You must write a report describing how you implemented your pro-
gram, and in particular how the synchronization is performed.

• The project has to be done in teams of 2 students and completed
before before December 7th at 23h59. The completed program and
report (PDF only) will be included in a ZIP archive named
sXXXXXX NAME1 sYYYYYY NAME2.zip where sXXXXXX, NAME1, sYYYYYY,
and NAME2, are the student IDs and uppercase surnames of the team
members.

3

Submit your archive to the Montefiore Submission Platform1,
after having created an account if necessary. If you encounter any
problem with the platform, let me know (S.Hiard@ulg.ac.be). How-
ever problems that unexpectedly and mysteriously appear five minutes
before the deadline will not be considered. Do not send your work
by E-mail; it will not be read.

Good programming...

1http://submit.run.montefiore.ulg.ac.be/

4

mailto:S.Hiard@ulg.ac.be
http://submit.run.montefiore.ulg.ac.be/

	1 Commands
	2 Game rules
	3 The automated player
	4 Implementation
	5 Submission procedure

