
Computation structures
Support for problem-solving lesson #5

Some recalls

What is a program?
- It's a set of instructions that are sequentially executed by the processor (or one of its cores).

Programs can be written in various languages (C, Java, Perl, PHP, …).
- We will focus on C for the problem-solving lessons and for the second assignment.

Example of C program:
#include <stdio.h>

int main() {

printf("Hello World!\n");

getchar();

return 0;

}

Storing elements

Variables can be stored in the memory.

- Their accessibility depends on their context.

- The C language imposes that the type of a variable is known at its declaration.

Example:

int globalVariable = 0; //Can be accessed from any function

int main() {

int localVariable = 0; // Is only accessible from the local function

return 0;

}

Pointers

A pointer is a special variable whose content is not a regular value (int, char, …) but an
address that links to another variable

Example:
#include <stdio.h>

int main() {

int* pointer; // This is a pointer to an integer

int variable = 5;

pointer = &variable; //The pointer now contains the address of the variable

printf("%d",pointer); //Displays the address of the variable (e.g. 2337492)

printf("%d",*pointer); //Displays the content of the variable (i.e. 5)

return 0;

}

Structures
A structure is a custom data type that can contain several types of data at once.

Example:
#include <stdio.h>

struct my_struct {

int integerVariable;

char character;

};

typedef struct my_struct MyStruct;

int main() {

struct my_struct object1; //OK

MyStruct object2; //Still OK

my_struct object3; //Compiling error

object1.integerVariable = 2; //Use '.' to access the content of a structure

MyStruct* pointer = &object2;

pointer->character = 'S'; //Use '->' to access the content of a structure referenced by a pointer

(*pointer).character = 'S'; //Equivalent to the upper line

return 0;

}

Unions
A union is very similar to a structure (custom data type that can contain several types of
data at once), but where the memory is shared across all fields.

Example:
#include <stdio.h>

union my_union {

int integerVariable;

double doubleVariable;

};

typedef union my_union MyUnion;

int main() {

MyUnion mu; //Declares the union

mu.integerVariable = 5; //Sets the value for the integer part

printf("%d\n",mu.integerVariable); //Displays "5"

mu.doubleVariable = 2400.012;

printf("%lf\n",mu.doubleVariable); //Displays "2400,012000"

printf("%d",mu.integerVariable); //Displays "618475291". Integer value has changed!

return 0;

}

01000000 10100010 11000000 00000110
00100100 11011101 00101111 00011011

2400,012 =

Sign Mantissa Exponent

Exponent

Unions
A union is very similar to a structure (custom data type that can contain several types of
data at once), but where the memory is shared across all fields.

Example:
#include <stdio.h>

union my_union {

int integerVariable;

double doubleVariable;

};

typedef union my_union MyUnion;

int main() {

MyUnion mu; //Declares the union

mu.integerVariable = 5; //Sets the value for the integer part

printf("%d\n",mu.integerVariable); //Displays "5"

mu.doubleVariable = 2400.012;

printf("%lf\n",mu.doubleVariable); //Displays "2400,012000"

printf("%d",mu.integerVariable); //Displays "618475291". Integer value has changed!

return 0;

}

01000000 10100010 11000000 00000110
00100100 11011101 00101111 00011011

2400,012 =

Sign Mantissa Exponent

Exponent

= 618475291

Stack and heap
Untill now, all variables (or pointers) were allocated on the stack.

- This is also where the program code is stored

- This memory space is very short (typically, a few megabytes)

We should allocate large memory storages on the heap

#include <stdio.h>

#include <stdlib.h>

int main() {

int* pointer; // This is a pointer to an integer

pointer = malloc(1024*sizeof(int)); //The pointer now links to an array of 1024 integers on the heap

//malloc can fail (not enough available memory) and would return NULL

free(pointer); //Always free the allocated memory (beware of memory leaks and duplicate frees)

pointer = NULL; // Good practice : After a free, set the variable to NULL

return 0;

}

Alternatives and loops
You might want your program to behave in various ways depending on the input or on the variables content

- You can use the if statement to test a condition and split your code into two parts (similar to the branch in assembly). switch …
case is also an option for multiple parts.

