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Abstract. In this paper, we introduce a min max approach for address-
ing the generalization problem in Reinforcement Learning. The min max
approach works by determining a sequence of actions that maximizes the
worst return that could possibly be obtained considering any dynamics
and reward function compatible with the sample of trajectories and some
prior knowledge on the environment. We consider the particular case of
deterministic Lipschitz continuous environments over continuous state
spaces, finite action spaces, and a finite optimization horizon. We dis-
cuss the non-triviality of computing an exact solution of the min max
problem even after reformulating it so as to avoid search in function
spaces. For addressing this problem, we propose to replace, inside this
min max problem, the search for the worst environment given a sequence
of actions by an expression that lower bounds the worst return that
can be obtained for a given sequence of actions. This lower bound has a
tightness that depends on the sample sparsity. From there, we propose an
algorithm of polynomial complexity that returns a sequence of actions
leading to the maximization of this lower bound. We give a condition
on the sample sparsity ensuring that, for a given initial state, the pro-
posed algorithm produces an optimal sequence of actions in open-loop.
Our experiments show that this algorithm can lead to more cautious
policies than algorithms combining dynamic programming with function
approximators.

1 Introduction

Since the late sixties, the field of Reinforcement Learning (RL) [27] has studied
the problem of inferring from the sole knowledge of observed system trajectories,
near-optimal solutions to optimal control problems. The original motivation was
to design computational agents able to learn by themselves how to interact in
a rational way with their environment. The techniques developed in this field
have appealed researchers trying to solve sequential decision making problems
in many fields such as Finance [15], Medicine [19, 20] or Engineering [23].

RL algorithms are challenged when dealing with large or continuous state
spaces. Indeed, in such cases they have to generalize the information contained
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in a generally sparse sample of trajectories. The dominating approach for general-
izing this information is to combine RL algorithms with function approximators
[2, 16, 9]. Usually, these approximators generalize the information contained in
the sample to areas poorly covered by the sample by implicitly assuming that
the properties of the system in those areas are similar to the properties of the
system in the nearby areas well covered by the sample. This in turn often leads to
low performance guarantees on the inferred policy when large state space areas
are poorly covered by the sample. This can be explained by the fact that when
computing the performance guarantees of these policies, one needs to take into
account that they may actually drive the system into the poorly visited areas to
which the generalization strategy associates a favorable environment behavior,
while the environment may actually be particularly adversarial in those areas.
This is corroborated by theoretical results which show that the performance
guarantees of the policies inferred by these algorithms degrade with the sample
sparsity where, loosely speaking, the sparsity can be seen as the radius of the
largest non-visited state space area.3

As in our previous work [12] from which this paper is an extended version, we
assume a deterministic Lipschitz continuous environment over continuous state
spaces, finite action spaces, and a finite time-horizon. In this context, we intro-
duce a min max approach to address the generalization problem. The min max
approach works by determining a sequence of actions that maximizes the worst
return that could possibly be obtained considering any dynamics and reward
functions compatible with the sample of trajectories, and a weak prior knowledge
given in the form of upper bounds on the Lipschitz constants of the environment.
However, we show that finding an exact solution of the min max problem is far
from trivial, even after reformulating the problem so as to avoid the search in the
space of all compatible functions. To circumvent these difficulties, we propose
to replace, inside this min max problem, the search for the worst environment
given a sequence of actions by an expression that lower bounds the worst return
that can be obtained for a given sequence of actions. This lower bound is derived
from [11] and has a tightness that depends on the sample sparsity. From there,
we propose a Viterbi–like algorithm [28] for computing an open-loop sequence of
actions to be used from a given initial state to maximize that lower bound. This
algorithm is of polynomial computational complexity in the size of the dataset
and the optimization horizon. It is named CGRL for Cautious Generalization
(oriented) Reinforcement Learning since it essentially shows a cautious behaviour
in the sense that it computes decisions that avoid driving the system into areas
of the state space that are not well enough covered by the available dataset,
according to the prior information about the dynamics and reward function.

3 Usually, these theoretical results do not give lower bounds per se but a distance
between the actual return of the inferred policy and the optimal return. However,
by adapting in a straightforward way the proofs behind these results, it is often
possible to get a bound on the distance between the estimate of the return of the
inferred policy computed by the RL algorithm and its actual return and, from there,
a lower bound on the return of the inferred policy.
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Besides, the CGRL algorithm does not rely on function approximators and it
computes, as a byproduct, a lower bound on the return of its open-loop sequence
of decisions. We also provide a condition on the sample sparsity ensuring that,
for a given initial state, the CGRL algorithm produces an optimal sequence of
actions in open-loop, and we suggest directions for leveraging our approach to a
larger class of problems in RL.

The rest of the paper is organized as follows. Section 2 briefly discusses related
work. In Section 3, we formalize the min max approach to generalization, and we
discuss its non trivial nature in Section 4. In Section 5, we exploit the results of
[11] for lower bounding the worst return that can be obtained for a given sequence
of actions. Section 6 proposes a polynomial algorithm for inferring a sequence
of actions maximizing this lower bound and states a condition on the sample
sparsity for its optimality. Section 7 illustrates the features of the proposed
algorithm and Section 8 discusses its interest, while Section 9 concludes.

