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Abstract

This paper addresses the problem of com-
puting optimal structured treatment inter-
ruption strategies for HIV infected patients.
We show that reinforcement learning may be
useful to extract such strategies directly from
clinical data, without the need of an accurate
mathematical model of HIV infection dynam-
ics. To support our claims, we report simu-
lation results obtained by running a recently
proposed batch-mode reinforcement learning
algorithm, known as fitted Q iteration, on nu-
merically generated data.

1. Introduction

Human Immunodeficiency Virus (HIV) is a retrovirus
that may lead to the lethal Acquired Immune Defi-
ciency Syndrome (AIDS). After initial contact and in-
clusion of the HIV particle into a cell of the immune
system (e.g. CD4+ T-lymphocytes and macrophages),
there is a cascade of intracellular events leading to the
production of massive numbers of new viral particles,
the death of infected cells, and ultimately the devas-
tation of the immune systems.

Since the first identification of such unusual immune
system failure in 1981, many advances have been
made in the design of anti-HIV drugs and treatments.
Current anti-HIV drugs can be roughly grouped into
two main categories: Reverse Transcriptase Inhibitors
(RTI) and Protease Inhibitors (PI). The action of RTIs
is to prevent HIV RNA from being converted into

DNA, thereby blocking the virus replication process
initiated in the infected cell. The protease inhibitors
work at the final stage of viral replication and attempt
to prevent HIV from making new copies of itself by in-
terfering with the HIV protease enzyme. As a result,
the new copies of HIV are not able to infect new cells.

Typical treatments for acutely infected HIV patients
utilize two or more drugs. Generally, these drug cock-
tails consist of one or more RTIs in combination with
a PI. Despite the great success of these drug cock-
tails in reducing and maintaining viral loads below
the detection limit, their long-term use yields substan-
tial complications. Patients taking these drugs experi-
ence many common and sometimes highly undesirable
side effects, often leading to poor compliance. Fur-
thermore, the HIV mutates into new viral strains that
become with time resistant to current drugs, resulting
in the need to change drugs or even in the inability to
find appropriate pharmaceutical treatments.

Concerns about this long term use of drugs have
brought attention for the need of efficient drug-
scheduling strategies. Idealistically, a drug-scheduling
strategy should bring the immune system into a state
that allows it to independently (without help from any
drug) maintain immune control over the virus. Also,
this transfer to a drug-independent viral control sit-
uation should be done with as low as possible drug-
related systemic effects for the patients.

One such strategy, currently receiving a lot of atten-
tion, is structured treatment interruption (STI), in
which patients are cycled on and off drug therapy
(Bonhoeffer et al., 2000; Lisziewicz et al., 2000). STI



strategies are often well-received by patients since they
offer them periods of relief from treatment. During in-
terruptions, viral load set points typically rebound to
a high level, consequently activating an adaptive im-
mune response. In some remarkable cases, it has been
reported that repeated STI stimulations have enabled
patients to maintain immune control over the virus in
the absence of treatment (Lisziewicz et al., 1999).

More recently, several authors have addressed the
problem of designing STI treatments by exploit-
ing mathematical models of HIV infection dynamics
(Adams et al., 2004; Bajaria et al., 2004). These mod-
els are usually represented by a set of Ordinary Differ-
ential Equations (ODEs), and deduction of STI strate-
gies from them is done by using methods from control
theory. Modelling the HIV infection dynamics is how-
ever a complex task. Not only does one have to select
the right parametric system of ODEs, but one must
also fit their parameters to reflect quantitatively bio-
logical observations. An interesting alternative would
be to infer STI strategies directly from clinical data,
without having to specify and identify a model of the
HIV infection dynamics.

Typically, when a patient undergoes a STI treatment,
clinical data representing the time-evolution of the pa-
tient’s state (CD4+ T cell count, systemic costs of
drugs, etc.) are recorded at specific, discrete-time in-
stants. Such clinical data may be seen as trajectories
of the immune system responding to the treatment.