- You can use the while statement (or the for statement) to create loops

#include <stdio.h>

int main() {

int variable = 5;

if (variable > 0) { // Will enter this part of the code

while(variable > 0) { // The following block will be executed untill the condition is false (beware of infinite loops!)

variable = variable – 1; //Alternatively, you could have written "variable--;"

printf("Variable is now : %d\n",variable);

}

} else { //With the variable currently set to 5, this part will never be reached

printf("Variable was not strictly positive");

}

return 0;

}

Arrays and accessors
If you need several variables of the same type, you might want to use an array.

Arrays' content can be accessed through the [] accessor (recommended) or using pointer arithmetics (not recommended)

#include <stdlib.h>

int main() {

int array[10]; //This is an array of 10 integers

int* pointer; // This is a pointer to an integer (or an integer array)

pointer = malloc(1024*sizeof(int)); //The pointer now links to an array of 1024 integers on the heap

//malloc can fail (not enough available memory) and would return NULL

if(pointer == NULL) {

//Not enough memory, we just quit (we could have displayed a message, here)

return 1; //1 often means : There has been an error

} else {

array[5] = 4; //Beware of "out of bounds"

*(pointer+5) = 4; //Will work perfectly

pointer[5] = 4; //Also legitimate and preferable

free(pointer); //Always free the allocated memory (beware of memory leaks and duplicate frees)

pointer = NULL; // Good practice : After a free, set the variable to NULL

}

return 0;

}

Character strings
A string is an array of characters. It can be manipulated by specific functions, like
strcpy(), strcmp() or strlen().

#include <stdio.h>
#include <string.h>
int main() {

char string[10];

memset(string, '\1', sizeof(string)); //"string" now contains {1,1,1,1,1,1,1,1,1,1}
strcpy(string, "Hello"); //"string" now contains {'H','e','l','l','o',0,1,1,1,1}
printf("String contains : %s\n", string); //Displays "String contains : Hello"
strcpy(string, "Isn't this too long?"); //"string" now contains {'I','s','n',''','t',' ','t','h','i','s'}

//Buffer overflow! Very dangerous. Prefer strncpy.
return(0);

}

Functions
Keeping the whole logic in the main() function would rapidly make any program hard to read, thus
maintain.

You can (and should) separate the code logic into different functions.

#include <stdio.h>

int myFunction(int a) {

return a+1;

}

void anotherFunction(int* a) {

*a += 1;

}

int main() {

int a = 1;

//Passing by value/variable

a = myFunction(a);

//Passing by reference

anotherFunction(&a);

printf("Value of a : %d",a); //Will display "Value of a : 3"

return 0;

}

Shared memory and semaphores

Using system V

• System V requires some includes (like 'sys/ipc.h')

• Obtaining a unique key : key_t ftok(char *pathname, int proj_id);

• Creating a shared memory : int shmget(key_t key, size_t size, int shmflg);

• Attaching a shared memory : char *shmat (int shmid, char *shmaddr, int shmflg)

• Creating a semaphore : int semget (key_t key, int nsems, int semflg);

• Wait and signal : int semop(int semid, struct sembuf *sops, unsigned nsops);

• Other operations on semaphores : int semctl (int semid, int semno, int cmd, ...);

• Online doc : http://www.tldp.org/LDP/lpg/node21.html

http://www.tldp.org/LDP/lpg/node21.html

Simple process management
Let's say you wrote the following code:

int main() {

int variable = 5;

while(variable > 0) { //This will loop forever

}

return 0;

}

How can you regain access to the shell?

- POSIX signals can help you. These signals are sent to the process and the normal execution can be
interrupted during any non-atomic instruction.

