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Abstract: Estimation of kinetic parameters is a key step in modelling, as direct measurements
are often expensive, time-consuming or even infeasible. The class of dynamic models in
polynomial form is particularly relevant in systems biology and biochemical engineering, as
those models naturally arise from modelling biochemical reactions using for instance mass action,
Michaelis-Menten or Hill kinetics. Often the parameters are not uniquely identifiable for a given
model structure and measurement set. Thus the question of which parameters are consistent
or inconsistent with the data arises naturally. Here we present a method capable of proving
inconsistency of entire parameter regions with the data. Based on the polynomial representation
of the system, we formulate a feasibility problem that can be solved efficiently by semi-definite
programming. The feasibility problem allows us to check consistency of entire parameter regions
by using upper and lower bounds on the parameters. This drastically limits the search space for
subsequent parameter estimation methods. In contrast to similar approaches in the literature,
the here presented approach does not require a steady state assumption. Measurements at
discrete time points are used, but neither regular sampling intervals, nor a time discretisation of
the system is required. Measurement uncertainties are dealt with using upper and lower bounds

on the measured states.

Keywords: identification, parameter estimation, model invalidation, sum of squares,

semi-definite programming

1. INTRODUCTION

Modelling biological systems on the intracellular level has
been a research topic for over half a century. For example,
Hodgkin and Huxley (1952) explained the neuron function
by means of a mathematical model of different ion chan-
nels. Hodgkin and Huxley were able to estimate the model
parameters from experimental data, a challenging task
still today in most biological systems. Nowadays, ever im-
proving developments of experimental techniques provide
more and more high quality experimental data, putting
the task of identification into reachable scope. However,
the straight forward application of systems theoretical
methods to biology is impaired by certain particularities of
biological systems (Wellstead et al., 2008; Bullinger et al.,
2007). Difficulties concern large numbers of parameters,
sparse data and reduced sets of possible stimulations.

Biological systems have particular system properties such
as for example positivity and monotonicity (Sontag, 2005).
Exploiting these properties has the potential of enhancing
current identification techniques. For example, Farina et
al. (2006) exploited the positivity of states and parameters
to transform a mass action system into a parameter inde-
pendent form that facilitated the identifiability analysis.
Fey et al. (2008) showed that a similar transformation is
also possible for systems with certain rational kincetics
consisting of products of Hill-like terms and that nonlinear

observers can be used to solve the estimation problem.
The transformation into the parameter independent form
transforms the parameter estimation problem into a state
estimation problem. Solving the state estimation problem
reliably requires globally convergent observers, which can
be constructed either using Lie-algebraic methods or dis-
sipativity arguments (Fey et al., 2009; Fey and Bullinger,
2009). Advantages of this observer based approach are
that even time varying parameters can be estimated and
that an accurate estimate can be guaranteed by mathe-
matical proof. The disadvantage is that identifiability and
observability conditions have to be satisfied. In practice,
it is difficult to satisfy these conditions globally without
measuring many states and even reaction rates.

Here we present a methodology that allows us to make
guaranteed statements about the parameters values, even
in situations where identifiability is violated. In line with
the spirit of the above mentioned methods, the here pre-
sented approach exploits biology specific properties, such
as polynomial and/or rational kinetics. The polynomial
or rational form allow us to use a sum of squares de-
composition to represent the differential equations. The
consistency of the differential equations and state measure-
ments is then checked using semi-definite programming.
The approach is conceptually based on earlier steady state
approaches (Kuepfer et al., 2007) but is extended here
to transients, i.e. to include system dynamics. Related



approaches in the literature coping with system dynamics
use so called barrier certificates, which are conceptually
similar to Lyapunov level functions (Anderson and Pa-
pachristodoulou, 2009; El-Samad et al., 2006). The draw-
back of these barrier based approaches is that the con-
struction of the certifying functions is computationally
expensive. Here we simply avoid the construction of the
barrier certificates by checking the differential equations
pointwise in time.

The present article is organised as follows. Section 2 in-
troduces to dynamic modelling in systems biology and
formalises the parameter identification problem. Section 3
presents the methodology in the special case of steady
state and polynomial kinetics for clarity reasons. Section 4
extends the methodology to include system dynamics, i.e.
use of transient data, and Section 5 further extents to
rational kinetics. Finally Section 7 illustrates the method-
ology on two simple examples.

