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Abstract In this paper, we consider the batch mode reinforcement learning setting, where
the central problem is to learn from a sample of trajectories a policy that satisfies or opti-
mizes a performance criterion. We focus on the continuous state space case for which usual
resolution schemes rely on function approximators either to represent the underlying control
problem or to represent its value function. As an alternative to the use of function approxima-
tors, we rely on the synthesis of “artificial trajectories” from the given sample of trajectories,
and show that this idea opens new avenues for designing and analyzing algorithms for batch
mode reinforcement learning.

Keywords Reinforcement learning · Optimal control · Artificial trajectories · Function
approximators

1 Introduction

Optimal control problems arise in many real-life applications, such as engineering (Ried-
miller 2005), medicine (Robins 1986; Murphy et al. 2001; Murphy 2003) or artificial in-
telligence (Sutton and Barto 1998). Over the last decade, techniques developed by the Re-
inforcement Learning (RL) community (Sutton and Barto 1998) have become more and
more popular for addressing those types of problems. RL was initially focusing on how to
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design intelligent agents able to interact with their environment so as to optimize a given per-
formance criterion (Sutton and Barto 1998). Since the end of the nineties, many researchers
have focused on the resolution of a subproblem of RL: computing high performance policies
when the only information available on the environment is contained in a batch collection
of trajectories. This subproblem of RL is referred to as batch mode RL (Fonteneau 2011).

Most of the techniques proposed in the literature for solving batch mode RL problems
over large or continuous spaces combine value or policy iteration schemes from the Dy-
namic Programming (DP) theory (Bellman 1957) with function approximators (e.g., radial
basis functions, neural networks, etc.) representing (state-action) value functions (Busoniu
et al. 2010). These approximators have two main roles: (i) to offer a concise representa-
tion of state-action value functions defined over continuous spaces and (ii) to generalize
the information contained in the finite sample of input data. Another family of algorithms
that has been less studied in RL adopts a two stage process for solving these batch mode
RL problems. First, they train function approximators to learn a model of the environment
and, afterwards, they use various optimization schemes (e.g., direct policy search, dynamic
programming) to compute a policy which is (near-)optimal with respect to this model.

While successful in many studies, the use of function approximators for solving batch
mode RL problems has also drawbacks. In particular, the black box nature of this approach
makes performance analysis very difficult, and hence severely hinders the design of new
batch mode RL algorithms presenting some a priori desired performance guarantees. Also,
the policies inferred by these algorithms may have counter-intuitive properties. For example,
in a deterministic framework, for a fixed initial state, and when there is in the input sample
a trajectory that has been generated by an optimal policy starting from this initial state,
there is no guarantee that a function approximator-based policy will reproduce this optimal
behavior. This is surprising, since a simple “imitative learning” approach would have such a
desirable property.

The above observations have lead us to develop a new line of research based on the
synthesis of “artificial trajectories” for addressing batch mode RL problems. In our ap-
proach, artificial trajectories are rebuilt from the tuples extracted from the given batch
of trajectories with the aim of achieving an optimality property. In this paper, we re-
visit our work on this topic Fonteneau et al. (2009, 2010a, 2010b, 2010c, 2010d), with
the objective of showing that these ideas open avenues for addressing many batch mode
RL related problems. In particular, four algorithms that exploit artificial trajectories will
be presented. The first one computes an estimate of the performance of a given control
policy (Fonteneau et al. 2010c). The second one provides a way for computing perfor-
mance guarantees in deterministic settings (Fonteneau et al. 2009). The third one leads to
the computation of policies having high performance guarantees (Fonteneau et al. 2010a;
Fonteneau et al. 2010d), and the fourth algorithm presents a sampling strategy for gen-
erating additional trajectories (Fonteneau et al. 2010b). Finally, we highlight connections
between the concept of artificial trajectory synthesis and other standard batch mode RL
techniques.

The paper is organized as follows. First, Sect. 2 gives a brief review of the field of batch
mode RL. Section 3 presents the batch mode RL setting adopted in this paper and several
of the generic problems it raises. In Sect. 4, we present our new line of research articu-
lated around the synthesis of artificial trajectories. Finally, Sect. 5 proposes to make the link
between this paradigm and existing batch mode RL techniques, and Sect. 6 concludes.
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2 Related work

Batch mode RL techniques are probably rooted in the works of Bradtke and Barto (1996) and
Boyan (2005) related to the use of least-squares techniques in the context of Temporal Dif-
ference learning methods (LSTD) for estimating the return of control policies. Those works
have been extended to address optimal control problems by Lagoudakis and Parr (2003) who
have introduced the Least-Square Policy Iteration (LSPI) algorithm that mimics the policy
iteration algorithm of the DP theory (Bellman 1957). Several papers have proposed some
theoretical works related to least-squares TD-based algorithms, such as for example Nedić
and Bertsekas (2003) and Lazaric et al. (2010a, 2010b).

Another algorithm from the DP theory, the value iteration algorithm, has also served
as inspiration for designing batch mode RL algorithms. For example, Ormoneit and Sen
have developed a batch mode RL algorithm in 2002 (Ormoneit and Sen 2002) using kernel
approximators, for which theoretical analyses are also provided. Ernst et al. (2003) proposes
an algorithm that combines value iteration with any type of regressors (e.g., regression trees,
SVMs, neural networks). Ernst et al. (2005) has named this algorithm Fitted Q Iteration
(FQI) and provides a careful empirical analysis of its performance when combined with
ensembles of regression trees.

Riedmiller (2005), Lange and Riedmiller (2010) and Timmer and Riedmiller (2007)
study the performances of this FQI algorithm with (deep) neural networks and CMACs
(Cerebella Model Articulator Controllers). The Regularized FQI algorithm proposes to use
penalized least-squares regression as function approximator to limit the model-complexity
of the original FQI algorithm (Farahmand et al. 2008). Extensions of the FQI algorithm
to continuous action spaces have also been proposed (Antos et al. 2007). More theo-
retical works related with FQI have also been published (Munos and Szepesvári 2008;
Chakraborty et al. 2008).

Applications of these batch mode RL techniques have already led to promising results in
robotics (Peters et al. 2003; Bonarini et al. 2008; Tognetti et al. 2009), power systems (Ernst
et al. 2009), image processing (Ernst et al. 2006a), water reservoir optimization (Castelletti
et al. 2007, 2010), medicine (Murphy 2003; Ernst et al. 2006b; Guez et al. 2008) and driving
assistance strategies (Pietquin et al. 2011).

3 Batch mode RL: formalization and typical problems

We consider a stochastic discrete-time system whose dynamics is given by

xt+1 = f (xt , ut ,wt ) ∀t ∈ {0, . . . , T − 1}
where xt belongs to a state space X ⊂ R

d , where R
d is the d-dimensional Euclidean space

and T ∈ N\{0} denotes the finite optimization horizon. At every time t ∈ {0, . . . , T −1}, the
system can be controlled by taking an action ut ∈ U , and is subject to a random disturbance
wt ∈ W drawn according to a probability distribution pW (·).1 With each system transition
from time t to t + 1 is associated a reward signal:

rt = ρ(xt , ut ,wt ) ∀t ∈ {0, . . . , T − 1}.

1Here the fundamental assumption is that wt is independent of wt−1,wt−2, . . . ,w0 given xt and ut ; to
simplify all notations and derivations, we furthermore impose that the process is time-invariant and does not
depend on the states and actions xt , ut .



Ann Oper Res

Let h : {0, . . . , T − 1} × X → U be a control policy. When starting from a given initial state
x0 and following the control policy h, an agent will get a random sum of rewards signal
Rh(x0,w0, . . . ,wT −1):

Rh(x0,w0, . . . ,wT −1) =
T −1∑

t=0

ρ
(
xt , h(t, xt ),wt

)

with xt+1 = f
(
xt , h(t, xt ),wt

) ∀t ∈ {0, . . . , T − 1}
wt ∼ pW (·).

In RL, the classical performance criterion for evaluating a policy h is its expected T -stage
return:

Definition 1 (Expected T -stage return)

J h(x0) = E
[
Rh(x0,w0, . . . ,wT −1)

]
,

but, when searching for risk-aware policies, it is also of interest to consider a risk-sensitive
criterion:

Definition 2 (Risk-sensitive T -stage return) Let b ∈ R and c ∈ [0,1[.