- Most known signals are SIGINT (typically by typing CTRL-C; can be handled in a routine) and SIGKILL (using
the kill() instruction; not interceptable)

Simple process management (continued)

In practice:

Pressed CTRL-C (SIGINT)

Adding "&" makes the process run in background

The "ps" command displays useful
information about running processes

Killing a process using the "kill" command
(sends the SIGKILL signal)

Process is indeed terminated

IPCs management

In practice:

"ipcs" displays the current IPCs

"ipcrm" removes an ipc given its ID
- "-s" for semaphores
- "-m" for shared memory segments
- "-q" for message queues (see later)

IPCs are effectively deleted

Creating several processes at once
The fork() command will duplicate the current process (and the variables and current
instructions are also duplicated)

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main() {

pid_t pid = fork();

//pid < 0  process creation failed

//Anything passed this point will be executed by two processes

//pid == 0  newly created process (son)

//pid > 0  creator process (father)

…

return 0;

}

Exercise 1

a) How many processes (at most) are created by the following program?

void main() {

fork();

fork();

fork();

}

A. 3 B. 4

C. 8 D. Depends on the OSC. 8

What happens?
Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Fork()
Fork()
Fork()

Exercise 1

b) How many processes (at most) are created by the following program?

void main() {

for (int i = 0; i < 11; i++)

fork();

}

In the previous example, 3 forks lead to 23 = 8 processes.
In this example, we have 11 forks, so 211 = 2048 processes.

What if I only want 11 processes?
fork() returns a value that is the process id of the created process (the son) if we are in the calling process (the father) or 0 if we are in the
created process.

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

void main() {

pid_t pid = 0;

for (int i = 0; i < 11; i++) {

pid = fork();

//If we are in the son process

if(pid == 0) {

//stop the loop

i = 11;

//Start working

printf("I’m process number %d\n", getpid());

}

}

Exercise 2

Reminder

• Semaphores are synchronization mechanisms that can be seen as a positive (or null)
integers.

• Two operations can be performed on semaphores : wait() and signal().

• signal() will increase the value of the semaphore by one unit.

• wait() will:
− decrease the value of the semaphore by one unit if this value is > 0;

− block the calling process otherwise until this value can be decreased again (in blocking mode) or
exit without getting the lock (in non-blocking mode).

• wait() and signal() are atomic operations.

Exercise 2

A producer process writes integer numbers into a buffer zone with N slots in such a way
that three consumer processes (C1, C2 and C3) can read them.

The consumers must access the buffer zone one at a time in an orderly fashion: C1, then
C2, then C3, then C1 and so forth.

Each element in the buffer will be read by one and only one consumer.

Use the C language to implement the code of the consumer processes and the producer
process.

Exercise 2

Things to pay attention to:

• We have no hand on the context switching. All we can do is block/unblock the
processes to gain some control.

• The producer cannot produce any value if the buffer is full.

• The consumers cannot consume any value if the buffer is empty.

• Each consumer must wait its turn before consuming a value.

• An element can only be consumed by one and only one consumer

• We must ensure that no deadlock (nor livelock) will ever happen.

Exercise 2

Let's first write the code for features, without any synchronization control

shared int in = 0;

shared int buffer[N];

//Each consumer calls this function in a while loop

//The "who" parameter is the ID (0,1 or 2)

int value;

int take(int who) {

value = buffer[in];

in = (in+1)%N;

}

//The producer calls this function in a while loop

int out = 0;

append(int x) {

buffer[out] = x;

out = (out+1)%N;

}

Exercise 2

The producer cannot produce any value if the buffer is full

shared semaphore free = N;

shared int in = 0;

shared int buffer[N];

//Each consumer calls this function in a while loop

//The "who" parameter is the ID (0,1 or 2)

int value;

int take(int who) {

value = buffer[in];

in = (in+1)%N;

signal(free);

}

//The producer calls this function in a while loop

int out = 0;

append(int x) {

wait(free);

buffer[out] = x;

out = (out+1)%N;

}

Exercise 2

The consumers cannot consume any value if the buffer is empty

shared semaphore free = N;

shared semaphore todo = 0;

shared int in = 0;

shared int buffer[N];

//Each consumer calls this function in a while loop

//The "who" parameter is the ID (0,1 or 2)

int value;

int take(int who) {

wait(todo);

value = buffer[in];

in = (in+1)%N;

signal(free);

}

//The producer calls this function in a while loop

int out = 0;

append(int x) {

wait(free);

buffer[out] = x;

out = (out+1)%N;

signal(todo);

}

Exercise 2
Each consumer must wait its turn before consuming a value.