2 Related work

The min max approach to generalization followed by the CGRL algorithm results
in the output of policies that are likely to drive the agent only towards areas well
enough covered by the sample. Heuristic strategies have already been proposed
in the RL literature to infer policies that exhibit such a conservative behavior.
As a way of example, some of these strategies associate high negative rewards
to trajectories falling outside of the well covered areas. Other works in RL have
already developped min max strategies when the environment behavior is par-
tially unknown [17, 4, 24]. However, these strategies usually consider problems
with finite state spaces where the uncertainities come from the lack of knowl-
edge of the transition probabilities [7, 5]. In model predictive control (MPC)
where the environment is supposed to be fully known [10], min max approaches
have been used to determine the optimal sequence of actions with respect to the
“worst case” disturbance sequence occuring [1]. The CGRL algorithm relies on
a methodology for computing a lower bound on the worst possible return (con-
sidering any compatible environment) in a deterministic setting with a mostly
unknown actual environment. In this, it is related to works in the field of RL
which try to get from a sample of trajectories lower bounds on the returns of
inferred policies [18, 22].

3 Problem Statement

We consider a discrete-time system whose dynamics over T stages is described
by a time-invariant equation

xt+1 = f(xt, ut) t = 0, 1, . . . , T − 1,

where for all t, the state xt is an element of the compact state space X ⊂ RdX
where RdX denotes the dX−dimensional Euclidian space and ut is an element
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of the finite (discrete) action space U . T ∈ N0 is referred to as the optimization
horizon. An instantaneous reward rt = ρ(xt, ut) ∈ R is associated with the
action ut taken while being in state xt. For every initial state x ∈ X and for
every sequence of actions (u0, . . . , uT−1) ∈ UT , the cumulated reward over T
stages (also named return over T stages) is defined as

Ju0,...,uT−1(x) =

T−1∑
t=0

ρ(xt, ut) ,

where xt+1 = f(xt, ut) ,∀t ∈ {0, . . . , T − 1} and x0 = x . We assume that the
system dynamics f and the reward function ρ are Lipschitz continuous, i.e. that
there exist finite constants Lf , Lρ ∈ R such that: ∀x′, x′′ ∈ X ,∀u ∈ U ,

‖f(x′, u)− f(x′′, u)‖X ≤ Lf‖x′ − x′′‖X ,

|ρ(x′, u)− ρ(x′′, u)| ≤ Lρ‖x′ − x′′‖X ,

where ‖.‖X denotes the Euclidian norm over the space X . We further suppose
that: (i) the system dynamics f and the reward function ρ are unknown, (ii) a
set of one-step transitions Fn = {(xl, ul, rl, yl)}nl=1 is known where each one-step
transition is such that yl = f(xl, ul) and rl = ρ(xl, ul), (iii) ∀a ∈ U , ∃(x, u, r, y) ∈
Fn : u = a (each action a ∈ U appears at least once in Fn) and (iv) two constants
Lf and Lρ satisfying the above-written inequalities are known.4 We define the

set of functions LfFn (resp. LρFn) from X × U into X (resp. into R) as follows :

LfFn =

f ′ : X × U → X

∣∣∣∣∣
∀x

′, x′′ ∈ X ,∀u ∈ U ,
‖f ′(x′, u)− f ′(x′′, u)‖X ≤ Lf‖x′ − x′′‖X ,
∀l ∈ {1, . . . , n}, f ′(xl, ul) = f(xl, ul) = yl

 ,

LρFn =

ρ′ : X × U → R

∣∣∣∣∣
∀x

′, x′′ ∈ X ,∀u ∈ U ,
|ρ′(x′, u)− ρ′(x′′, u)| ≤ Lρ‖x′ − x′′‖X ,
∀l ∈ {1, . . . , n}, ρ′(xl, ul) = ρ(xl, ul) = rl

 .

In the following, we call a “compatible environment” any pair (f ′, ρ′) ∈ LfFn ×
LρFn . Given a compatible environment (f ′, ρ′), a sequence of actions (u0, . . . , uT−1)

∈ UT and an initial state x ∈ X , we introduce the (f ′, ρ′)−return over T stages
when starting from x ∈ X :

J
u0,...,uT−1

(f ′,ρ′) (x) =

T−1∑
t=0

ρ′(x′t, ut) ,

where x′0 = x and x′t+1 = f ′(x′t, ut), ∀t ∈ {0, . . . , T − 1} . We introduce
L
u0,...,uT−1

Fn (x) such that

L
u0,...,uT−1

Fn (x) = min
(f ′,ρ′)∈LfFn×L

ρ
Fn

{
J
u0,...,uT−1

(f ′,ρ′) (x)
}
.

4 These constants do not necessarily have to be the smallest ones satisfying these
inequalities (i.e., the Lispchitz constants).
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The existence of L
u0,...,uT−1

Fn (x) is ensured by the following arguments: (i) the

space X is compact, (ii) the set LfFn×L
ρ
Fn is closed and bounded considering the

‖.‖∞ norm (‖(f ′, ρ′)‖∞ = sup
(x,u)∈X×U

‖(f ′(x, u), ρ′(x, u))‖RdX+1 where ‖.‖RdX+1

is the Euclidian norm over RdX+1) and (iii) one can show that the mapping

Mu0,...,uT−1

Fn,x : LfFn × L
ρ
Fn → R such that Mu0,...,uT−1

Fn,x (f ′, ρ′) = J
u0,...,uT−1

(f ′,ρ′) (x) is

a continuous mapping. Furthermore, this also proves that

∀(u0, . . . , uT−1) ∈ UT ,∀x ∈ X ,∃(fu0,...,uT−1

Fn,x , ρ
u0,...,uT−1

Fn,x ) ∈ LfFn × L
ρ
Fn :

J
u0,...,uT−1

(f
u0,...,uT−1
Fn,x ,ρ

u0,...,uT−1
Fn,x )

(x) = L
u0,...,uT−1

Fn (x). (1)

Our goal is to compute, given an initial state x ∈ X , an open-loop sequence of
actions (u̇0(x), . . . , u̇T−1(x)) ∈ UT that gives the highest return in the least fa-
vorable compatible environment. This problem can be formalized as the min max
problem:

(u̇0(x), . . . , u̇T−1(x)) ∈ arg max
(u0,...,uT−1)∈UT

{
L
u0,...,uT−1

Fn (x)
}
.