J
h,(b,c)

RS (x0) =
{−∞ if P (Rh(x0,w0, . . . ,wT −1) < b) > c,

J h(x0) otherwise.

The central problem of batch mode RL is to find a good approximation of a policy h∗

that optimizes one such performance criterion, given the fact that the functions f , ρ and
pW (·) are unknown, and thus not accessible to simulation. Instead, they are “replaced” by
a batch collection of n ∈ N \ {0} elementary pieces of trajectories, defined according to the
following process.

Definition 3 (Sample of transitions) Let

Pn = {(
xl, ul

)}n

l=1
∈ (X × U )n

be a given set of state-action pairs. Consider the ensemble of samples of one-step transitions
of size n that could be generated by complementing each pair (xl, ul) of Pn by drawing for
each l a disturbance signal wl at random from pW (.), and by recording the resulting values
of ρ(xl, ul,wl) and f (xl, ul,wl). We denote by F̃n(Pn,w

1, . . . ,wn) one such “random”
set of one-step transitions defined by a random draw of n i.i.d. disturbance signals wl , l =
1, . . . , n. We assume that we know one realization of the random set F̃n(Pn,w

1, . . . ,wn),
that we denote by Fn:

Fn = {(
xl, ul, rl, yl

)}n

l=1

where, for all l ∈ {1, . . . , n},
∀l ∈ {1, . . . , n}, rl = ρ

(
xl, ul,wl

)
,

yl = f
(
xl, ul,wl

)
,

for some realizations of the disturbance process wl ∼ pW (·).
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Notice first that the resolution of the central problem of finding a good approximation of
an optimal policy h∗ is very much correlated to the problem of estimating the performance
of a given policy. Indeed, when this latter problem is solved, the search for an optimal policy
can in principle be reduced to an optimization problem over the set of candidate policies.
We thus will start by addressing the problem of characterizing the performance of a given
policy.

It is sometimes desirable to be able to compute policies having good performance guar-
antees. Indeed, for many applications, even if it is perhaps not paramount to have a policy h

which is very close to the optimal one, it is however crucial to be able to guarantee that the
considered policy h leads to high-enough cumulated rewards. The problem of computing
such policies will also be addressed later in this paper.

In many applications, one has the possibility to move away from a pure batch setting
by carrying out a limited number of experiments on the real system in order to enrich the
available sample of trajectories. We thus also consider the problem of designing strategies
for generating optimal experiments for batch mode RL.

4 Synthesizing artificial trajectories

We first formalize the concept of artificial trajectories in Sect. 4.1. In Sect. 4.2, we detail,
analyze and illustrate on a benchmark how artificial trajectories can be exploited for esti-
mating the performances of policies. We focus in Sect. 4.3 on the deterministic case, and
we show how artificial trajectories can be used for computing bounds on the performances
of policies. Afterwards, we exploit these bounds for addressing two different problems: the
first problem (Sect. 4.4) is to compute policies having good performance guarantees. The
second problem (Sect. 4.5) is to design sampling strategies for generating additional system
transitions.

4.1 Artificial trajectories

Artificial trajectories are made of elementary pieces of trajectories (one-step system transi-
tions) taken from the sample Fn. Formally, an artificial trajectory is defined as follows:

Definition 4 (Artificial trajectory) An artificial trajectory is an (ordered) sequence of T

one-step system transitions:

[(
xl0 , ul0 , rl0 , yl0

)
, . . . ,

(
xlT −1 , ulT −1 , rlT −1 , ylT −1

)] ∈ F T
n

where

lt ∈ {1, . . . , n}, ∀t ∈ {0, . . . , T − 1}.

We give in Fig. 1 an illustration of one such artificial trajectory.
Observe that one can synthesize nT different artificial trajectories from the sample of

transitions Fn. In the rest of this paper, we present various techniques for extracting and
exploiting “interesting” subsets of artificial trajectories.
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Fig. 1 An example of an
artificial trajectory rebuilt from
4 one-step system transitions
from Fn

4.2 Evaluating the expected return of a policy

A major subproblem of batch mode RL is to evaluate the expected return J h(x0) of a given
policy h. Indeed, when such an oracle is available, the search for an optimal policy can be in
some sense reduced to an optimization problem over the set of all candidate policies. When
a model of the system dynamics, reward function and disturbances probability distribution
is available, Monte Carlo estimation techniques can be run to estimate the performance of
any control policy. But, this is indeed not possible in the batch mode setting. In this section,
we detail an approach that estimates the performance of a policy by rebuilding artificial
trajectories so as to mimic the behavior of the Monte Carlo estimator. We assume in this
section (and also in Sect. 4.3) that the action space U is continuous and normed.

4.2.1 Monte Carlo estimation

The Monte Carlo (MC) estimator works in a model-based setting (i.e., in a setting where
f , ρ and pW (.) are known). It estimates J h(x0) by averaging the returns of several (say
p ∈ N \ {0}) trajectories which have been generated by simulating the system from x0 using
the policy h. More formally, the MC estimator of the expected return of the policy h when
starting from the initial state x0 writes:

Definition 5 (Monte Carlo estimator)

M
h
p(x0) = 1

p

p∑

i=1

T −1∑

t=0

ρ
(
xi

t , h
(
t, xi

t

)
,wi

t

)

with ∀t ∈ {0, . . . , T − 1}, ∀i ∈ {1, . . . , p},
wi

t ∼ pW (.),

xi
0 = x0,

xi
t+1 = f

(
xi

t , h
(
t, xi

t

)
,wi

t

)
.

The bias and variance of the MC estimator are:
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Proposition 1 (Bias and variance of the MC estimator)

E
wi

t ∼pW (.), i=1,...,p, t=0,...,T −1

[
M

h
p(x0) − J h(x0)

] = 0,

E
wi

t ∼pW (.), i=1,...,p, t=0,...,T −1

[(
M

h
p(x0) − J h(x0)

)2] = σ 2
Rh(x0)

p

where σ 2
Rh(x0) denotes the assumed finite variance of Rh(x0,w0, . . . ,wT −1):

σ 2
Rh(x0) = Var

w0,...,wT −1∼pW (.)

[
Rh(x0,w0, . . . ,wT −1)

]
< +∞.

4.2.2 Model-free Monte Carlo estimation

From a sample Fn, our model-free MC (MFMC) estimator works by rebuilding p ∈ N \ {0}
artificial trajectories. These artificial trajectories will then serve as proxies of p “actual”
trajectories that could be obtained by simulating the policy h on the given control problem.
Our estimator averages the cumulated returns over these artificial trajectories to compute
its estimate of the expected return J h(x0). The main idea behind our method amounts to
selecting the artificial trajectories so as to minimize the discrepancy of these trajectories
with a classical MC sample that could be obtained by simulating the system with policy h.

To rebuild a sample of p artificial trajectories of length T starting from x0 and similar to
trajectories that would be induced by a policy h, our algorithm uses each one-step transition
in Fn at most once; we thus assume that pT ≤ n. The p artificial trajectories of T one-step
transitions are created sequentially. Every artificial trajectory is grown in length by selecting,
among the sample of not yet used one-step transitions, a transition whose first two elements
minimize the distance—using a distance metric Δ in X × U —with the couple formed by
the last element of the previously selected transition and the action induced by h at the
end of this previous transition. Because (i) all disturbances wl , l = 1, . . . , n are state-action
independent and i.i.d. according to pW (·) and (ii) we do not re-use one-step transitions, the
disturbances associated with the selected transitions are i.i.d., which provides the MFMC
estimator with interesting theoretical properties (see Sect. 4.2.3). Consequently, this also
ensures that the p rebuilt artificial trajectories will be distinct.

A tabular version of the algorithm for building the set of artificial trajectories is given in
Algorithm 1. It returns a set of indices of one-step transitions {lit }i=p, t=T −1

i=1, t=0 from Fn based
on h, x0, the distance metric Δ and the parameter p. Based on this set of indices, we define
our MFMC estimate of the expected return of the policy h when starting from the initial
state x0:

Definition 6 (Model-free Monte Carlo estimator)

M
h
p(Fn, x0) = 1

p

p∑

i=1

T −1∑

t=0

rlit .