An element can only be consumed by one and only one consumer

shared semaphore free = N;

shared semaphore todo = 0;

shared semaphore available[3] = {1,0,0};

shared int in = 0;

shared int buffer[N];

//Each consumer calls this function in a while loop

//The "who" parameter is the ID (0,1 or 2)

int value;

int take(int who) {

wait(available[who]);

wait(todo);

value = buffer[in];

in = (in+1)%N;

signal(free);

signal(available[(who+1)%3);

}

//The producer calls this function in a while loop

int out = 0;

append(int x) {

wait(free);

buffer[out] = x;

out = (out+1)%N;

signal(todo);

}

Exercise 2
Do I need to deem "in = (in+1)%N" a critical section?

No, because thanks to available, I can be sure that only one process will execute that code at a time

shared semaphore free = N;

shared semaphore todo = 0;

shared semaphore available[3] = {1,0,0};

shared int in = 0;

shared int buffer[N];

//Each consumer calls this function in a while loop

//The "who" parameter is the ID (0,1 or 2)

int value;

int take(int who) {

wait(available[who]);

wait(todo);

value = buffer[in];

in = (in+1)%N;

signal(free);

signal(available[(who+1)%3);

}

//The producer calls this function in a while loop

int out = 0;

append(int x) {

wait(free);

buffer[out] = x;

out = (out+1)%N;

signal(todo);

}

Exercise 2
Can I switch these two waits?

If the producer loops indefinetely, yes. If we have finite amount of data, no.

shared semaphore free = N;

shared semaphore todo = 0;

shared semaphore available[3] = {1,0,0};

shared int in = 0;

shared int buffer[N];

//Each consumer calls this function in a while loop

//The "who" parameter is the ID (0,1 or 2)

int value;

int take(int who) {

wait(available[who]);

wait(todo);

value = buffer[in];

in = (in+1)%N;

signal(free);

signal(available[(who+1)%3);

}

//The producer calls this function in a while loop

int out = 0;

append(int x) {

wait(free);

buffer[out] = x;

out = (out+1)%N;

signal(todo);

}

Exercise 2
Can I switch these two signals?

Yes, but it might be more "politically correct" to unlock the producer before the next consumer

shared semaphore free = N;

shared semaphore todo = 0;

shared semaphore available[3] = {1,0,0};

shared int in = 0;

shared int buffer[N];

//Each consumer calls this function in a while loop

//The "who" parameter is the ID (0,1 or 2)

int value;

int take(int who) {

wait(available[who]);

wait(todo);

value = buffer[in];

in = (in+1)%N;

signal(free);

signal(available[(who+1)%3);

}

//The producer calls this function in a while loop

int out = 0;

append(int x) {

wait(free);

buffer[out] = x;

out = (out+1)%N;

signal(todo);

}

Exercise 2 (solution)
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/sem.h>
#include <ctype.h>
#include <string.h>

union semun {
int val; /* value for SETVAL */
struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
unsigned short int *array; /* array for GETALL, SETALL */
struct seminfo *__buf; /* buffer for IPC_INFO */

};

#define SEGSIZE 10

int semid;
int *segptr;

main(int argc, char *argv[])
{

key_t key, keysem;
pid_t pid;
int shmid;
int id, cntr;
union semun semopts;

/* Create unique key via call to ftok() */
key = ftok(".", 'M');
keysem = ftok(".", 'S');

/* Open the shared memory segment - create if necessary */
if((shmid = shmget(key, (SEGSIZE+1)*sizeof(int), IPC_CREAT|IPC_EXCL|0666)) == -1)
{

printf("Shared memory segment exists - opening as client\n");

/* Segment probably already exists - try as a client */
if((shmid = shmget(key, (SEGSIZE+1)*sizeof(int), 0)) == -1)
{

perror("shmget");
exit(1);