The problem of inferring from trajectories of a sys-
tem an appropriate way to control it has been exten-
sively studied in control theory and computer science.
One way to approach it is to first state an optimality
criterion and then search for control strategies opti-
mizing this criterion. In particular, the classical ap-
proach consists of using the trajectories to identify
an analytical model, and deriving a controller from
this model and from the optimality criterion (Bitmead
et al., 1990). Reinforcement Learning (RL), on the
other hand computes control strategies directly from
the measured trajectories, without the need for identi-
fying a model of the system dynamics (Sutton & Barto,
1998).

In this paper, we aim at investigating the feasibility
of using RL to determine (close-to-)optimal HIV-STI
strategies from clinical data alone, in other words,
without relying on the identification of an accurate
model of the HIV infection dynamics. In this ap-
proach, illustrated in Figure 1, HIV-infected patients
follow during clinical trials various STI protocols.
Their states are monitored every n days and the tra-
jectories gathered from this monitoring are processed

by RL to compute new STI strategies.

The paper is structured as follows. Section 2 formal-
izes the problem of learning optimal strategies from a
set of trajectories and introduces the algorithms used
in our simulations. Section 3 reports simulation results
obtained by using the RL-based approach to determine
from clinical data optimal STI strategies. Instead of
actual clinical data, we have used synthetic ones ob-
tained from simulations with a computer model of the
HIV infection dynamics. In Section 4, we suggest ways
to overcome difficulties that may arise when relying on
real-life data rather than numerically generated ones.
Section 5 concludes and Appendix A gathers informa-
tion about the mathematical model of HIV dynamics
used in the data generation process.

2. Learning from a sample of

trajectories: the RL approach

We start this section by formulating the problem of
learning the solution of an optimal control problem
from a sample of trajectories. We consider determin-
istic discrete-time optimal control problems for which
the aim is to minimize a sum of discounted costs over
an infinite time horizon. After formulating the prob-
lem, we remind some classical results from dynamic
programming theory and introduce the fitted Q iter-
ation algorithm. We refer the reader to (Bertsekas,
2000) for a comprehensive textbook on dynamic pro-
gramming and to (Ernst et al., 2005) for a complement
of information on the fitted Q iteration algorithm.

2.1. Problem formulation

Consider a system having a deterministic discrete-time
dynamics described by:

xt+1 = f(xt, ut), t = 0, 1, . . . (1)

where for all t, xt is an element of the state space
X and ut is an element of the action space U . Let
c(x, u) be a (real-valued) cost function, bounded by
some constant Bc, and γ a discount factor (0 ≤ γ < 1).

Given a stationary control strategy µ(·) : X → U ,
and assuming x0 = x and xt+1 = f(xt, µ(xt)), forall t,
we define the discounted infinite horizon cost function
associated to µ by

Jµ(x)= lim
N→∞

N−1
∑

t=0

γtc(xt, µ(xt)). (2)

The objective is to find an optimal stationary strategy
µ∗, i.e. a strategy that minimizes Jµ for all x.
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Figure 1. Determination of optimal STI strategies from clinical data by using reinforcement learning algorithms: the
overall principle.

In order to compute such a strategy, we do not
assume that the system dynamics (1) is known.
However, we suppose available a (finite) set of
(finite duration) system trajectories (in the form
(x0, u0, x1, u1, x2, · · · , xT−1, uT−1, xT )) as well as the
cost-function c(x, u). Reinforcement learning tech-
niques compute from this kind of information an ap-
proximation µ̂∗ of the optimal stationary strategy
since, except for very special conditions, the exact op-
timal strategy µ∗ can not be deduced from such a lim-
ited amount of information on the system dynamics.1

The fitted Q iteration algorithm which we exploit in
this paper, actually relies on a slightly weaker assump-
tion, namely that a set of one-step system transitions
is given, each one providing the knowledge of a new
sample of information (xt, ut, xt+1). We denote this

set of transitions by F = {(xl
t, u

l
t, x

l
t+1)}

#F

l=1.