Figure 2 illustrates the MFMC estimator. Note that the computation of the MFMC es-
timator Mh

p(Fn, x0) has a linear complexity with respect to the cardinality n of Fn, the
number of artificial trajectories p and the optimization horizon T .



Ann Oper Res

Algorithm 1 MFMC algorithm to rebuild a set of size p of T -length artificial trajectories
from a sample of n one-step transitions

Input: Fn, h(., .), x0, Δ(., .), T , p

Let G denote the current set of not yet used one-step transitions in Fn; Initially,
G ← Fn;
for i = 1 to p (extract an artificial trajectory) do

t ← 0;
xi

t ← x0;
while t < T do

ui
t ← h(t, xi

t );
H ← arg min

(x,u,r,y)∈G
Δ((x,u), (xi

t , u
i
t ));

lit ← lowest index in Fn of the transitions that belong to H;
t ← t + 1;
xi

t ← ylit ;

G ← G \ {(xlit , ulit , r lit , ylit )}; \\ do not re-use transitions
end while

end for
Return the set of indices {lit }i=p, t=T −1

i=1, t=0 .

Fig. 2 Rebuilding three 4-length
trajectories for estimating the
return of a policy

4.2.3 Analysis of the MFMC estimator

In this section we characterize some main properties of our estimator. To this end, we study
the distribution of our estimator Mh

p(F̃n(Pn,w
1, . . . ,wn), x0), seen as a function of the ran-

dom set F̃n(Pn,w
1, . . . ,wn); in order to characterize this distribution, we express its bias

and its variance as a function of a measure of the density of the sample Pn, defined by its “k-
dispersion”; this is the smallest radius such that all Δ-balls in X × U of this radius contain
at least k elements from Pn. The use of this notion implies that the space X × U is bounded
(when measured using the distance metric Δ).

The bias and variance characterization will be done under some additional assumptions
detailed below. After that, we state the main theorems formulating these characterizations.
Proofs are given in Fonteneau et al. (2010c).
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Assumption (Lipschitz continuity of the functions f , ρ and h) We assume that the dynam-
ics f , the reward function ρ and the policy h are Lipschitz continuous, i.e., we assume that
there exist finite constants Lf , Lρ and Lh ∈ R

+ such that: ∀(x, x ′, u,u′,w) ∈ X 2 × U 2 × W ,

∥∥f (x,u,w) − f
(
x ′, u′,w

)∥∥
X ≤ Lf

(∥∥x − x ′∥∥
X + ∥∥u − u′∥∥

U

)
,

∣∣ρ(x,u,w) − ρ
(
x ′, u′,w

)∣∣ ≤ Lρ

(∥∥x − x ′∥∥
X + ∥∥u − u′∥∥

U

)
,

∥∥h(t, x) − h
(
t, x ′)∥∥

U ≤ Lh

∥∥x − x ′∥∥
X , ∀t ∈ {0, . . . , T − 1},

where ‖.‖X and ‖.‖U denote the chosen norms over the spaces X and U , respectively.

Assumption (X × U is bounded) We suppose that X × U is bounded when measured using
the distance metric Δ.

Definition 7 (Distance metric Δ)

∀(
x, x ′, u,u′) ∈ X 2 × U 2, Δ

(
(x,u),

(
x ′, u′)) = ∥∥x − x ′∥∥

X + ∥∥u − u′∥∥
U .

Given k ∈ N \ {0} with k ≤ n, we define the k-dispersion, αk(Pn) of the sample Pn:

Definition 8 (k-dispersion)

αk(Pn) = sup
(x,u)∈X ×U

Δ
Pn

k (x,u),

where Δ
Pn

k (x,u) denotes the distance of (x,u) to its k-th nearest neighbor (using the dis-
tance metric Δ) in the Pn sample. The k-dispersion is the smallest radius such that all Δ-
balls in X × U of this radius contain at least k elements from Pn; it can be interpreted as
a worst-case measure on how closely Pn covers the X × U space using the k-th nearest
neighbors.

Definition 9 (Expected value of Mh
p(F̃n(Pn,w

1, . . . ,wn), x0)) We denote by Eh
p,Pn

(x0) the
expected value:

Eh
p,Pn

(x0) = E
w1,...,wn∼pW (.)

[
M

h
p

(
F̃n

(
Pn,w

1, . . . ,wn
)
, x0

)]
.

We have the following theorem:

Theorem 1 (Bias bound for Mh
p(F̃n(Pn,w

1, . . . ,wn), x0))

∣∣J h(x0) − Eh
p,Pn

(x0)
∣∣ ≤ CαpT (Pn)

with C = Lρ

T −1∑

t=0

T −t−1∑

i=0

(
Lf (1 + Lh)

)i
.

The proof of this result is given in Fonteneau et al. (2010c). This formula shows that the
bias is bounded closer to the target estimate if the sample dispersion is small. Note that the
sample dispersion itself actually only depends on the sample Pn and on the value of p (it
will increase with the number of trajectories used by our algorithm).
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Definition 10 (Variance of Mh
p(F̃n(Pn,w

1, . . . ,wn), x0)) We denote by V h
p,Pn

(x0) the vari-
ance of the MFMC estimator defined by

V h
p,Pn

(x0) = E
w1,...,wn∼pW (.)

[(
M

h
p

(
F̃n

(
Pn,w

1, . . . ,wn
)
, x0

) − Eh
p,Pn

(x0)
)2]

and we give the following theorem:

Theorem 2 (Variance bound for Mh
p(F̃n(Pn,w

1, . . . ,wn), x0))

V h
p,Pn

(x0) ≤
(

σRh(x0)√
p

+ 2CαpT (Pn)

)2

with C = Lρ

T −1∑

t=0

T −t−1∑

i=0

(
Lf (1 + Lh)

)i
.

The proof of this theorem is given in Fonteneau et al. (2010c). We see that the variance
of our MFMC estimator is guaranteed to be close to that of the classical MC estimator if the
sample dispersion is small enough.

• Illustration. In this section, we illustrate the MFMC estimator on an academic problem.
The system dynamics and the reward function are given by

xt+1 = sin

(
π

2
(xt + ut + wt)

)

and

ρ(xt , ut ,wt ) = 1

2π
e− 1

2 (x2
t +u2

t ) + wt

with the state space X being equal to [−1,1] and the action space U to [−1,1]. The
disturbance wt is an element of the interval W = [− ε

2 , ε
2 ] with ε = 0.1 and pW is a

uniform probability distribution over this interval. The optimization horizon T is equal
to 15. The policy h whose performances have to be evaluated is

h(t, x) = −x

2
, ∀x ∈ X , ∀t ∈ {0, . . . , T − 1}.

The initial state of the system is set at x0 = −0.5.

For our first set of experiments, we choose to work with a value of p = 10 i.e., the MFMC
estimator rebuilds 10 artificial trajectories to estimate J h(−0.5). In these experiments, for
different cardinalities nj = (10j)2 = m2

j , j = 1, . . . ,10, we build a sample Pnj
= {(xl, ul)}

that uniformly cover the space X × U as follows:

xl = −1 + 2j1

mj

and ul = −1 + 2j2

mj

, j1, j2 ∈ {0, . . . ,mj − 1}.

Then, we generate 50 random sets F 1
nj

, . . . , F 50
nj

over Pnj
and run our MFMC estimator on

each of these sets. The results of this first set of experiments are gathered in Fig. 3. For every
value of nj considered in our experiments, the 50 values computed by the MFMC estima-
tor are concisely represented by a boxplot. The box has lines at the lower quartile, median,
and upper quartile values. Whiskers extend from each end of the box to the adjacent val-
ues in the data within 1.5 times the interquartile range from the ends of the box. Outliers
are data with values beyond the ends of the whiskers and are displayed with a red + sign.
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Fig. 3 Computations of the
MFMC estimator with p = 10,
for different cardinalities n of the
sample of one-step transitions.
For each cardinality, 50
independent samples of
transitions have generated.
Squares represent Jh(x0)

Fig. 4 Computations of the MC
estimator with p = 10. 50
independent runs have been
computed

The squares represent an accurate estimate of J h(−0.5) computed by running thousands of
Monte Carlo simulations. As we observe, when the samples increase in size (which corre-
sponds to a decrease of the pT -dispersion αpT (Pn)) the MFMC estimator is more likely
to output accurate estimations of J h(−0.5). As explained throughout this paper, there exist
many similarities between the model-free MFMC estimator and the model-based MC esti-
mator. These can be empirically illustrated by putting Fig. 3 in perspective with Fig. 4. This
latter figure reports the results obtained by 50 independent runs of the MC estimator, each
one of these runs using also p = 10 trajectories. As expected, one can see that the MFMC
estimator tends to behave similarly to the MC estimator when the cardinality of the sample
increases.