4 Reformulation of the minmax problem

Since U is finite, one could solve the min max problem by computing for each
(u0, . . . , uT−1) ∈ UT the value of L

u0,...,uT−1

Fn (x). As the latter computation is
posed as an infinite-dimensional minimization problem over the function space
LfFn × L

ρ
Fn , we first show that it can be reformulated as a finite-dimensional

problem over X T−1 × RT . This is based on the observation that L
u0,...,uT−1

Fn (x)
is actually equal to the lowest sum of rewards that could be collected along a
trajectory compatible with an environment from LfFn × L

ρ
Fn , and is precisely

stated by the following Theorem (see Appendix A for the proof).

Theorem 1 (Equivalence). Let (u0, . . . , uT−1) ∈ UT and x ∈ X .
Let K

u0,...,uT−1

Fn (x) be the solution of the following optimization problem:

K
u0,...,uT−1

Fn (x) = min
r̂0 . . . r̂T−1 ∈ R
x̂0 . . . x̂T−1 ∈ X

{
T−1∑
t=0

r̂t

}
,

where the variables x̂0, . . . , x̂T−1 and r̂0, . . . , r̂T−1 satisfy the constraints

|r̂t − rlt | ≤ Lρ‖x̂t − xlt‖X ,
‖x̂t+1 − ylt‖X ≤ Lf‖x̂t − xlt‖X

}
∀lt ∈ {1, . . . , n|ult = ut} ,

|r̂t − r̂t′ | ≤ Lρ‖x̂t − x̂t′‖X ,
‖x̂t+1 − x̂t′+1‖X ≤ Lf‖x̂t − x̂t′‖X

}
∀t, t′ ∈ {0, . . . , T − 1|ut = ut′} ,

x̂0 = x .

Then,

K
u0,...,uT−1

Fn (x) = L
u0,...,uT−1

Fn (x) .
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Unfortunately, this latter minimization problem turns out to be non-convex in
its generic form and, hence “off the shelf” algorithms will only be able to provide
upper bounds on its value. Furthermore, the overall complexity of an algorithm
that would be based on the enumeration of UT , combined with a local optimizer
for the inner loop, may be intractable as soon as the cardinality of the action
space U and/or the optimization horizon T become large.

We leave the exploration of the above formulation for future research. Instead,
in the following subsections, we use the results from [11] to define a maximal
lower bound B

u0,...,uT−1

Fn (x) ≤ L
u0,...,uT−1

Fn (x) for a given initial state x ∈ X and

a sequence (u0, . . . , uT−1) ∈ UT . Furthermore, we show that the maximization
of this lower bound B

u0,...,uT−1

Fn (x) with respect to the choice of a sequence of
actions lends itself to a dynamic programming type of decomposition. In the end,
this yields a polynomial algorithm for the computation of a sequence of actions
(û∗Fn,0(x), . . . , û∗Fn,T−1(x)) maximizing a lower bound of the original min max

problem, i.e. (û∗Fn,0(x), . . . , û∗Fn,T−1(x)) ∈ arg max
(u0,...,uT−1)∈UT

{
B
u0,...,uT−1

Fn (x)
}
.

5 Lower bound on the return of a given sequence of
actions

∀ t∈{0,... ,T−1 } , ul t=ut

x
l0 , u

l 0, r
l0 , y

l0 x
l1 , u

l1 , r
l1 , y

l1
x

lT−2, u
lT−2 , r

lT−2 , y
lT−2

x
lT−1, u

lT−1 , r
lT−1 , y

lT−1

x
l0 , u

l0

r0= ' x0 , u0

x1= f ' x0 ,u0x0=x

x2 xT−2

xT−1
xT

∥x−x
l0∥X

J  f ' , ' 
u0 , ... ,uT−1x ≥∑

t=0

T−1

[rlt−LQT−t∥y
lt −1−x lt∥X ] with y

l−1=x

∥y
l0−x

l1∥X
∥y

lT−2−x
lT−1∥X

Fig. 1. A graphical interpretation of the different terms composing the bound on
J
u0,...,uT−1

(f ′,ρ′) (x) computed from a sequence of one-step transitions.

In this section, we present a method for computing, from a given initial state
x ∈ X , a sequence of actions (u0, . . . , uT−1) ∈ UT , a dataset of transitions, and
weak prior knowledge about the environment, a lower bound on L

u0,...,uT−1

Fn (x).

The method is adapted from [11]. In the following, we denote by FTn,(u0,...,uT−1)
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the set of all sequences of one-step system transitions [(xl0 , ul0 , rl0 , yl0), . . . ,
(xlT−1 , ulT−1 , rlT−1 , ylT−1)] that may be built from elements of Fn and that are
compatible with u0, . . . , uT−1, i.e. for which ult = ut, ∀t ∈ {0, . . . , T − 1}.
First, we compute a lower bound on L

u0,...,uT−1

Fn (x) from any given element τ

from FTn,(u0,...,uT−1)
. This lower bound B(τ, x) is made of the sum of the T

rewards corresponding to τ (
∑T−1
t=0 rlt) and T negative terms. Every negative

term is associated with a one-step transition. More specifically, the negative
term corresponding to the transition (xlt , ult , rlt , ylt) of τ represents an upper
bound on the variation of the cumulated rewards over the remaining time steps
that can occur by simulating the system from a state xlt rather than ylt−1 (with

yl−1 = x) and considering any compatible environment (f ′, ρ′) from LfFn ×L
ρ
Fn .