2.2. Some dynamic programming results

The sequence of functions QN : X × U → R defined
by the recurrence equation

QN (x, u) = c(x, u)+γ min
u′∈U

QN−1(f(x, u), u′), ∀N > 1

(3)
with Q1(x, u) ≡ c(x, u), converges in infinity norm to
the Q-function, defined as the (unique) solution of the

1RL actually handles the more general problem when
also the cost function is unknown and replaced by sample
values; it also carries over to stochastic systems.

Bellman equation:

Q(x, u) = c(x, u) + γ min
u′∈U

Q(f(x, u), u′). (4)

A stationary strategy µ∗ that satisfies

µ∗(x) = argmin
u∈U

Q(x, u) (5)

is an optimal strategy.

Let us denote by µ∗
N the stationary strategy

µ∗
N (x) = arg min

u∈U

QN (x, u). (6)

The following bound on the suboptimality of µ∗
N with

respect to µ∗ holds:

Jµ∗

N − Jµ∗

≤
2γNBc

(1 − γ)2
. (7)

2.3. The fitted Q iteration algorithm

From the set of transitions F , the fitted Q iteration al-
gorithm computes the functions Q̂1, Q̂2, . . ., Q̂N which
constitute approximations of the functions Q1, Q2, . . .,
QN defined by Eqn (3). This computation is done iter-
atively by solving a sequence of standard batch-mode
supervised learning problems. The training sample for
the kth (k ≥ 2) supervised learning problem of the se-
quence is

{(

(xl
t, u

l
t), c(xl

t, u
l
t) + γmin

u∈U
Q̂k−1(x

l
t+1, u)

)}#F

l=1



with Q̂1(x, u) ≡ c(x, u). Based on this training sam-
ple, the supervised learning (regression) algorithm pro-
duces the function Q̂k that is used to determine the
next training sample and from there, the next function
of the sequence. Once the approximation functions Q̂1,
Q̂2, . . ., Q̂N have been computed, the (sub-optimal)
stationary strategy

µ̂∗
N (x) = argmin

u∈U

Q̂N(x, u) (8)

is taken as approximation of the optimal stationary
strategy µ∗(x).

As batch-mode supervised learning algorithm, we have
chosen the Extra-Trees algorithm (Geurts et al., 2006).
This algorithm builds a model in the form of the av-
erage prediction of an ensemble of regressions trees
obtained by randomization. It has three parameters:
the number M of trees composing the ensemble, the
minimum number of elements required to split a node
nmin and the maximum number of cut-directions eval-
uated at each node K. These values have been chosen
respectively equal to 50, 2 (the trees are fully devel-
oped) and the dimensionality of the input space (equal
to 8 (6 state variables + 2 control variables) for the
problem treated in Section 3).

3. Simulation results

In this section we present the results we have obtained
by using the RL-based approach on artificially gen-
erated data. We first define the kind of STI strate-
gies we are looking for, in terms of the class of strate-
gies considered and their optimality criterion. Then,
we describe the simulation protocol behind the data
generation and, finally, we discuss the obtained STI-
strategy. Our work in this section is directly inspired
from (Adams et al., 2004).

3.1. Kinds of STI strategies targeted

As in (Adams et al., 2004), we consider bi-therapy
treatments combining a fixed RTI and a fixed PI. The
protocol allows to revise drug administration every five
days based on clinical measurements, by choosing one
of the four possible on-off combinations for the next
five days: RTI and PI on, only RTI on, only STI on,
RTI and PI off. These four cocktails hence define the
set of actions U of our optimal control problem.

In terms of optimality criterion, we seek STI strategies
that minimize a sum of discounted instantaneous costs
over an infinite horizon with the instantaneous cost at
time t being given by:

c(xt, ut) = QVt + R1ε
2
1t

+ R2ε
2
2t
− SEt (9)

where Q = 0.1, R1 = 20000, R2 = 2000, S = 1000,
ε1t

= 0.7 (resp. ε1t
= 0) if the RTI is cycled on (resp.

off) at time t, and ε2t
= 0.3 (resp. ε2t

= 0) if the PI
is cycled on (resp. off) at time t. V is the number
of free HI viruses (in copies/ml) and E the number of
cytotoxic T -lymphocytes (in copies/ml). Cytotoxic T -
lymphocytes constitute the specific immune response
of the body to HI viruses. The decay factor γ has been
chosen equal to 0.98, which means that costs occurring
after one year weight for approximately three-quarter
less than costs occurring at instant t = 0.