In our second set of experiments, we choose to study the influence of the number of
artificial trajectories p upon which the MFMC estimator bases its prediction. For each value
pj = j 2, j = 1, . . . ,10 we generate 50 samples F 1

10,000, . . . , F 50
10,000 of one-step transitions
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Fig. 5 Computations of the
MFMC estimator for different
values of the number p of
artificial trajectories extracted
from a sample of n = 10,000
tuples. For each value of p, 50
independent samples of
transitions have generated.
Squares represent Jh(x0)

Fig. 6 Computations of the MC
estimator for different values of
the number of trajectories p. For
each value of p, 50 independent
runs of the MC estimator have
been computed. Squares
represent Jh(x0)

of cardinality 10,000 (using the sample P10,000 defined in the first set of experiments) and
use these samples to compute the MFMC estimator. The results are plotted in Fig. 5. This
figure shows that the bias of the MFMC estimator seems to be relatively small for small
values of p and to increase with p. This is in accordance with Theorem 1 which bounds the
bias with an expression that is increasing with p.

In Fig. 6, we have plotted the evolution of the values computed by the model-based MC
estimator when the number of trajectories it considers in its prediction increases. While, for
small numbers of trajectories, it behaves similarly to the MFMC estimator, the quality of its
predictions steadily improves with p, while it is not the case for the MFMC estimator whose
performances degrade once p crosses a threshold value. Notice that this threshold value
could be made larger by increasing the size of the samples of one-step system transitions
used as input of the MFMC algorithm.
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4.2.4 Risk-sensitive MFMC estimation

In order to take into consideration the riskiness of policies—and not only their good per-
formances “on average”, one may prefer to consider a risk-sensitive performance crite-
rion instead of expected return. Notice that this type of criterion has received more and
more attention during the last few years inside the RL community (Defourny et al. 2008;
Morimura et al. 2010a, 2010b).

If we consider the p artificial trajectories that are rebuilt by the MFMC estimator, the risk-
sensitive T -stage return J

h,(b,c)

RS (x0) can be efficiently approximated by the value J̃
h,(b,c)

RS (x0)

defined as follows:

Definition 11 (Estimate of the risk-sensitive T -stage return) Let b ∈ R and c ∈ [0,1[.

J̃
h,(b,c)

RS (x0) =
{

−∞ if 1
p

∑p

i=1 I{ri<b} > c,

Mh(Fn, x0) otherwise

where ri denotes the return of the i-th artificial trajectory:

ri =
T −1∑

t=0

rlit .

4.3 Artificial trajectories in the deterministic case: computing bounds

From this subsection to the end of Sect. 4, we assume a deterministic environment. More
formally, we assume that the disturbances space is reduced to a single element W = {0}
which concentrates on the whole probability mass pW (0) = 1. We use the convention:

∀(x,u) ∈ X × U , f (x,u) = f (x,u,0),

ρ(x,u) = ρ(x,u,0).

We still assume that the functions f , ρ and h are Lipschitz continuous. Observe that, in
a deterministic context, only one trajectory is needed to compute J h(x0) by Monte Carlo
estimation. We have the following result:

Proposition 2 (Lower bound from the MFMC) Let [(xlt , ult , r lt , ylt )]T −1
t=0 be an artificial

trajectory rebuilt by the MFMC algorithm when using the distance measure Δ. Then, we
have

∣∣Mh
1(Fn, x0) − J h(x0)

∣∣ ≤
T −1∑

t=0

LQT −t
Δ

((
ylt−1 , h

(
t, ylt−1

))
,
(
xlt , ult

))

where

LQT −t
= Lρ

T −t−1∑

i=0

(
Lf (1 + Lh)

)i

and yl−1 = x0.

The proof of this theorem can be found in Fonteneau et al. (2009). Since the previous
result is valid for any artificial trajectory, we have:
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Corollary 1 (Lower bound from any artificial trajectory) Let [(xlt , ult , r lt , ylt )]T −1
t=0 be any

artificial trajectory. Then,

J h(x0) ≥
T −1∑

t=0

rlt −
T −1∑

t=0

LQT −t
Δ

((
ylt−1 , h

(
t, ylt−1

))
,
(
xlt , ult

))
.

This suggests to identify an artificial trajectory that leads to the maximization of the
previous lower bound:

Definition 12 (Maximal lower bound)

Lh(Fn, x0) = max
[(xlt ,ult ,rlt ,ylt )]T −1

t=0 ∈F T
n

T −1∑

t=0

rlt

−
T −1∑

t=0

LQT −t
Δ

((
ylt−1 , h

(
t, ylt−1

))
,
(
xlt , ult

))
.

Note that in the same way, a minimal upper bound can be computed:

Definition 13 (Minimal upper bound)

Uh(Fn, x0) = min
[(xlt ,ult ,rlt ,ylt )]T −1

t=0 ∈F T
n

T −1∑

t=0

rlt

+
T −1∑

t=0

LQT −t
Δ

((
ylt−1 , h

(
t, ylt−1

))
,
(
xlt , ult

))
.

Additionally, we can prove that both the lower and the upper bound are tight, in the
sense that they both converge towards J h(x0) when the dispersion of the sample of system
transitions Fn decreases towards zero.

Proposition 3 (Tightness of the bounds)

∃Cb > 0: J h(x0) − Lh(Fn, x0) ≤ Cbα1(Pn),

Uh(Fn, x0) − J h(x0) ≤ Cbα1(Pn),

where α1(Pn) denotes the 1-dispersion of the sample of system transitions Fn.

This result is proved in Fonteneau et al. (2009). Note that the computation of both the
maximal lower bound and minimal upper bound can be reformulated as a shortest path
problem in a graph, for which the computational complexity is linear with respect to the
optimization horizon T and quadratic with respect to the cardinality n of the sample of
transitions Fn.

4.3.1 Extension to finite action spaces

The results given above can be extended to the case where the action space U is finite (and
thus discrete) by considering policies that are fully defined by a sequence of actions. Such
policies can be qualified as “open-loop”. Let Π be the set of open-loop policies:
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Definition 14 (Open-loop policies)

Π = {
π : {0, . . . , T − 1} → U

}
.

Given an open-loop policy π , the (deterministic) T -stage return of π writes:

J π(x0) =
T −1∑

t=0

ρ
(
xt ,π(t)

)

with

xt+1 = f
(
xt ,π(t)

)
, ∀t ∈ {0, . . . , T − 1}.

In the context of a finite action space, the Lipschitz continuity of f and ρ is: ∀(x, x ′, u) ∈
X 2 × U ,

∥∥f (x,u) − f
(
x ′, u

)∥∥
X ≤ Lf

∥∥x − x ′∥∥
X ,

∣∣ρ(x,u) − ρ
(
x ′, u

)∣∣ ≤ Lρ

∥∥x − x ′∥∥
X .

Since the action space is not normed anymore, we also need to redefine the sample disper-
sion.

Definition 15 (Sample dispersion) We assume that the state space is bounded, and we define
the sample dispersion α∗(Pn) as follows:

α∗(Pn) = sup
x∈X

min
l∈{1,...,n}

∥∥xl − x
∥∥

X .

Let π ∈ Π be an open-loop policy. We have the following result:

Proposition 4 (Lower bound—open-loop policy π ) Let [(xlt , ult , r lt , ylt )]T −1
t=0 be an artifi-

cial trajectory such that

ult = π(t) ∀t ∈ {0, . . . , T − 1}.
Then,

J π(x0) ≥
T −1∑

t=0

rlt −
T −1∑

t=0

L′
QT −t

∥∥ylt−1 − xlt
∥∥

X

where

L′
QT −t

= Lρ

T −t−1∑

i=0

(Lf )i .