By maximizing B(τ, x) over FTn,(u0,...,uT−1)
, we obtain a maximal lower bound

on L
u0,...,uT−1

Fn (x). Furthermore, we prove that the distance from the maximal
lower bound to the actual return Ju0,...,uT−1(x) can be characterized in terms of
the sample sparsity.

5.1 Computing a bound from a given sequence of one-step
transitions

We have the following lemma.

Lemma 1. Let (u0, . . . , uT−1) ∈ UT be a sequence of actions and x ∈ X an
initial state. Let τ = [(xlt , ult , rlt , ylt)]T−1t=0 ∈ FTn,(u0,...,uT−1)

. Then,

B(τ, x) ≤ Lu0,...,uT−1

Fn (x) ≤ Ju0,...,uT−1(x) ,

with

B(τ, x)
.
=

T−1∑
t=0

[
rlt − LQT−t‖ylt−1 − xlt‖X

]
, yl−1 = x , LQT−t = Lρ

T−t−1∑
i=0

(Lf )i .

The proof is given in Appendix B. The lower bound on L
u0,...,uT−1

Fn (x) derived
in this lemma can be interpreted as follows. Given any compatible environ-
ment (f ′, ρ′) ∈ LfFn × L

ρ
Fn , the sum of the rewards of the “broken” trajectory

formed by the sequence of one-step system transitions τ can never be greater
than J

u0,...,uT−1

(f ′,ρ′) (x), provided that every reward rlt is penalized by a factor

LQT−t‖ylt−1 − xlt‖X . This factor is in fact an upper bound on the variation of
the (T − t)-state-action value function given any compatible environment (f ′, ρ′)
(see Appendix B) that can occur when “jumping” from (ylt−1 , ut) to (xlt , ut).
An illustration of this is given in Figure 1.

5.2 Tightness of highest lower bound over all compatible sequences
of one-step transitions

We define
B
u0,...,uT−1

Fn (x) = max
τ∈FT

n,(u0,...,uT−1)

B(τ, x)
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and we analyze in this subsection the distance from the lower boundB
u0,...,uT−1

Fn (x)
to the actual return Ju0,...,uT−1(x) as a function of the sample sparsity. The
sample sparsity is defined as follows: let Fn,a = {(xl, ul, rl, yl) ∈ Fn|ul = a}
(∀a, Fn,a 6= ∅ according to assumption (iii) given in Section 3). Since X is a
compact subset of RdX , it is bounded and there exists α ∈ R+ :

∀a ∈ U , sup
x′∈X

{
min

(xl,ul,rl,yl)∈Fn,a

{
‖xl − x′‖X

}}
≤ α . (2)

The smallest α which satisfies equation (2) is named the sample sparsity and is
denoted by α∗Fn . We have the following theorem.

Theorem 2 (Tightness of highest lower bound).

∃ C > 0 : ∀(u0, . . . , uT−1) ∈ UT , Ju0,...,uT−1(x)−Bu0,...,uT−1

Fn (x) ≤ Cα∗Fn .

The proof of Theorem 2 is given in the Appendix of [12]. The lower bound
B
u0,...,uT−1

Fn (x) thus converges to the T−stage return of the sequence of actions

(u0, . . . , uT−1) ∈ UT when the sample sparsity α∗Fn decreases to zero.

6 Computing a sequence of actions maximizing the
highest lower bound

Let B∗Fn(x) = arg max
(u0,...,uT−1)∈UT

{
B
u0,...,uT−1

Fn (x)
}
. The CGRL algorithm computes

for each initial state x ∈ X a sequence of actions (û∗Fn,0(x), . . . , û∗Fn,T−1(x))
that belongs to B∗Fn(x). From what precedes, it follows that the actual re-

turn J û
∗
Fn,0(x),...,û

∗
Fn,T−1(x)(x) of this sequence is lower-bounded by the quantity

max
(u0,...,uT−1)∈UT

B
u0,...,uT−1

Fn (x). Due to the tightness of the lower boundB
u0,...,uT−1

Fn (x),

the value of the return which is guaranteed will converge to the true return of
the sequence of actions when α∗Fn decreases to zero. Additionaly, we prove in
Section 6.1 that when the sample sparsity α∗Fn decreases below a particular
threshold, the sequence (û∗Fn,0(x), . . . , û∗Fn,T−1(x)) is optimal. To identify a se-
quence of actions that belongs to B∗Fn(x) without computing for all sequences

(u0, . . . , uT−1) ∈ UT the value B
u0,...,uT−1

Fn (x), the CGRL algorithm exploits the
fact that the problem of finding an element of B∗Fn(x) can be reformulated as a
shortest path problem.

6.1 Convergence of (û∗Fn,0(x), . . . , û
∗
Fn,T−1(x)) towards an optimal

sequence of actions

We prove hereafter that when α∗Fn gets lower than a particular threshold, the
CGRL algorithm can only output optimal policies.