We refer the reader to (Adams et al., 2004) for a dis-
cussion of rationale behind this cost function.2

3.2. Artificial generation of the clinical data

In order to evaluate the ability of RL to compute good
STI strategies, we will apply the fitted Q iteration al-
gorithm described in Section 2.3 on artificially gener-
ated data.

To obtain data which mimic real-life clinical data, we
have used time-domain simulations of the nonlinear
ODE model published in (Adams et al., 2004), which
was validated and identified from real-life clinical data.
For ease of reference, we reproduce the equations and
parameter values of the model in Appendix A. In or-
der to provide insight into the physical problem that
is tackled, we briefly discuss the main characteristics
of this model, before defining the data generation pro-
cedure itself.

The dynamic model has six state variables that
represent respectively the number of healthy CD4+

T-lymphocytes (referred to as T1), the number of
healthy macrophages (T2), the number of infected
CD4+ T-lymphocytes (T ∗

1 ), the number of infected
macrophages (T ∗

2 ), the number of free virus particles
(V ) and the number of HIV-specific cytotoxic T-cells
(E). Note that these variables are assumed to be mea-
sured every five days, in order to select the drug com-

2In (Adams et al., 2004), optimal strategies are com-
puted by assuming that the dynamics of the HIV immune
response are known. On the contrary, here we compute
strategies from the sole knowledge of samples of transitions
F . Furthermore, we consider an optimal control problem
with infinite time horizon and discounted costs while in
(Adams et al., 2004) a finite horizon and undiscounted
costs are considered. As a consequence, decisions made
by strategies derived in our approach depend only on the
current state of a patient. In (Adams et al., 2004) they
also depend on the time elapsed since the beginning of the
treatment, which means that patients presenting exactly
the “same medical states” but at different stages of their
treatment may undergo different STI strategies, which we
believe is not appropriate.



bination for the next five days.

As shown in (Adams et al., 2004), in the absence of
treatment (i.e. ε1t

= ε2t
≡ 0), the system of ordinary

differential equations exhibits three physical equilib-
rium points (and several non physical ones (omitted
here) for which one or more state variables are neg-
ative). These equilibrium points are, respectively, an
unstable equilibrium point

(T1, T2, T
∗
1 , T ∗

2 , V, E) = (106, 3198, 0, 0, 0, 10)

which represents an uninfected state, and two locally
stable equilibria corresponding to HIV-infected states.
The HIV-infected equilibria may be categorized as:

1. a “healthy” locally stable equilibrium point

(T1, T2, T
∗

1 , T ∗

2 , V, E) = (967839, 621, 76, 6, 415, 353108)

which corresponds to a small viral load, a high
CD4+ T-lymphocytes count and a high HIV-
specific cytotoxic T-cells count,

2. the “non-healthy” locally stable equilibrium point

(T1, T2, T
∗

1 , T ∗

2 , V, E) = (163573, 5, 11945, 46, 63919, 24)

for which T-cells are depleted and the viral load
is very high.

Numerical simulations show that the basin of attrac-
tion of the healthy steady-state is relatively small in
comparison with the one of the non-healthy steady-
state. Furthermore, perturbation of the uninfected
steady-state by adding as less as one single particle
of virus per ml of blood plasma leads to asymptotical
convergence towards the non-healthy steady-state.

During the data collection process, we assume that the
(simulated) patients are monitored (and the medica-
tion protocol revised) every five days. The monitoring
period for each patient is assumed to last for 1000 days.