A maximal lower bound can then be computed by maximizing the previous bound
over the set of all possible artificial trajectories that satisfy the condition ult = π(t),
∀t ∈ {0, . . . , T − 1}. In the following, we denote by F T

n,π the set of artificial trajectories
that satisfy this condition:

F T
n,π = {[(

xlt , ult , r lt , ylt
)]T −1

t=0
∈ F T

n

∣∣ ult = π(t), ∀t ∈ 0, . . . , T − 1
}
.

Then, we have:
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Definition 16 (Maximal lower bound—open-loop policy π )

Lπ(Fn, x0) = max
[(xlt ,ult ,rlt ,ylt )]T −1

t=0 ∈F T
n,π

T −1∑

t=0

rlt

−
T −1∑

t=0

L′
QT −t

∥∥ylt−1 − xlt
∥∥

X .

Similarly, a minimal upper bound Uπ(Fn, x0) can also be computed:

Definition 17 (Minimal upper bound—open-loop policy π )

Uπ(Fn, x0) = min
[(xlt ,ult ,rlt ,ylt )]T −1

t=0 ∈F T
n,π

T −1∑

t=0

rlt

+
T −1∑

t=0

L′
QT −t

∥∥ylt−1 − xlt
∥∥

X .

Both bounds are tight in the following sense:

Proposition 5 (Tightness of the bounds—open-loop policy π )

∃C ′
b > 0: J π(x0) − Lπ(Fn, x0) ≤ C ′

bα
∗(Pn),

Uπ(Fn, x0) − J π(x0) ≤ C ′
bα

∗(Pn).

The proofs of the above stated results are given in Fonteneau et al. (2010a).

4.4 Artificial trajectories for computing safe policies

Like in Sect. 4.3.1, we still assume that the action space U is finite, and we consider open-
loop policies. To obtain a policy with good performance guarantees, we suggest to find an
open-loop policy π̂∗

Fn,x0
∈ Π such that:

π̂∗
Fn,x0

∈ arg max
π∈Π

Lπ(Fn, x0).

Recall that such an “open-loop” policy is optimized with respect to the initial state x0. Solv-
ing the above optimization problem can be seen as identifying an optimal rebuilt artificial
trajectory [(xl∗t , ul∗t , r l∗t , yl∗t )]T −1

t=0 and outputting as open-loop policy the sequence of actions
taken along this artificial trajectory:

∀t ∈ {0, . . . , T − 1}, π̂∗
Fn,x0

(t) = ul∗t .

Finding such a policy can again be done in an efficient way by reformulating the problem
as a shortest path problem in a graph. We provide in Fonteneau et al. (2010a) an algorithm
called CGRL (which stands for “Cautious approach to Generalization in RL”) of complexity
O(n2T ) for finding such a policy. A tabular version of the CGRL is given in Algorithm 2 and
an illustration that shows how the CGRL solution can be seen as a shortest path in a graph
is also given in Fig. 7. We now give a theorem which shows the convergence of the policy
π̂∗

Fn,x0
towards an optimal open-loop policy when the dispersion α∗(Pn) of the sample of

transitions converges towards zero.
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Algorithm 2 CGRL algorithm

Input: Fn = {(xl, ul, rl, yl)}n
l=1, Lf , Lρ , x0, T

Initialization:
D ← n × (T − 1) matrix initialized to zero;
A ← n-dimensional vector initialized to zero;
B ← n-dimensional vector initialized to zero;
Computation of the Lipschitz constants {L′

QN
}T
N=1:

L′
Q1

= Lρ ;
for k = 2, . . . , T do

L′
Qk

← Lρ + Lf L′
Qk−1

;
end for
t ← T − 2;
while t > −1 do

for i = 1, . . . , n do
j0 ← arg max

j∈{1,...,n}
rj − L′

QT −t−1
‖yi − xj‖X + B(j);

m0 ← max
j∈{1,...,n}

rj − L′
QT −t−1

‖yi − xj‖X + B(j);

A(i) ← m0;
D(i, t + 1) ← j0; \\ best tuple at t + 1 if in tuple i at time t

end for
B ← A;
t = t − 1;

end while
Conclusion:
S ← (T + 1)-length vector of actions initialized to zero;
l ← arg max

j∈{1,...,n}
rj − L′

QT
‖x0 − xj‖X + B(j);

S(T + 1) ← max
j∈{1,...,n}

rj − L′
QT

‖x0 − xj‖X + B(j); \\ best lower bound

S(1) ← ul ; \\ CGRL action for t = 0.
for t = 0, . . . , T − 2 do

l′ ← D(l, t + 1);
S(t + 2, :) ← ul′ ; \\ other CGRL actions
l ← l′;

end for
Return: S

Theorem 3 (Convergence of π̂∗
Fn,x0

) Let J∗(x0) be the set of optimal open-loop policies:

J
∗(x0) = arg max

π∈Π

Jπ(x0),

and let us suppose that J∗(x0) �= Π (if J∗(x0) = Π , the search for an optimal policy is
indeed trivial). We define

ε(x0) = min
π∈Π\J∗(x0)

{(
max
π ′∈Π

Jπ ′
(x0)

)
− J π(x0)

}
.

Then,
(
C ′

bα
∗(Pn) < ε(x0)

) ⇒ π̂∗
Fn,x0

∈ J
∗(x0).
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Fig. 7 A graphical interpretation of the CGRL algorithm. The CGRL solution can be interpreted as a shortest
path in a specific graph

Fig. 8 The Puddle World
benchmark. Starting from x0, an
agent has to avoid the puddles
and navigate towards the goal

The proof of this result is also given in Fonteneau et al. (2010a).

• Illustration. We now illustrate the performances of the policy π̂∗
Fn,x0

computed by the
CGRL algorithm on a variant of the puddle world benchmark introduced in Sutton (1996).
In this benchmark, a robot whose goal is to collect high cumulated rewards navigates on
a plane. A puddle stands in between the initial position of the robot and the high re-
ward area (see Fig. 8). If the robot is in the puddle, it gets highly negative rewards. An
optimal navigation strategy drives the robot around the puddle to reach the high reward
area. Two datasets of one-step transitions have been used in our example. The first set
F contains elements that uniformly cover the area of the state space that can be reached
within T steps. The set F ′ has been obtained by removing from F the elements corre-
sponding to the highly negative rewards. The full specification of the benchmark and the
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Fig. 9 CGRL with F

Fig. 10 FQI with F

exact procedure for generating F and F ′ are given in Fonteneau et al. (2010a). In Fig. 9,
we have drawn the trajectory of the robot when following the policy π̂∗

Fn,x0
. Every state

encountered is represented by a white square. The plane upon which the robot navigates
has been colored such that the darker the area, the smaller the corresponding rewards are.
In particular, the puddle area is colored in dark grey/black. We see that the policy π̂∗

Fn,x0
drives the robot around the puddle to reach the high-reward area—which is represented
by the light-grey circles.

Figure 10 represents the policy inferred from F by using the (finite-time version of the)
Fitted Q Iteration algorithm (FQI) combined with extremely randomized trees as function
approximators (Ernst et al. 2005). The trajectories computed by the policy π̂∗

Fn,x0
and FQI

algorithms are very similar and so are the sums of rewards obtained by following these two
trajectories. However, by using F ′ rather that F , the policy π̂∗

Fn,x0
and FQI algorithms do

not lead to similar trajectories, as it is shown in Figs. 11 and 12. Indeed, while the policy
π̂∗

Fn,x0
still drives the robot around the puddle to reach the high reward area, the FQI policy

makes the robot cross the puddle. In terms of optimality, this latter navigation strategy is
much worse. The difference between both navigation strategies can be explained as follows.
The FQI algorithm behaves as if it were associating to areas of the state space that are not
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Fig. 11 CGRL with F ′

Fig. 12 FQI with F ′

covered by the input sample, the properties of the elements of this sample that are located in
the neighborhood of these areas. This in turn explains why it computes a policy that makes
the robot cross the puddle. The same behavior could probably be observed by using other
algorithms that combine dynamic programming strategies with kernel-based approximators
or averagers (Boyan and Moore 1995; Gordon 1999; Ormoneit and Sen 2002). The policy
π̂∗

Fn,x0
generalizes the information contained in the dataset, by assuming, given the intial

state, the most adverse behavior for the environment according to its weak prior knowledge
about the environment. This results in the fact that it penalizes sequences of decisions that
could drive the robot in areas not well covered by the sample, and this explains why the
policy π̂∗

Fn,x0
drives the robot around the puddle when run with F ′.