}
}
else
{

printf("Creating new shared memory segment\n");
}

/* Attach (map) the shared memory segment into the current process */
if((segptr = (int *)shmat(shmid, 0, 0)) == (int *)-1)
{

perror("shmat");
exit(1);

}

//Creating the semaphore array
printf("Attempting to create new semaphore set with 5 members\n");

if((semid = semget(key, 5, IPC_CREAT|IPC_EXCL|0666)) == -1)
{

fprintf(stderr, "Semaphore set already exists!\n");
exit(1);

}

1 2

Exercise 2 (solution; cont'd)
semopts.val = SEGSIZE;
semctl(semid, 0, SETVAL, semopts);
semopts.val = 0;
semctl(semid, 1, SETVAL, semopts);
semopts.val = 1;
semctl(semid, 2, SETVAL, semopts);
semopts.val = 0;
semctl(semid, 3, SETVAL, semopts);
semopts.val = 0;
semctl(semid, 4, SETVAL, semopts);

//Creating the three consumer processes
id = 0;
for(cntr = 0; cntr < 3; cntr++)
{

pid = fork();
if(pid < 0)
{

perror("Process creation failed");
exit(1);

}
if(pid == 0)
{

//This is a son
consumer(id);
cntr = 3;

}
else
{

//This is the father
id++;

}
}

//We enter the producer's code
producer();

}

void locksem(int sid, int member)
{

struct sembuf sem_lock={ 0, -1, 0};
if(member<0 || member>4) {

fprintf(stderr, "semaphore member %d out of range\n", member);
return;

}
sem_lock.sem_num = member;
if((semop(sid, &sem_lock, 1)) == -1)
{

fprintf(stderr, "Wait failed\n");
exit(1);

}
}

void unlocksem(int sid, int member)
{

struct sembuf sem_unlock={ member, 1, 0};
int semval;
if(member<0 || member>4) {

fprintf(stderr, "semaphore member %d out of range\n", member);
return;

}
sem_unlock.sem_num = member;
/* Attempt to unlock the semaphore set */
if((semop(sid, &sem_unlock, 1)) == -1)
{

fprintf(stderr, "Signal failed\n");
exit(1);

}
}

3 4

Exercise 2 (solution; cont'd)
writeshm(int index, int value)
{

segptr[index] = value;
if(index > 0)

printf("(Producer) Wrote %d\n", value);
fflush(stdout);

}

int readshm(int id, int index)
{

if(index > 0)
printf("(Consumer %d) Read %d\n", (id+1), segptr[index]);

return segptr[index];
}

removeshm(int shmid)
{

shmctl(shmid, IPC_RMID, 0);
printf("Shared memory segment marked for deletion\n");

}

producer()
{

int out = 0;
int value = 0;
while(1 == 1) //While true
{

locksem(semid,0);
writeshm(out+1,value);
value++;
out = (out+1)%SEGSIZE;
unlocksem(semid,1);

}
}

consumer(int id)
{

int value;
int in;
while(1 == 1) //While true
{

locksem(semid,2+id);
locksem(semid,1);
in = readshm(id,0);
value = readshm(id,in+1);
in = (in+1)%SEGSIZE;
writeshm(0,in);
unlocksem(semid,0);
unlocksem(semid,2+((id+1)%3));

}
}

5 6

Exercise 2 (execution)
• This will loop forever until I

hit CTRL-C to send a SIGINT
signal.

• But the created IPCs are not
removed, so I need to
manually clear the system
(using 'ipcs' and 'ipcrm')

• There should be a better
way to exit this program.

Exercise 2

How to quit properly

• Have a fifth process that waits user inputs (e.g. blocked on "getchar()").

• At that point, it will set a variable (e.g. "stop") in shared memory to 1.

• The producers and consumers now loop on "stop == 0".

• On loop exit,
− The producer should produce 3 more elements (to unlock the possibly locked consumers);
− The producer and the three consumers should make a signal to another semaphore (init. at 0) then exit;

• The fifth process makes 4 waits on that semaphore.