2. BIOLOGICAL MODELLING AND PARAMETER
IDENTIFICATION

A common framework for the modelling of biochemical
reaction networks are sets of reactions of the following form

a1S1+ ...+, Sn, = F1PL+ . 4 B, P, (1)
where S; denote substrates that are transformed into the
products P;. The factors «; and (; denote the stoichio-
metric coefficients of the reactants. Neglecting spatial and
stochastic effects, these reactions are often modelled with
systems of ordinary differential equations:

¢ = Nu(c,p), (2)
where ¢ € RZ is the vector of concentrations, p € RZ,
the parameter vector and v € R x RZ; — RZY the

vector of the flows. The stoichiometric matrix N € R™e*"v
depends on the coefficients «;, ; and, possibly on factors
compensating different units or volumina. For a more
detailed introduction, see for example Klipp et al. (2005)
or Keener and Sneyd (2001).

In systems biology, the stoichiometry and the reaction
rate models are often assumed to be known. Typically
the reaction rate models v(c,p) are special polynomial
or rational functions such as (generalised) mass action
kinetics, Michaelis Menten kinetics, Hill kinetics or en-
zyme kinetics with inhibition or activation terms (Cornish-
Bowden, 2004). In contrast to the form of the kinetics, the
specific parameter values p are largely unknown. Thus, the
problem can be formulated as follows:

Given: The stoichiometric matrix N and the form of the
function v(¢, p) describing the reaction rates
Unknown: The kinetic parameters p

These unknown parameters need to be estimated from
measurements c(t;) at certain time points. In principle, the
parameter estimation problem can be solved by integrat-
ing (2). The difficulty with the integration based approach
is twofold. On the one hand, an analytic solution of the
integral [ Nv(e,p)dt can only be computed in rare special
cases, which are generally not relevant in biology. On the
other hand, numerical integration requires to specify the
unknown parameters p (and initial conditions ¢(t = 0))
beforehand. Most parameter estimation methods deal with

the dilemma of specifying the unknown parameters by
choosing parameter values a priori, numerically integrating
the differential equations and then comparing the result
with the data a posteriori(Kuepfer et al., 2007). Advanced
methods run a loop in which the parameters are updated
after each integration step, for example using an evolution-
ary strategy or a gradient based approach (Peifer and Tim-
mer, 2007; Moles et al., 2003). But even iterative methods
do not resolve the fact that only a single parameter set
can be considered at a time. Consequently it is impossible
to conclude that the best parameter values were found,
or that no good solution exists, i.e. that the considered
model is inconsistent with the collected experimental data.
In fact, the procedure might simply fail to obtain a good
parameter estimate.

The above mentioned drawbacks arise from a point-wise
checking of the parameter space, which is highly inefficient
for a large number of parameters. Here we circumvent this
problem by presenting a methodology that is capable of
checking entire parameter regions. Instead of providing a
parameter estimate, the proposed methodology provides
certificates for different parameter regions by proving
their inconsistency with experimental data, thus reducing
the entire search space to a comparable small fraction
containing good solutions (and the true parameters).

The method is based on a polynomial representation of
the system dynamics in terms of sum of squares (Parillo,
2003). Such polynomial representation is not restricted to
polynomial kinetics, but also possible for general rational
kinetics as they for instance appear in metabolic pathway
modelling, as will be shown in Section 5. Based on the
sum of squares representation, a relaxed semi-definite
program is formulated (Boyd and Vandenberghe, 2004).
As a consequence of the relaxation it can not be proven
that a parameter is consistent with the data, because
a solution of the relaxed problem is not necessarily a
solution of the original problem. We can however prove
inconsistency of entire parameter regions: If the semi-
definite program is infeasible for a certain parameter
region, then this region does not contain parameter values
consistent with the data. Checking feasibility of the semi-
definite program can be done efficiently using high quality
software such as SeDuMi and YALMIP, which also provide
a high level programming language for implementing the
problem (Sturm, 1999; Lofberg, 2004).

3. STEADY STATE ANALYSIS FOR SYSTEMS WITH
POLYNOMIAL KINETICS

The following considerations address the problem of
whether certain parameter regions consistent with mea-
surements of the species concentrations in steady state
(Kuepfer et al., 2007). This section is restricted to sys-
tems with polynomial kinetics in steady state in order to
facilitate the communication of the main ideas. Afterwards
the methodology will be extended in the later sections.

The problem can be formulated as follows

P1: find c,p
s.t.  No(e,p)=0

C— € <c; <¢ +e¢€ i=1,....,m
Pj,min Spj Spj,max .



where ¢; is the measured concentration of species i, €; the
corresponding measurement uncertainty and p; min, Pj max
lower and upper bounds on the parameter defining the
parameter region to analyse.

3.1 FExpressing the righthand-side of the ordinary differential
equations as sum of squares

Often, the reaction rates are linear (affine) in the parame-
ters and polynomial of degree d in the concentrations. i.e.
v(c,p) € Rle,p]¥!. Let

£T=[1p1...c1... Ned (3)

be the vector of monomials constituting a basis for
Rlc, p]®!, then the reaction rate can be written as a sum
of squares (SOS)

Uj(c’p) = fngTa
where V; is a symmetric matrix. Therewith a SOS-
representation for the righthand-side of the ordinary dif-
ferential equations (2) is given by

Z Ni,jvj(cap) = fRigTv
J

ciCo ..

j=1....m,

t=1,...,n,

where the symmetric matrices R; are given by

R; = Z Ni;Vj, (4)
Thus the inequality constraint in Problem P1 can be

expressed in terms of the monomial basis vector & as
follows:

1=1,...,n.