Theorem 3 (Convergence of the CGRL algorithm).
Let

J∗(x) =
{

(u0, . . . , uT−1) ∈ UT |Ju0,...,uT−1(x) = J∗(x)
}
,
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x

l0
✶ ,... , lT−1

✶ ∈argmax
l0 , ... ,lT−1 

c00, l0c1l0, l1...cT−1 lT−2 ,lT−1

with c t i , j =−LQT− t∥y
i−x j∥Xr

j , y0=x

x1 , u1 , r1 , y1


x2 , u2 , r2 , y2

xn , un , rn , yn

x1 , u1 , r1 , y1


x2 , u2 , r2 , y2


xn , un , rn , yn

c00,1

c00,2

c00,n

c11,1

c11,2

c11,n

c12,n

c12,2

c12,1

c1n ,n

c1n ,2

c1n ,1

x1 , u1 , r1 , y1


x2 , u2 , r2 , y2


xn , un , rn , yn

cT−1i , j 

 uFn ,0
✶ x , ... , uFn , T−1

✶ x =ul0
✶

, ... ,u lT −1
✶



Fig. 2. A graphical interpretation of the CGRL algorithm.

and let us suppose that J∗(x) 6= UT (if J∗(x) = UT , the search for an optimal
sequence of actions is indeed trivial). We define

ε(x) = min
(u0,...,uT−1)∈UT \J∗(x)

{J∗(x)− Ju0,...,uT−1(x)} .

Then

Cα∗Fn < ε(x) =⇒ (û∗Fn,0(x), . . . , û∗Fn,T−1(x)) ∈ J∗(x) .

The proof of Theorem 3 is given in the Appendix of [12].

6.2 Cautious Generalization Reinforcement Learning algorithm

The CGRL algorithm computes an element of the set B∗Fn(x) defined previously.

Let D : FTn → UT be the operator that maps a sequence of one-step system
transitions τ = [(xlt , ult , rlt , ylt)]T−1t=0 into the sequence of actions (ul0 , . . . , ulT−1).
Using this operator, we can write

B∗Fn(x) =

{
(u0, . . . , uT−1) ∈ UT

∣∣∣∣∣∃τ ∈ arg max
τ∈FTn

{B(τ, x)} ,

D(τ) = (u0, . . . , uT−1)

}
.
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Or, equivalently

B∗Fn(x) =

(u0, . . . , uT−1) ∈ UT
∣∣∣∣∣∃τ ∈ arg max

τ∈FTn

∑T−1
t=0

[
rlt − LQT−t‖y

lt−1 − xlt‖X
]
,

D(τ) = (u0, . . . , uT−1)

 .

From this expression, we can notice that a sequence of one-step transitions τ
such that D(τ) belongs to B∗Fn(x) can be obtained by solving a shortest path
problem on the graph given in Figure 2. The CGRL algorithm works by solving
this problem using the Viterbi algorithm and by applying the operator D to the
sequence of one-step transitions τ corresponding to its solution. Its complexity
is quadratic with respect to the cardinality n of the input sample Fn and linear
with respect to the optimization horizon T .

7 Illustration

Fig. 3. CGRL with F . Fig. 4. FQI with F .

In this section, we illustrate the CGRL algorithm on a variant of the puddle
world benchmark introduced in [26]. In this benchmark, a robot whose goal is to
collect high cumulated rewards navigates on a plane. A puddle stands in between
the initial position of the robot and the high reward area. If the robot is in the
puddle, it gets highly negative rewards. An optimal navigation strategy drives the
robot around the puddle to reach the high reward area. Two datasets of one-step
transitions have been used in our example. The first set F contains elements that
uniformly cover the area of the state space that can be reached within T steps.
The set F ′ has been obtained by removing from F the elements corresponding
to the highly negative rewards.5 The full specification of the benchmark and

5 Although this problem might be treated by on-line learning methods, in some settings
- for whatever reason - on-line learning may be impractical and all one will have is
a batch of trajectories
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the exact procedure for generating F and F ′ are given in [12]. On Figure 3, we

Fig. 5. CGRL with F ′. Fig. 6. FQI with F ′.

have drawn the trajectory of the robot when following the sequence of actions
computed by the CGRL algorithm. Every state encountered is represented by
a white square. The plane upon which the robot navigates has been colored
such that the darker the area, the smaller the corresponding rewards are. In
particular, the puddle area is colored in dark grey/black. We see that the CGRL
policy drives the robot around the puddle to reach the high-reward area − which
is represented by the light-grey circles. The CGRL algorithm also computes a
lower bound on the cumulated rewards obtained by this action sequence. Here,
we found out that this lower bound was rather conservative.

Figure 4 represents the policy inferred from F by using the (finite-time ver-
sion of the) Fitted Q Iteration algorithm (FQI) combined with extremely ran-
domized trees as function approximators [9]. The trajectories computed by the
CGRL and FQI algorithms are very similar and so are the sums of rewards
obtained by following these two trajectories. However, by using F ′ rather that
F , the CGRL and FQI algorithms do not lead to similar trajectories, as it is
shown on Figures 5 and 6. Indeed, while the CGRL policy still drives the robot
around the puddle to reach the high reward area, the FQI policy makes the
robot cross the puddle. In terms of optimality, this latter navigation strategy is
much worse. The difference between both navigation strategies can be explained
as follows. The FQI algorithm behaves as if it were associating to areas of the
state space that are not covered by the input sample, the properties of the ele-
ments of this sample that are located in the neighborhood of these areas. This in
turn explains why it computes a policy that makes the robot cross the puddle.
The same behavior could probably be observed by using other algorithms that
combine dynamic programming strategies with kernel-based approximators or
averagers [3, 14, 21]. The CGRL algorithm generalizes the information contained
in the dataset, by assuming, given the intial state, the most adverse behavior for
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the environment according to its weak prior knowledge about the environment.
This results in the fact that the CGRL algorithm penalizes sequences of deci-
sions that could drive the robot in areas not well covered by the sample, and
this explains why the CGRL algorithm drives the robot around the puddle when
run with F ′.