• Then it properly deletes the semaphores and the shared memory
− semctl(semid, 0, IPC_RMID, 0); (for semaphores)
− shmctl(shmid, IPC_RMID, 0); (for shared memory)

Exercise 2

Prevent global variables

• The given example uses global variables.

• This is bad, because your program behaviour depends on a variable that any function
can change, so it makes test units useless (e.g. function A works fine, but you work on
function B and create a side-effect that changes a global variable used by A. Now
function A triggers an error and nothing indicates that the error comes from B).

• In our example, int semid and int *segptr should have been declared local and passed
to any function that requires it (i.e. consumer(), producer(), readshm() and
writeshm()) .

Exercise 3

A producer process P1, two modifier processes M1 and M2 and a consumer process C1 share a
buffer of K slots.

P1 writes integer numbers into the buffer (you can represent the number generation by using
the generate() function).

Each number is firstly read and modified by M1 (foo()), then read and modified by M2 (foo2()).

Once these two modifications happened, the result is consumed by C1 and the corresponding
slot in the buffer is freed.

Use the C language to implement the code of the producer process, the modifier processes and
the consumer process.

Exercise 3

Things to pay attention to:

• The producer cannot produce any value if the buffer is full.

• The consumer and the modifiers cannot consume any value if the buffer is empty.

• We must ensure that each element is handled by the processes in this order :
P1 M1 M2  C1

• We must ensure that no deadlock (nor livelock) will ever happen.

Exercise 3
Let's first write the code for features, without any synchronization control

shared int buffer[K];

//The producer

int pi = 0;

produce() {

while(true) {

int x = generate();

buffer[pi] = x;

pi = (pi+1)%K;

}

}

//The first modifier

int m1i = 0;

modify1() {

while(true) {

int x = buffer[m1i];

buffer[m1i] = foo(x);

m1i = (m1i+1)%K;

}

}

//The second modifier

int m2i = 0;

modify2() {

while(true) {

int x = buffer[m2i];

buffer[m2i] = foo2(x);

m2i = (m2i+1)%K;

}

}

//The consumer

int ci = 0;

consume() {

while(true) {

int x = buffer[ci];

ci = (ci+1)%K;

}

}

Exercise 3
The producer cannot produce any value if the buffer is full.

shared semaphore empty = K;

shared int buffer[K];

//The producer

int pi = 0;

produce() {

while(true) {

int x = generate();

wait(empty);

buffer[pi] = x;

pi = (pi+1)%K;

}

}

//The first modifier

int m1i = 0;

modify1() {

while(true) {

int x = buffer[m1i];

buffer[m1i] = foo(x);

m1i = (m1i+1)%K;

}

}

//The second modifier

int m2i = 0;

modify2() {

while(true) {

int x = buffer[m2i];

buffer[m2i] = foo2(x);

m2i = (m2i+1)%K;

}

}

//The consumer

int ci = 0;

consume() {

while(true) {

int x = buffer[ci];

ci = (ci+1)%K;

signal(empty);

}

}

Exercise 3
The first modifier cannot modify anything if the buffer is empty

shared semaphore pdone = 0;

shared semaphore empty = K;

shared int buffer[K];

//The producer

int pi = 0;

produce() {

while(true) {

int x = generate();

wait(empty);

buffer[pi] = x;

pi = (pi+1)%K;

signal(pdone);

}

}

//The first modifier

int m1i = 0;

modify1() {

while(true) {

wait(pdone);

int x = buffer[m1i];

buffer[m1i] = foo(x);

m1i = (m1i+1)%K;

}

}

//The second modifier

int m2i = 0;

modify2() {

while(true) {

int x = buffer[m2i];

buffer[m2i] = foo2(x);

m2i = (m2i+1)%K;

}

}

//The consumer

int ci = 0;

consume() {

while(true) {

int x = buffer[ci];

ci = (ci+1)%K;

signal(empty);

}

}

Exercise 3
The second modifier cannot modify anything if the buffer is empty

shared semaphore pdone = 0;

shared semaphore mdone1 = 0;

shared semaphore empty = K;

shared int buffer[K];