The generation procedure of the clinical data is it-
erative. At the first iteration, we consider thirty
patients in “non-healthy” steady-state. Every five
days, the physiological data of each of these thirty pa-
tients (assumed here to be summarized by the quan-
tities T1, T2, T ∗

1 , T ∗
2 , V , and E) are recorded and a

new type of medication is randomly selected in U .
The monitoring of each patient generates a trajectory
(x0, u0, x1, · · · , x199, u199, x200) from which we can ex-
tract 1000/5 = 200 samples (xt, ut, xt+1).

At the second step of the iterative process, we also con-
sider a set of thirty patients in “non-healthy” steady-
state and, once again, we record their physiological

data every five days. Nevertheless, contrary to the first
step, each five days, the corresponding drug cocktail
is not selected at random anymore. Instead, the med-
ication for these new thirty patients is determined by
the following STI strategy: in 85% of the cases we use
the strategy µ̂∗

400 computed by the fitted Q iteration
algorithm3 applied on the 6, 000 element set generated
by the monitoring of the previous 30 patients, while in
the remaining 15% cases we use a type of medication
randomly selected in U .

At the third iteration, another set of thirty trajecto-
ries are generated in identical conditions, except that
the corresponding STI strategy uses now in 85% of
the cases a strategy µ̂∗

400 inferred from all the samples
gathered previously (i.e. 12, 000 samples). By repeat-
ing this iterative procedure, we have generated a total
of 300 trajectories (10 sets of 30 patients) to which
correspond 60, 000 samples (xt, ut, xt+1).

The reader may wonder why we interlaced the genera-
tion of the samples with the computation of µ̂∗

400 and
used this newly computed strategy to generate addi-
tional samples. There are two main reasons behind
this choice. First, we wanted to simulate a situation
in which STI strategies administered to patients were
not chosen totally at random but rather benefit, at
least partially, from the knowledge clinicians may al-
ready have about “good” STI strategies. Second, by
using some knowledge already acquired about µ̂∗

400, we
tend to gather much more information alongside the
optimal trajectories. As a consequence, with a fairly
small number of clinical trials we can converge rather
quickly to close-to-optimal STI strategies.

3.3. Results

On Figure 2, we have represented the evolution of the
cell counts, number of free viruses and immune effec-
tors of a patient treated from “non-healthy” steady-
state by the STI strategy inferred from the set of
60, 000 samples by the fitted Q iteration algorithm. As
desired, the computed (close-to-)optimal STI strategy
is able to bring the patient to the domain of attraction
of the “healthy” drug-free steady-state. On the same
figure, trajectories that would have been observed by
putting the patient always on or always off both drugs
have also been plotted. Compared to these two strate-
gies, the RL-based STI strategy leads to higher T-cell

3In all the simulation results reported in this paper, the
fitted Q iteration algorithm is iterated 400 times and µ̂∗

400

is taken as approximation of the optimal stationary strat-
egy µ̂∗. Some side simulations have shown that the com-
puted strategy remained mostly unchanged by increasing
the number of iteration.
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Figure 2. The curves represent the time evolution of the
different cells count (T1, T2, T ∗

1 , T ∗

2 ), of the number of free
virus particles (V ) and of the number of immune effectors
(E) for a patient being treated from “non-healthy” steady-
state. The solid curve (−) corresponds to the STI strat-
egy plotted on Fig. 3 and computed by the reinforcement
learning algorithms. The dashed curves (−−) represent
the time evolution of these variables when there is no in-
terruption in the treatment (i.e. ε1t

= 0.7 and ε2t
= 0.3,

∀t ≥ 0) and the dotted curves (− ·) represent their time
evolution when there is no treatment (i.e. ε1t
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∀t ≥ 0).
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Figure 3. Representation of the STI treatment for a patient
treated from early stage of infection. The STI treatment
is computed by the reinforcement learning algorithms on
clinical data generated by 300 patients.
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Figure 4. Influence of the number of patients participat-
ing to the clinical trials on the infinite horizon cost cor-
responding to the computed STI strategies. Data gener-
ation follows the protocol described in Section 3.2. To
compute the infinite horizon cost associated to a given
number of patients, we run RL on the trajectories gen-
erated by these patients and estimate J µ̂∗

400 (x) obtained
when a patient intitially in the “non-healthy” steady-
state is treated by the learned strategy (J µ̂∗

400 (x) =
P

∞

t=0 γtc(xt, µ̂
∗

400(xt)) with x = (T10
, T20

, T ∗

10
, T ∗

20
, E0, V0)

= (163573, 5, 11945, 46, 63919, 24)).

counts, lower virus load, and significantly boosts the
specific anti-HIV immune response.