8 Discussion

The CGRL algorithm outputs a sequence of actions as well as a lower bound on
its return. When Lf > 1 (e.g. when the system is unstable), this lower bound will
decrease exponentially with T . This may lead to very low performance guarantees
when the optimization horizon T is large. However, one can also observe that the
terms LQT−t − which are responsible for the exponential decrease of the lower
bound with the optimization horizon − are multiplied by the distance between
the end state of a one-step transition and the beginning state of the next one-
step transition of the sequence τ (‖yl

∗
t−1 − xl∗t ‖X ) solution of the shortest path

problem of Figure 2. Therefore, if these states yl
∗
t−1 and xl

∗
t are close to each

other, the CGRL algorithm can lead to good performance guarantees even for
large values of T . It is also important to notice that this lower bound does not
depend explicitly on the sample sparsity α∗Fn , but depends rather on the initial
state for which the sequence of actions is computed. Therefore, this may lead
to cases where the CGRL algorithm provides good performance guarantees for
some specific initial states, even if the sample does not cover every area of the
state space well enough.

Other RL algorithms working in a similar setting as the CGRL algorithm,
while not exploiting the weak prior knowledge about the environment, do not
output a lower bound on the return of the policy h they infer from the sample
of trajectories Fn. However, some lower bounds on the return of h can still be
computed. For instance, this can be done by exploiting the results of [11] upon
which the CGRL algorithm is based. However, one can show that following the
strategy described in [11] would necessarily lead to a bound lower than the lower
bound associated to the sequence of actions computed by the CGRL algorithm.
Another strategy would be to design global lower bounds on their policy by
adapting proofs used to establish the consistency of these algorithms. As a way
of example, by proceeding like this, we can design a lower bound on the return
of the policy given by the FQI algorithm when combined with some specific
approximators which have, among others, Lipschitz continuity properties. These
algorithms compute a sequence of state-action value functions Q̂1, Q̂2, . . . , Q̂T
and compute the policy h : {0, 1, . . . , T − 1} ×X defined as follows : h(t, xt) ∈
arg max
u∈U

Q̂T−t(xt, u). For instance when using kernel-based approximators [21],

we have as result that the return of h when starting from a state x is larger than
Q̂T (x, h(0, x)) − (C1T + C2T

2) · α∗Fn where C1 and C2 depends on Lf , Lρ, the
Lipschtiz constants of the class of approximation and an upper bound on ρ (the
proof of this result can be found in [13]). The explicit dependence of this lower
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bound on α∗Fn as well as the large values of C1 and C2 tend to lead to a very
conservative lower bound, especially when Fn is sparse.

9 Conclusions

In this paper, we have considered min max based approaches for addressing the
generalization problem in RL. In particular, we have proposed and studied an al-
gorithm that outputs a policy that maximizes a lower bound on the worst return
that may be obtained with an environment compatible with some observed sys-
tem transitions. The proposed algorithm is of polynomial complexity and avoids
regions of the state space where the sample density is too low according to the
prior information. A simple example has illustrated that this strategy can lead
to cautious policies where other batch-mode RL algorithms fail because they
unsafely generalize the information contained in the dataset.

From the results given in [11], it is also possible to derive in a similar way
tight upper bounds on the return of a policy. In this respect, it would also
be possible to adopt a “max max” generalization strategy by inferring policies
that maximize these tight upper bounds. We believe that exploiting together
the policy based on a min max generalization strategy and the one based on a
max max generalization strategy could offer interesting possibilities for address-
ing the exploitation-exploration tradeoff faced when designing intelligent agents.
For example, if the policies coincide, it could be an indication that further ex-
ploration is not needed.

When using batch mode reinforcement learning algorithms to design au-
tonomous intelligent agents, a problem arises. After a long enough time of in-
teraction with their environment, the sample the agents collect may become so
large that batch mode RL-techniques may become computationally impractical,
even with small degree polynomial algorithms. As suggested by [8], a solution
for addressing this problem would be to retain only the most “informative sam-
ples”. In the context of the proposed algorithm, the complexity for computing
the optimal sequence of decisions is quadratic in the size of the dataset. We
believe that it would be interesting to design lower complexity algorithms based
on subsampling the dataset based on the initial state information.

The work reported in this paper has been carried out in the particular context
of deterministic Lipschtiz continuous environments. We believe that extending
this work to environments which satisfy other types of properties (for instance,
Hölder continuity assumptions or properties that are not related with continuity)
or which are possibly also stochastic is a natural direction for further research.
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A Proof of Theorem 1

– Let us first prove that L
u0,...,uT−1

Fn (x) ≤ Ku0,...,uT−1

Fn (x) . Let us assume that
we know a set of variables x̂0, . . . , x̂T−1 and r̂0, . . . , r̂T−1 that are solution
of the optimization problem. To each action u ∈ U , we associate the sets
Au =

{
xl ∈ {x1, . . . , xn}|ul = u} and Bu =

{
x̂t ∈ {x̂0, . . . , x̂T−1}|ut =

u
}

. Let Su = Au ∪ Bu. For simplicity in the proof, we assume that the
points of Su are in general position, i.e., no (dX + 1) points from Su lie in a
(dX−1)−dimensional plane (the points are affinely independent). This allows
to compute a dX−dimensional triangulation {∆1, . . . ,∆p} of the convex hull
H(Su) defined by the set of points Su [6]. We introduce for every value of
u ∈ U two Lipschitz continuous functions f̃u : X → X and ρ̃u : X → R
defined as follows:
• Inside the convex hull H(Su)

Let gfu : Su → X and gρu : Su → R be such that:

∀xl ∈ Au ,
{
gfu(xl) = f(xl, u)
gρu(xl) = ρ(xl, u)

and ∀x̂t ∈ Bu\Au ,
{
gfu(x̂t) = x̂t+1

gρu(x̂t) = r̂t
.
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Then, we define the functions f̃u and ρ̃u inside H(Su) as follows:

∀k ∈ {1, . . . , p},∀x′ ∈ ∆k , f̃u(x′) =

dX+1∑
i=1

λki (x′)gfu(ski ) ,

ρ̃u(x′) =

dX+1∑
i=1

λki (x′)gρu(ski ) ,

where ski i = 1 . . . (dX + 1) are the vertices of ∆k and λki (x) are such

that x′ =
∑dX+1
i=1 λki (x′)ski with

∑dX+1
i=1 λki (x′) = 1 and λki (x′) ≥ 0, ∀i.