//The producer

int pi = 0;

produce() {

while(true) {

int x = generate();

wait(empty);

buffer[pi] = x;

pi = (pi+1)%K;

signal(pdone);

}

}

//The first modifier

int m1i = 0;

modify1() {

while(true) {

wait(pdone);

int x = buffer[m1i];

buffer[m1i] = foo(x);

m1i = (m1i+1)%K;

signal(mdone1);

}

}

//The second modifier

int m2i = 0;

modify2() {

while(true) {

wait(mdone1);

int x = buffer[m2i];

buffer[m2i] = foo2(x);

m2i = (m2i+1)%K;

}

}

//The consumer

int ci = 0;

consume() {

while(true) {

int x = buffer[ci];

ci = (ci+1)%K;

signal(empty);

}

}

Exercise 3
The consumer cannot consume anything if the buffer is empty

shared semaphore pdone = 0;

shared semaphore mdone1 = 0;

shared semaphore mdone2 = 0;

shared semaphore empty = K;

shared int buffer[K];

//The producer

int pi = 0;

produce() {

while(true) {

int x = generate();

wait(empty);

buffer[pi] = x;

pi = (pi+1)%K;

signal(pdone);

}

}

//The first modifier

int m1i = 0;

modify1() {

while(true) {

wait(pdone);

int x = buffer[m1i];

buffer[m1i] = foo(x);

m1i = (m1i+1)%K;

signal(mdone1);

}

}

//The second modifier

int m2i = 0;

modify2() {

while(true) {

wait(mdone1);

int x = buffer[m2i];

buffer[m2i] = foo2(x);

m2i = (m2i+1)%K;

signal(mdone2);

}

}

//The consumer

int ci = 0;

consume() {

while(true) {

wait(mdone2);

int x = buffer[ci];

ci = (ci+1)%K;

signal(empty);

}

}

Exercise 3
Why are pi, m1i, m2i and ci local variables (rather than in the shared memory)?

Because only one process will ever access these variables

shared semaphore pdone = 0;

shared semaphore mdone1 = 0;

shared semaphore mdone2 = 0;

shared semaphore empty = K;

shared int buffer[K];

//The producer

int pi = 0;

produce() {

while(true) {

int x = generate();

wait(empty);

buffer[pi] = x;

pi = (pi+1)%K;

signal(pdone);

}

}

//The first modifier

int m1i = 0;

modify1() {

while(true) {

wait(pdone);

int x = buffer[m1i];

buffer[m1i] = foo(x);

m1i = (m1i+1)%K;

signal(mdone1);

}

}

//The second modifier

int m2i = 0;

modify2() {

while(true) {

wait(mdone1);

int x = buffer[m2i];

buffer[m2i] = foo2(x);

m2i = (m2i+1)%K;

signal(mdone2);

}

}

//The consumer

int ci = 0;

consume() {

while(true) {

wait(mdone2);

int x = buffer[ci];

ci = (ci+1)%K;

signal(empty);

}

}

Exercise 3
Can I swith these two lines (for each process)?

Yes, because the variables are not in the shared memory and thus don't need to be protected

shared semaphore pdone = 0;

shared semaphore mdone1 = 0;

shared semaphore mdone2 = 0;

shared semaphore empty = K;

shared int buffer[K];

//The producer

int pi = 0;

produce() {

while(true) {

int x = generate();

wait(empty);

buffer[pi] = x;

pi = (pi+1)%K;

signal(pdone);

}

}

//The first modifier

int m1i = 0;

modify1() {

while(true) {

wait(pdone);

int x = buffer[m1i];

buffer[m1i] = foo(x);

m1i = (m1i+1)%K;

signal(mdone1);

}

}

//The second modifier

int m2i = 0;

modify2() {

while(true) {

wait(mdone1);

int x = buffer[m2i];

buffer[m2i] = foo2(x);

m2i = (m2i+1)%K;

signal(mdone2);

}

}

//The consumer

int ci = 0;

consume() {

while(true) {

wait(mdone2);

int x = buffer[ci];

ci = (ci+1)%K;

signal(empty);

}

}