4.4.1 Taking advantage of optimal trajectories

In this section, we give another result which shows that, in the case where an optimal trajec-
tory can be found in the sample of system transitions, then the policy π̂∗

Fn,x0
computed by

the CGRL algorithm is also optimal.
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Theorem 4 (Optimal policies computed from optimal trajectories) Let π∗
x0

∈ J∗(x0) be an
optimal open-loop policy. Let us assume that one can find in Fn a sequence of T one-step
system transitions

[(
xl0 , ul0 , rl0 , xl1

)
,
(
xl1 , ul1 , rl1 , xl2

)
, . . . ,

(
xlT −1 , ulT −1 , rlT −1 , xlT

)] ∈ F T
n

such that

xl0 = x0,

ult = π∗
x0

(t) ∀t ∈ {0, . . . , T − 1}.
Let π̂∗

Fn,x0
be such that

π̂∗
Fn,x0

∈ arg max
π∈Π

Lπ(Fn, x0).

Then,

π̂∗
Fn,x0

∈ J
∗(x0).

Proof Let us prove the result by contradiction. Assume that π̂∗
Fn,x0

is not optimal. Since π∗
x0

is optimal, one has:

J
π̂∗

Fn,x0 (x0) < J
π∗

x0 (x0). (1)

Let us now consider the lower bound Bπ∗
x0 (Fn, x0) on the return of the policy π∗

x0
computed

from the sequence of transitions

[(
xl0 , ul0 , rl0 , xl1

)
,
(
xl1 , ul1 , rl1 , xl2

)
, . . . ,

(
xlT −1 , ulT −1 , rlT −1 , xlT

)] ∈ F T
n .

By construction of this sequence of transitions, we have:

Bπ∗
x0 (Fn, x0) =

T −1∑

t=0

rlt −
T −1∑

t=0

L′
QT −t

∥∥xlt − xlt
∥∥

X

=
T −1∑

t=0

rlt

= J
h∗
x0 (x0).

By definition of the policy π̂∗
Fn,x0

∈ arg maxπ∈Π Lπ(Fn, x0), we have:

L
π̂∗

Fn,x0 (Fn, x0) ≥ Bπ∗
x0 (Fn, x0)

= J
π∗

x0 (x0). (2)

Since L
π̂∗

Fn,x0 (Fn, x0) is a lower bound on the return of π̂∗
Fn,x0

, we have:

J
π̂∗

Fn,x0 (x0) ≥ L
π̂∗

Fn,x0 (Fn, x0). (3)

Combining inequalities (2) and (3) yields a contradiction with inequality (1). �
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4.5 Rebuilding artificial trajectories for designing sampling strategies

We suppose in this section that additional system transitions can be generated, and we detail
hereafter a sampling strategy to select state-action pairs (x,u) for generating f (x,u) and
ρ(x,u) so as to be able to discriminate rapidly—as new one-step transitions are generated—
between optimal and non-optimal policies from Π . This strategy is directly based on the
previously described bounds.

Before describing our proposed sampling strategy, let us introduce a few definitions.
First, note that a policy can only be optimal given a set of one-step transitions F if its upper
bound is not lower than the lower bound of any element of Π . We qualify as “candidate
optimal policies given F ” and we denote by Π(F , x0) the set of policies which satisfy this
property:

Definition 18 (Candidate optimal policies given F )

Π(F , x0) = {
π ∈ Π

∣∣ ∀π ′ ∈ Π,Uπ(F , x0) ≥ Lπ ′
(F , x0)

}
.

We also define the set of “compatible transitions given F ” as follows:

Definition 19 (Compatible transitions given F ) A transition (x,u, r, y) ∈ X × U × R × X
is said compatible with the set of transitions F if

∀(
xl, ul, rl, yl

) ∈ F ,
(
ul = u

) ⇒
{ |r − rl| ≤ Lρ‖x − xl‖X ,

‖y − yl‖X ≤ Lf ‖x − xl‖X .

We denote by C(F ) ⊂ X × U × R × U the set that gathers all transitions that are compatible
with the set of transitions F .

Our sampling strategy generates new one-step transitions iteratively. Given an existing
set Fm of m ∈ N \ {0} one-step transitions, which is made of the elements of the initial
set Fn and the m−n one-step transitions generated during the first m−n iterations of this
algorithm, it selects as next sampling point (xm+1, um+1) ∈ X × U , the point that minimizes
in the worst conditions the largest bound width among the candidate optimal policies at the
next iteration:

(
xm+1, um+1

) ∈ arg min
(x,u)∈X ×U

{
max

(r,y)∈R×X s.t. (x,u,r,y)∈C(Fm)
π∈Π(Fm∪{(x,u,r,y)},x0)

δπ
(

Fm ∪ {
(x,u, r, y)

}
, x0

)}

where

δπ (F , x0) = Uπ(F , x0) − Lπ(F , x0).

Based on the convergence properties of the bounds, we conjecture that the sequence
(Π(Fm,x0))m∈N converges towards the set of all optimal policies in a finite number of iter-
ations:

∃m0 ∈ N \ {0} : ∀m ∈ N, (m ≥ m0) ⇒ Π(Fm,x0) = J
∗(x0).

The analysis of the theoretical properties of the sampling strategy and its empirical valida-
tion are left for future work.
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Fig. 13 Evolution of the average
number of candidate optimal
policies with respect to the
cardinality of the generated
samples of transitions using our
bound-based sampling strategy
and a uniform sampling strategy
(empirical average over 50 runs)

• Illustration. In order to illustrate how the bound-based sampling strategy detailed above
allows to discriminate among policies, we consider the following toy problem. The actual
dynamics and reward functions are given by:

f (x,u) = x + u,

ρ(x,u) = x + u.

The state space is included in R. The action space is set to

U = {−0.20,−0.10,0,+0.10,+0.20}.
We consider a time horizon T = 3, which induces 53 = 125 different policies. The initial
state is set to x0 = −0.65. Consequently, there is only one optimal policy, which consists
in applying action +0.20 three times.

In the following experiments, the arg min(x,u)∈X ×U and max(r,y)∈R×X s.t. (x,u,r,y)∈C(Fm) op-
erators, whose computation is of huge complexity, are approximated using purely random
search algorithms (i.e. by randomly generating feasible points and taking the optimum over
those points). We begin with a small sample of n = 5 transitions (one for each action)

{(
0,−0.20, ρ(0,−0.20), f (0,−0.20)

)
,

(
0,−0.10, ρ(0,−0.10), f (0,−0.10)

)
,

(
0,0, ρ(0,0), f (0,0)

)
,

(
0,0.10, ρ(0,0.10), f (0,0.10)

)
,

(
0,0.20, ρ(0,0.20), f (0,0.20)

)}

and iteratively augment it using our bound-based sampling strategy. We compare our strat-
egy with a uniform sampling strategy (starting from the same initial sample of 5 transitions).
We plot in Fig. 13 the evolution of the empirical average number of candidate optimal poli-
cies (over 50 runs) with respect to the cardinality of the generated sample of transitions.2 We
empirically observe that the bound-based sampling strategy allows to discriminate policies

2We have chosen to represent the average results obtained over 50 runs for both sampling methods rather
the results obtained over one single run since (i) the variance of the results obtained by uniform sampling is



Ann Oper Res

Fig. 14 A schematic
presentation of the results
presented in Sect. 4

faster than the uniform sampling strategy. In particular, we observe that, on average, bound-
based strategy using 40 samples provides discriminating performances that are equivalent
to those of the uniform sampling strategy using 80 samples, which represents a significant
improvement. Note that in this specific benchmark, one should sample 5 + 25 + 125 = 155
state-action pairs (by trying all possible policies) in order to be sure to discriminate all non-
optimal policies.

4.6 Summary

We synthesize in Fig. 14 the different settings and the corresponding results that have been
presented in Sect. 4. Such results are classified in two main categories: stochastic setting and
deterministic setting. Among each setting, we detail the context (continuous/finite action
space) and the nature of each result (theoretical result, algorithmic contribution, empirical
evaluation) using a color code.