• Outside the convex hull H(Su)
According the Hilbert Projection Theorem [25], for every point x′′ ∈
X , there exists a unique point y′′ ∈ H(Su) such that ‖x′′ − y′′‖X is
minimized over H(Su). This defines a mapping tu : X → H(Su) which
is 1−Lipschitzian. Using the mapping tu, we define the functions f̃u and
ρ̃u outside H(Su) as follows:

∀x′′ ∈ X\H(Su), f̃u(x′′) = f̃u(tu(x′′)) and ρ̃u(x′′) = ρ̃u(tu(x′′)) .

We finally introduce the functions f̃ and ρ̃ over the space X × U as follows:

∀(x′, u) ∈ X × U , f̃(x′, u) = f̃u(x′) and ρ̃(x′, u) = ρ̃u(x′) .

One can easily show that the pair (f̃ , ρ̃) belongs to LfFn ×L
ρ
Fn and satisfies

J
u0,...,uT−1

(f̃ ,ρ̃)
(x) =

T−1∑
t=0

ρ̃(x̂t, ut) =

T−1∑
t=0

r̂t

with x̂t+1 = f̃(x̂t, ut) and x̂0 = x. This proves that

L
u0,...,uT−1

Fn (x) ≤ Ku0,...,uT−1

Fn (x) .

(Note that one could still build two functions (f̃ , ρ̃) ∈ LfFn ×L
ρ
Fn even if the

sets of points (Su)u∈U are not in general position)
– Then, let us prove that K

u0,...,uT−1

Fn (x) ≤ L
u0,...,uT−1

Fn (x) . We consider the

environment (f
u0,...,uT−1

Fn,x , ρ
u0,...,uT−1

Fn,x ) introduced in Equation (1) at the end
of Section 3. One has

L
u0,...,uT−1

Fn (x) = J
u0,...,uT−1

(f
u0,...,uT−1
Fn,x ,ρ

u0,...,uT−1
Fn,x )

(x) =

T−1∑
t=0

r̃t ,

with ∀t ∈ {0, . . . , T − 1} ,

r̃t = ρ
u0,...,uT−1

Fn,x (x̃t, ut) , x̃t+1 = f
u0,...,uT−1

Fn,x (x̃t, ut) , x̃0 = x .

The variables x̃0, . . . , x̃T−1 and r̃0, . . . , r̃T−1 satisfy the constraints intro-
duced in Theorem (1). This proves that

K
u0,...,uT−1

Fn (x) ≤ Lu0,...,uT−1

Fn (x)

and completes the proof.
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B Proof of Lemma 1

Before proving Lemma 1, we prove a preliminary result related to the Lipschitz
continuity of state-action value functions. Let (f ′, ρ′) ∈ LfFn × L

ρ
Fn be a com-

patible environment. For N = 1, . . . , T , let us define the family of (f ′, ρ′)−state-
action value functions Q

u0,...,uT−1

N,(f ′,ρ′) : X ′ × U → R as follows:

Q
u0,...,uT−1

N,(f ′ρ′) (x′, u) = ρ′(x′, u) +

T−1∑
t=T−N+1

ρ′(x′t, ut),

where x′T−N+1 = f ′(x′, u) and x′t+1 = f ′(x′t, ut), ∀t ∈ {T −N + 1, . . . , T − 1} .
Q
u0,...,uT−1

N,(f ′,ρ′) (x′, u) gives the sum of rewards from instant t = T − N to instant

T − 1 given the compatible environment (f ′, ρ′) when (i) the system is in state
x′ ∈ X at instant T −N , (ii) the action chosen at instant T −N is u and (iii)
the actions chosen at instants t > T −N are ut. The value J

u0,...,uT−1

(f ′,ρ′) (x) can be

deduced from the value of Q
u0,...,uT−1

T,(f ′,ρ′) (x, u0) as follows:

∀x ∈ X , Ju0,...,uT−1

(f ′,ρ′) (x) = Q
u0,...,uT−1

T,(f ′,ρ′) (x, u0). (3)

We also have ∀x′ ∈ X ,∀u ∈ U ,∀N ∈ {1, . . . , T − 1}

Q
u0,...,uT−1

N+1,(f ′,ρ′)(x
′, u) = ρ′(x′, u) +Q

u0,...,uT−1

N,(f ′,ρ′) (f ′(x′, u), uT−N ) (4)

Lemma 2 (Lipschitz continuity of Q
u0,...,uT−1

N,(f ′,ρ′) ).

∀N ∈ {1, . . . , T}, ∀(x′, x′′) ∈ X 2,∀u ∈ U ,

|Qu0,...,uT−1

N,(f ′,ρ′) (x′, u)−Qu0,...,uT−1

N,(f ′,ρ′) (x′′, u)| ≤ LQN ‖x′ − x′′‖X ,

with LQN = Lρ
∑N−1
i=0 (Lf )i .