In Figure 3 it can be seen that with the RL computed
STI strategy the patients get active treatment, with
some periods of relief, during approximately 380 days
and are always put off both drugs afterwards (defini-
tive treatment interruption after 380 days).

Usually, the quality of the strategies determined by RL
increases with the number of trajectories since each
additional trajectory generally provides additional in-
formation about the underlying problem. This is il-
lustrated on Figure 4 where we have plotted infinite
horizon costs associated with strategies computed by
considering an increasing number of patients in the
clinical trials. Note that in this particular case, STI
strategies that put the patient always on (or alway off)
both drugs produce larger costs than those obtained
by using the STI strategy derived from only thirty tra-
jectories.

Overall, these results suggest that reinforcement learn-
ing can indeed infer appopriate STI strategies from a
sample of transitions reflecting the instantaneous re-
sponse of patients to drug administration at different
stages of their treatment, without explicit knowledge
of the underlying dynamics.



4. From numerically simulated to

real-life patients

In the previous section, we have reported some results
obtained by using numerical simulations to reproduce
the clinical evolution of HIV-infected patients. In this
section, we discuss the four main difficulties we expect
to face when dealing with real-life patients.

The HIV/immune system interaction dynamics may
be different from one patient to the other. When gen-
erating the clinical data, we have implicitly assumed
that the dynamics of the interaction between HIV and
the patients’ immune system were the same for every
patient. In real life conditions, these dynamics may
substantially vary from one patient to the other. Some
reasons for these discrepancies are: variance in the pa-
tients’ immune systems, existence of different types of
HIV infections, individual differences in the assimila-
tion of the drugs, etc. We believe that one appropriate
approach to address such a difficulty would be to add
to the state vector x relevant information about the
specifics of each patient’s case (e.g. general medical
condition, type of HIV virus (HIV-1, HIV-2), presence
of drug-resistant HIV strains, etc.).

Proper statement of the optimal control problem. Dif-
ferent elements need to be defined when stating the op-
timal control problem: the time discretization, the cost
function and the decay factor. These elements should
be chosen to lead to desirable optimal trajectories and
good learning speed. When working in a numerical en-
vironment, trial-and-error type of approaches can help
to choose these elements. Trial-and-error approaches
can however not be used on real patients. Thus, we
will need to call for medical expertise in order to state
properly the optimal control problem, but we also be-
lieve that some specific tools should be built to help
in this task.

Partial observability. In our example, we have as-
sumed that all the state variables were directly ob-
servable. When dealing with real patients, such an as-
sumption is not fully realistic since, among others, it is
not possible with current technology to distinguish be-
tween healthy and non-healthy CD4+ T-lymphocytes
and macrophages. It is therefore clear that some par-
tial observability issues will arise when processing real-
life data. We refer the reader to (Murphy, 2000) for
a survey of solution techniques for partial observable
discrete-time optimal control problems.

Corrupted measurements. Collected clinical data are
not necessarily thorough and accurate. Furthermore,
the patients may not necessarily comply with the pre-
scribed treatment. This may lead to uncertainties and

measurement corruption which may significantly de-
grade the quality of the results obtained. One solu-
tion to mitigate the adverse effects of corrupted mea-
surements would be to design some preprocessing al-
gorithms able to filter out highly corrupted data.

5. Conclusions

In this paper, we have considered the problem of com-
puting structured treatment interruption strategies for
HIV infected patients from clinical data only. In the
envisioned protocol, the clinical data would be gener-
ated by monitoring at regular time intervals the state
of various patients during their treatment, and these
data would be exploited by reinforcement learning to
determine an optimal drug prescription strategy.