5 Towards a new paradigm for batch mode RL

In this concluding section, we highlight some connexions between the approaches based on
synthesizing artificial trajectories and a more standard batch mode RL algorithm, the FQI
algorithm (Ernst et al. 2005) when it is used for policy evaluation. From a technical point of
view, we consider again in this section the stochastic setting that was formalized in Sect. 3.
The action space U is continuous and normed, and we consider a given closed-loop, time
varying, Lipschitz continuous control policy h : {0, . . . , T − 1} × X → U .

high and (ii) the variance of the results obtained by the bound-based approach is also significant since the
procedures for approximating the arg min(x,u)∈X ×U and max(r,y)∈R×X s.t. (x,u,r,y)∈C(Fm) operators rely
on a random number generator.
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5.1 Fitted Q iteration for policy evaluation

The finite horizon FQI iteration algorithm for policy evaluation (FQI-PE) works by recur-
sively computing a sequence of functions (Q̂h

T −t (., .))
T −1
t=0 as follows:

Definition 20 (FQI-PE algorithm)

• ∀(x,u) ∈ X × U .

Q̂h
0(x,u) = 0 ∀(x,u) ∈ X × U .

• For t = T − 1, . . . ,0, build the dataset D = {(il, ol)}n
l=1:

il = (
xl, ul

)
,

ol = rl + Q̂h
T −t−1

(
yl, h

(
t + 1, yl

))

and use a regression algorithm RA to infer from D the function Q̂h
T −t :

Q̂h
T −t = RA(D).

The FQI-PE estimator of the policy h is given by:

Definition 21 (FQI estimator)

Ĵ h
FQI(Fn, x0) = Q̂h

T

(
x0, h(0, x0)

)
.

5.2 FQI using k-nearest neighbor regressors: an artificial trajectory viewpoint

We propose in this section to use a k-Nearest Neighbor algorithm (k-NN) as regression
algorithm RA. In the following, for a given state action couple (x,u) ∈ X × U , we denote
by li (x, u) the lowest index in Fn of the i-th nearest one step transition from the state-action
couple (x,u) using the distance measure Δ. Using this notation, the k-NN based FQI-PE
algorithm for estimating the expected return of the policy h works as follows:

Definition 22 (k-NN FQI-PE algorithm)

• ∀(x,u) ∈ X × U ,

Q̂h
0(x,u) = 0.

• For t = T − 1, . . . ,0, ∀(x,u) ∈ X × U ,

Q̂h
T −t (x, u) = 1

k

k∑

i=1

(
rli (x,u) + Q̂h

T −t−1

(
yli (x,u), h

(
t + 1, yli (x,u)

)))
.

The k-NN FQI-PE estimator of the policy h is given by:

Ĵ h
FQI(Fn, x0) = Q̂h

T

(
x0, h(0, x0)

)
.

One can observe that, for a fixed initial state x0, the computation of the k-NN FQI-PE
estimator of h works by identifying (k + k2 + · · · + kT ) non-unique one-step transitions.
These transitions are non-unique in the sense that some transitions can be selected several
times during the process. In order to concisely denote the indexes of the one-step system
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Fig. 15 Illustration of the k-NN FQI-PE algorithm in terms of artificial trajectories

transitions that are selected during the k-NN FQI-PE algorithm, we introduce the notation
li0,i1,...,it for referring to the transition lit (y

l
i0,...,it−1

, h(t, yl
i0,...,it−1

)) for i0, . . . , it ∈ {1, . . . , k},
t ≥ 1 with li0 = li0(x0, h(0, x0)). Using these notations, we illustrate the computation of the
k-NN FQI-PE Estimator in Fig. 15. Then, we have the following result:

Proposition 6 (k-NN FQI-PE using artificial trajectories)

Ĵ h
FQI(Fn, x0) = 1

kT

k∑

i0=1

. . .

k∑

iT −1=1

(
rli0 + rli0,i1 + · · · + rl

i0,i1,...,iT −1 )

where the set of rebuilt artificial trajectories
{[(

xli0 , uli0 , rli0 , yli0
)
, . . . ,

(
xl

i0,...,iT −1
, ul

i0,...,iT −1
, rl

i0,...,iT −1
, yl

i0,...,iT −1 )]}

is such that ∀t ∈ {0, . . . , T − 1}, ∀(i0, . . . , it ) ∈ {1, . . . , k}t+1,

Δ
((

yl
i0,...,it−1

, h
(
t, yl

i0,...,it−1 ))
,
(
xli0,...,it

, uli0,...,it )) ≤ αk(Pn).

Proof We propose to prove by induction the property

Ht : Ĵ h
FQI(Fn, x0) = 1

kt

k∑

i0=1

. . .

k∑

it−1=1

(
rli0 + · · · + rl

i0,...,it−1

+ Q̂h
T −t

(
yl

i0,...,it−1
, h

(
t, yl

i0,...,it−1 )))
.

Basis: According to the definition of the k-NN estimator, we have:

Ĵ h
FQI(Fn, x0) = 1

k

k∑

i0=1

(
rli0 + Q̂h

T −1

(
yli0 , h

(
1, yli0

)))
,

which proves H1.

Induction step: Let us assume that Ht is true for t ∈ {1, . . . , T − 1}. Then, we have:
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Ĵ h
FQI(Fn, x0) = 1

kt

k∑

i0=1

. . .

k∑

it−1=1

(
rli0 + · · · + rl

i0,...,it−1

+ Q̂h
T −t

(
yl

i0,...,it−1
, h

(
t, yl

i0,...,it−1 )))
. (4)

According to the definition of the k-NN FQI-PE algorithm, we have:

Q̂h
T −t

(
yl

i0,...,it−1
, h

(
t, yl

i0,...,it−1 ))

= 1

k

k∑

it =1

(
rl

i0,...,it−1,it + Q̂h
T −t−1

(
yl

i0,...,it−1,it
, h

(
t + 1, yl

i0,...,it−1,it )))
. (5)

Equations (4) and (5) give

Ĵ h
FQI(Fn, x0) = 1

kt

k∑

i0=1

. . .

k∑

it−1=1

(
rli0 + · · · + rl

i0,...,it−1

+ 1

k

k∑

it=1

(
rli0,...,it + Q̂h

T −t−1

(
yli0,...,it

, h
(
t + 1, yli0,...,it )))

)

= 1

kt

k∑

i0=1

. . .

k∑

it−1=1

(
1

k

k∑

it =1

(
rli0 + · · · + rl

i0,...,it−1 )

+ 1

k

k∑

it=1

(
rli0,...,it + Q̂h

T −t−1

(
yli0,...,it

, h
(
t + 1, yli0,...,it )))

)

= 1

kt+1

k∑

i0=1

. . .

k∑

it−1=1

k∑

it =1

(
rli0 + · · · + rl

i0,...,it−1

+ rli0,...,it + Q̂h
T −t−1

(
yli0,...,it

, h
(
t + 1, yli0,...,it )))

,

which proves Ht+1. The proof is completed by observing that

Q̂h
0(x,u) = 0, ∀(x,u) ∈ X × U

and by observing that the property

Δ
((

yl
i0,...,it−1

, h
(
t, yl

i0,...,it−1 ))
,
(
xli0,...,it

, uli0,...,it )) ≤ αk(Pn)

directly comes from the use of k-NN function approximators. �

The previous result shows that the estimate of the expected return of the policy h com-
puted by the k-NN FQI-PE algorithm is the average of the return of kT artificial trajectories.
These artificial trajectories are built from (k + k2 + · · · + kT ) non-unique one-step system
transitions from Fn that are also chosen by minimizing the distance between two successive
one-step transitions.

• Illustration. We empirically compare the MFMC estimator with the k-NN FQI-PE esti-
mator on the toy problem presented in Sect. 4.2, but with a smaller time horizon T = 5.
For a fixed cardinality n = 100, we consider all possible values of the parameter k

(k ∈ {1, . . . ,100} since there are at most n nearest neighbors) and p (p ∈ {1, . . . ,20}
since one can generate at most n/T different artificial trajectories without re-using tran-
sitions). For each value of p (resp. k), we generate 1000 samples of transitions using
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Fig. 16 Empirical average
observed for the MC estimator,
the MFMC estimator and the
k-NN FQI-PE estimator for
different values of k and p

(k ∈ {1, . . . ,100},
p ∈ {1, . . . ,20}, 1000 runs for
each value of k, p)

a uniform random distribution over the state action space. For each sample, we run the
MFMC (resp. the k-NN FQI-PE estimator). As a baseline comparison, we also compute
1000 runs of the MC estimator for every value of p. Figure 16 (resp. 17 and 18) reports
the obtained empirical average (resp. variance and mean squared error).