Proof. We consider the statement H(N): ∀(x′, x′′) ∈ X 2,∀u ∈ U ,

|Qu0,...,uT−1

N,(f ′,ρ′) (x′, u)−Qu0,...,uT−1

N,(f ′,ρ′) (x′′, u)| ≤ LQN ‖x′ − x′′‖X .

We prove by induction that H(N) is true ∀N ∈ {1, . . . , T}. For the sake of
clarity, we denote |Qu0,...,uT−1

N,(f ′,ρ′) (x′, u)−Qu0,...,uT−1

N,(f ′,ρ′) (x′′, u)| by ∆N .

– Basis (N = 1) : We have ∆N = |ρ′(x′, u) − ρ′(x′′, u)|, and since ρ′ ∈ LρFn ,
we can write ∆N ≤ Lρ‖x′ − x′′‖X . This proves H(1).

– Induction step: We suppose that H(N) is true, 1 ≤ N ≤ T − 1. Using equa-
tion (4), we can write ∆N+1 =

∣∣Qu0,...,uT−1

N+1,(f ′,ρ′)(x
′, u)−Qu0,...,uT−1

N+1,(f ′,ρ′)(x
′′, u)

∣∣
=
∣∣ρ′(x′, u)−ρ′(x′′, u)+Q

u0,...,uT−1

N,(f ′,ρ′) (f ′(x′, u), uT−N )−Qu0,...,uT−1

N,(f ′,ρ′) (f ′(x′′, u), uT−N )
∣∣

and, from there,∆N+1 ≤
∣∣ρ′(x′, u)−ρ′(x′′, u)

∣∣+∣∣Qu0,...,uT−1

N,(f ′,ρ′) (f ′(x′, u), uT−N )−
Q
u0,...,uT−1

N,(f ′,ρ′) (f ′(x′′, u), uT−N )
∣∣ . H(N) and the Lipschitz continuity of ρ′ give

∆N+1 ≤ Lρ‖x′ − x′′‖X + LQN ‖f ′(x′, u)− f ′(x′′, u)‖X .

Since f ′ ∈ LfFn , the Lipschitz continuity of f ′ gives ∆N+1 ≤ Lρ‖x′−x′′‖X +
LQNLf‖x′ − x′′‖X , then ∆N+1 ≤ LQN+1

‖x′ − x′′‖X since LQN+1
= Lρ +

LQNLf . This proves H(N + 1) and ends the proof.
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Proof of Lemma 1

– The inequality L
u0,...,uT−1

Fn (x) ≤ Ju0,...,uT−1(x) is trivial since (f, ρ) belongs

to LfFn × L
ρ
Fn .

– Let (f ′, ρ′) ∈ LfFn × L
ρ
Fn be a compatible environment. By assumption we

have ul0 = u0, then we use equation (3) and the Lipschitz continuity of
Q
u0,...,uT−1

T,(f ′,ρ′) to write

|Ju0,...,uT−1

(f ′,ρ′) (x)−Qu0,...,uT−1

T,(f ′,ρ′) (xl0 , u0)| ≤ LQT ‖x− xl0‖X .

It follows that Q
u0,...,uT−1

T,(f ′,ρ′) (xl0 , u0)− LQT ‖x− xl0‖X ≤ J
u0,...,uT−1

(f ′,ρ′) (x).

According to equation (4), we have
Q
u0,...,uT−1

T,(f ′,ρ′) (xl0 , u0) = ρ′(xl0 , u0)+Q
u0,...,uT−1

T−1,(f ′ρ′) (f
′(xl0 , u0), u1) and from there

Q
u0,...,uT−1

T,(f ′,ρ′) (xl0 , u0) = rl0 +QhT−1,(f ′,ρ′)(y
l0 , u1).

Thus, Q
u0,...,uT−1

T−1,(f ′,ρ′)(y
l0 , u1) + rl0 − LQT ‖x− xl0‖X ≤ J

u0,...,uT−1

(f ′,ρ′) (x).

The Lipschitz continuity of Q
u0,...,uT−1

T−1,(f ′,ρ′) with u1 = ul1 gives

|Qu0,...,uT−1

T−1,(f ′,ρ′)(y
l0 , u1)−Qu0,...,uT−1

T−1,(f ′,ρ′)(x
l1 , ul1)| ≤ LQT−1

‖yl0 − xl1‖X .

This implies that

Q
u0,...,uT−1

T−1,(f ′,ρ′)(x
l1 , u1)− LQT−1

‖yl0 − xl1‖X ≤ Qu0,...,uT−1

T−1,(f ′,ρ′)(y
l0 , u1).

We have therefore

Q
u0,...,uT−1

T−1,(f ′,ρ′)(x
l1 , u1) + rl0 − LQT ‖x− xl0‖X − LQT−1

‖yl0 − xl1‖X
≤ Ju0,...,uT−1

(f ′,ρ′) (x).

By developing this iteration, we obtain

J
u0,...,uT−1

(f ′,ρ′) (x) ≥
T−1∑
t=0

[
rlt − LQT−t‖ylt−1 − xlt‖X

]
. (5)

The right side of Equation (5) does not depend on the choice of (f ′, ρ′) ∈
LfFn × L

ρ
Fn ; Equation (5) is thus true for (f ′, ρ′) = (f

u0,...,uT−1

Fn,x , ρ
u0,...,uT−1

Fn,x )
(cf. Equation (1) in Section 3). This finally gives

L
u0,...,uT−1

Fn (x) ≥
T−1∑
t=0

[
rlt − LQT−t‖ylt−1 − xlt‖X

]
since L

u0,...,uT−1

Fn (x) = J
u0,...,uT−1

(f
u0,...,uT−1
Fn,x ,ρ

u0,...,uT−1
Fn,x )

(x) .