To investigate the validity of such a purely data driven
approach, we have generated clinical data artificially
by relying on a plausible mathematical model of the
HIV infection dynamics. Based on a sufficient amount
of simulated data, we found that reinforcement learn-
ing was indeed able to derive STI therapies which ap-
pear as excellent when used to “treat” simulated pa-
tients.

These encouraging results suggest that reinforcement
learning techniques could also help to design effective
real-life STI strategies from actual clinical data. The
next step of this research will be to study more ex-
tensively, still by simulations, various difficulties that
could be encountered when applying this approach in
real-life. In particular, we expect that many prob-
lems will arise such as those related to corrupted data,
variance in HIV viruses, inter-individual differences of
the immune responses, and inability to count specific
types of immune cells playing a critical role in the HIV
infection.

Finally, although we target the development of model-
free methods, we would like to stress the usefulness
even in this kind of research of plausible analytical
models of the dynamic response of patients to treat-
ments. While we believe that it might not be possi-
ble to derive accurate enough dynamic models for the
direct derivation of appropriate treatment strategies,
it is clear that even approximate or highly simplified
models may be very useful to gain understanding of
a problem and to design an appropriate way to apply
reinforcement learning to it. As a matter of fact, only
after extensive “in silico” experiments one will gain
enough confidence to start using this kind of approach
in actual “in vivo” conditions.



A. Mathematical model

In this section, we introduce the mathematical model
that we have used to artificially generate the clinical
data needed by the reinforcement learning algorithm.
This mathematical model has been taken from the pa-
per (Adams et al., 2004) to which we refer the reader
for further information.

This mathematical model is described by the following
set of ordinary differential equations:

Ṫ1 = λ1 − d1T1 − (1 − ε1)k1V T1 (10)

Ṫ2 = λ2 − d2T2 − (1 − fε1)k2V T2 (11)

Ṫ
∗

1 = (1 − ε1)k1V T1 − δT
∗

1 − m1ET
∗

1 (12)

Ṫ
∗

2 = (1 − fε1)k2V T2 − δT
∗

2 − m2ET
∗

2 (13)

V̇ = (1 − ε2)NT δ(T ∗

1 + T
∗

2 ) − cV (14)

−[(1 − ε1)ρ1k1T1 + (1 − fε1)ρ2k2T2]V

Ė = λE +
bE(T ∗

1 + T ∗

2 )

(T ∗

1 + T ∗

2 ) + Kb

E (15)

−
dE(T ∗

1 + T ∗

2 )

(T ∗

1 + T ∗

2 ) + Kd

E − δEE

where T1 (T ∗
1 ) denotes the number of non-infected (in-

fected) CD4+ T-lymphocytes (in cells/ml), T2 (T ∗
2 )

the number of non-infected (infected) macrophages
(in cells/ml), V the number of free HI viruses
(in copies/ml) and E the number of cytotoxic T -
lymphocytes (in cells/ml). ε1 and ε2 represent the val-
ues of the control actions corresponding to the reverse
transcriptase inhibitor and the protease inhibitor, re-
spectively. In each period during which the RTI (resp.
the PI) is administrated to the patient, ε1 (resp. ε2)
is set equal to 0.7 (resp. 0.3). In each period during
which the RTI (resp. the PI) is not administrated, we
have ε1 = 0 (resp. ε2 = 0).

The values of the different parameters of the model
are (taken from (Adams et al., 2004)): λ1 = 10, 000,
d1 = 0.01, k1 = 8.0 ∗ 10−7, λ2 = 31.98, d2 = 0.01,
f = 0.34, k2 = 1.0 ∗ 10−4, δ = 0.7, m1 = 1.0 ∗ 10−5,
m2 = 1 ∗ 10−5, NT = 100, c = 13, ρ1 = 1, ρ2 = 1,
λE = 1, bE = 0.3, Kb = 100, dE = 0.25, Kd = 500,
δE = 0.1.
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