We observe in Fig. 16 that (i) the MFMC estimator with p ∈ {1, . . . ,3} is less biased
than the k-NN FQI-PE estimator with any value of k ∈ {1, . . . ,100} and (ii) the bias of the
MFMC estimator increases faster (with respect to p) than the bias of the k-NN FQI-PE
estimator (with respect to k). The increase of the bias of the MFMC estimator with respect
to p is suggested by Theorem 1, where an upper bound on the bias that increases with p is
provided. This phenomenon seems to affect the k-NN FQI-PE estimator (with respect to k)
to a lesser extent. In Fig. 17, we observe that the k-NN FQI-PE estimator has a variance that
is higher than that of the MFMC estimator for any k = p. This may be explained by the fact
that for samples of n = 100 transitions, one-step transitions are often re-used by the k-NN
FQI-PE estimator, which generates dependence between artificial trajectories. We finally
plot in Fig. 18 the observed empirical mean squared error (sum of the squared empirical
bias and empirical variance) and observe that in our specific setting, the MFMC estimator
offers for values of p ∈ {1,2,3,4} a better bias versus variance compromise than the k-NN
FQI-PE estimator with any value of k.

5.3 Kernel-based and other averaging-type regression algorithms

The results exposed in Sect. 5.2 can be extended to the case where the FQI-PE algorithm
is combined with kernel-based regressors and in particular tree-based regressors. In such a
context, the sequence of functions (Q̂h

T −t (.))
T
t=0 is computed as follows:

Definition 23 (KB FQI-PE algorithm)

• ∀(x,u) ∈ X × U ,

Q̂h
0(x,u) = 0.

• For t = T − 1, . . . ,0, ∀(x,u) ∈ X × U ,
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Fig. 17 Empirical variance
observed for the MC estimator,
the MFMC estimator and the
k-NN FQI-PE estimator for
different values of k and p

(k ∈ {1, . . . ,100},
p ∈ {1, . . . ,20}, 1000 runs for
each value of k, p)

Fig. 18 Empirical mean square
error observed for the MC
estimator, the MFMC estimator
and the k-NN FQI-PE estimator
for different values of k and p

(k ∈ {1, . . . ,100},
p ∈ {1, . . . ,20}, 1000 runs for
each value of k, p)

Q̂h
T −t (x, u) =

n∑

l=1

kFn

(
(x,u),

(
xl, ul

))(
rl + Q̂h

T −t−1

(
yl, h

(
t + 1, yl

)))
,

with

kFn

(
(x,u),

(
xl, ul

)) = Φ(Δ((x,u),(xl ,ul ))

bn
)

∑n

i=1 Φ(Δ((x,u),(xi ,ui ))

bn
)
,

where Φ : [0,1] → R
+ is a univariate non-negative “mother kernel” function, and bn > 0

is the bandwidth parameter. We also suppose that
∫ 1

0 Φ(z)dz = 1 and Φ(x) = 0 ∀x > 1.

The KB estimator of the expected return of the policy h is given by:

Ĵ h
FQI(Fn, x0) = Q̂h

T

(
x0, h(0, x0)

)
.

Given an initial state x0 ∈ X , the computation of the KB FQI-PE algorithm can also
be interpreted as an identification of a set of one-step transitions from Fn. At each time
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Fig. 19 Illustration of the KB FQI-PE algorithm in terms of artificial trajectories

step t , all the one-step transitions (xl, ul, rl, yl) that are not farther than a distance bn from
(xt , h(t, xt )) are selected and weighted with a distance dependent factor. Other one-step
transitions are weighted with a factor equal to zero. This process is iterated with the output
of each selected one-step transitions. An illustration is given in Fig. 19. The value returned
by the KB estimator can be expressed as follows:

Proposition 7

Ĵ h
FQI(Fn, x0) =

n∑

i0=1

. . .

n∑

iT −1=1

θ
0,i0
0 θ

i0,i1
1 . . . θ

iT −2,iT −1
T −1

(
ri0 + · · · + riT −1

)

with

θ
0,i0
0 = kFn

((
x0, h(0, x0)

)
,
(
xi0 , ui0

))
,

θ
it ,it+1
t+1 = kFn

((
yit , h

(
t + 1, yit

))
,
(
xit+1 , uit+1

))
, ∀t ∈ {0, . . . , T − 2}.

Proof We propose to prove by induction the property

Ht : Ĵ h
FQI(Fn, x0)

=
(

n∑

i0=1

. . .

n∑

it=1

θ0,i0θ i0,i1 . . . θ it−1,it
(
ri0 + · · · + rit−1 + Q̂h

T −t

(
yit−1 , h

(
t, yit−1

)))
)

.

Basis: One has

Ĵ h
FQI(Fn, x0) =

n∑

i0=1

θ0,i0
(
ri0 + Q̂h

T −1

(
yi0 , h

(
1, yi0

)))
,

which proves H1.

Induction step: Let us assume that Ht is true for t ∈ {1, . . . , T − 1}. Then, one has
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Ĵ h
FQI(Fn, x0)

=
(

n∑

i0=1

. . .

n∑

it=1

θ0,i0θ i0,i1 . . . θ it−2,it−1
(
ri0 + · · · + rit−1 + Q̂h

T −t

(
yit−1 , h

(
t, yit−1

)))
)

.

(6)

According to the KB value iteration algorithm, we have:

Q̂h
T −t

(
yit−1 , h

(
t, yit−1

)) =
k∑

it+1=1

θ it−1,it
(
rit + Q̂h

T −t−1

(
yit , h

(
t + 1, yit

)))
. (7)

Equations (6) and (7) give

Ĵ h
FQI(Fn, x0) =

n∑

i0=1

. . .

n∑

it−1=1

θ0,i0 . . . θ it−2,it−1

×
(

ri0 + · · · + rit−1 +
n∑

it =1

θ it−1,it
(
rit + Q̂h

T −t−1

(
yit , h

(
t + 1, yit

)))
)

.

Since
∑n

it =1 θ it−1,it = 1, one has

Ĵ h
FQI(Fn, x0) =

n∑

i0=1

. . .

n∑

it−1=1

θ0,i0 . . . θ it−2,it−1

×
(

n∑

it =1

θ it−1,it

)
(
ri0 + · · · + rit−1

)

+
n∑

it=1

θ it−1,it
(
rit + Q̂h

T −t−1

(
yit , h

(
t + 1, yit

)))

=
n∑

i0=1

. . .

n∑

it−1=1

θ0,i0 . . . θ it−2,it−1

n∑

it =1

θ it−1,it

× (
ri0 + · · · + rit−1 + rit + Q̂h

T −t−1

(
yit , h

(
t + 1, yit

)))

which proves Ht+1. The proof is completed by observing that Q̂h
0(x,u) = 0, ∀(x,u) ∈

X × U . �

One can observe through Proposition 7 that the computation of the KB estimate of the
expected return of the policy h can be expressed in the form of a weighted sum of the return
of nT artificial trajectories. Each artificial trajectory

[(
xi0 , ui0 , ri0 , yi0

)
,
(
xi1 , ui1 , ri1 , yi1

)
, . . . ,

(
xiT −1 , uiT −1 , riT −1 , yiT −1

)]

is weighted with a factor θ
0,i0
0 θ

i0,i1
1 . . . θ

iT −2,iT −1
T −1 . Note that some of these factors can even-

tually be equal to zero. Similarly to the k-NN estimator, these artificial trajectories are also
built from the T × nT non-unique one-step system transitions from Fn.

More generally, we believe that the notion of artificial trajectory could also be used
to characterize other batch mode RL algorithms that rely on other kinds of “averaging”
schemes (Gordon 1995).
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6 Conclusion

In this paper we have revisited recent works based on the idea of synthesizing artificial
trajectories in the context of batch mode reinforcement learning problems. This paradigm
shows to be of value in order to construct novel algorithms and performance analysis tech-
niques. We think that it is of interest to revisit in this light the existing batch mode rein-
forcement algorithms based on function approximators in order to analyze their behavior
and possibly create new variants presenting interesting performance guarantees.
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