'RiE=0 (5)
where the symmetric matrices R; are constructed accord-

ing to Eq. (4) and ¢ a monomial basis vector as defined
in (3).

1=1,...,n,

3.2 Measurements and parameter regions as constraints

Let p(p, ¢) be the mapping of the parameters p and states
¢ to basic vector of monomials, i.e.

fzhd@]

By construction, p is monotone and therefore assumes its
minimum and maximum for (Pmin, Cmin) and (Pmax, Cmax)
respectively. The inequalities ¢; min < ¢; < ¢; max are thus
covered by

with B = _,uj(pmaxacmax) e?T 7

B¢ >0,
5 o Hj (pmina cmin) _ej

where e; is the is the unit vector with k the only nonzero
entry, i.e.

L1 ifk=
7F =0 otherwise -

3.8 Relazation to a semi-definite program

A relaxation of the original problem is now found by
defining X = &7 (Parillo, 2003). The resulting non-
convex constraint rank(X) = 1 is dropped in the semi-
definite program. Several other convex constraints arising

from he definition of X such as X;; = 1 and X > 0 are
still used.

RP1 find
s.t.

Xes
tr(@;X) =0
tr(erel X) =1
BX€1 Z 0
BXBT >0
BX€1 E 0,

1=1,...,n

where e; = [1, 0, ...].
4. EXTENSION TO TRANSIENTS

Kuepfer et al. (2007) considered steady state analysis, i.e.
¢ = 0. This section extends the methodology to include
dynamics, i.e. ¢ # 0. The approach requires the knowledge
of the time derivative of the states ¢. In principle this can
be achieved by measuring ¢(t) at least two proximate time

s . . c(ta)—c(t2)
points and calculating ¢ = ﬁ

fitting techniques in which basic functions ;(¢) with well

. In practice, curve-

known derivatives %(t) are fitted to the measurements, are
preferable because of better accuracy and measurement
noise reduction.

The problem can be formulated as follows
P2: find c,p
st. Nov(e,p) —¢=0

Ci,min <¢ < Ci,max 1= ]-7 cees
Pj,min Sp] Spj,max j=1...,m
éi,min <¢ < éi,rnax 1= ]-7 sy

where ¢; min, Cimax, Ci,min, Cimax are lower and upper
bounds on the measurements of the species concentrations
and their derivatives respectively, and pjmin, Pj,max are
lower and upper bounds defining the parameter region
which is to analyse. Similarly to Section 3 this section finds
a relaxation of the problem to a semi-definite program
using sum of squares.

4.1 Representing the ordinary differential equations as
sum of squares

Recall that Section 3 established a sum of squares repre-
sentation for the righthand-side of the differential equa-
tions

¢ =ETRE. (6)
Using the extended version of the basis vector of monomi-
als

¢r=1[e" ¢,

Eq. (6) is equivalent to
T'Qi¢=0 with Q;

and with the matrix R; as in Eq. (4) and with the matrix
S; of dimension dim& x n defined elementwise, i.e. the
element k,[ of S; is

SﬁJ:{—U2 ifh=11=i

0 otherwise

R; S; )
[ST 0}, i=1,...,n, (7)

Therewith the equality in Problem P2 is expressed by

"QiC =0, (8)

1=1,...,n.



4.2 Measurements and parameter regions as constraints
Setting up the constraints is virtually the same as in

Section 3. The only difference is that the mapping p has
to be extended to include ¢, i.e.
1
¢= lﬂ(pa C)‘| :

¢

(p,c,¢) = (¢

The inequalities are the set up similarly to Section 3, with
the extended mapping

wnc¢):{u@mq.

c

leading to the matrix B

_ —Vj (pmaxy Cmax émax) 6? (9)
Vj (pminy Cmin, émin) —ejr ’

covering the with B{ > 0 the inequality constraints in
Problem P2.

4.8 Relazxation to a semi-definite program

Based on Eq. (8) and (9) the relaxed problem in the
transient case is the following semi-definite program

RP2 find ZeS
s.t. tr(Q;Z) =0
tr(erel Z) =1
BZey >0
BZBT >0
BZey = 0,
where the Q); are defined in Eq. (7), B is defined in (9)

and Z € S is the relaxed version of (¢7 corresponding to
X in Section 3.

1=1,...,n

5. EXTENSION TO RATIONAL KINETICS

The presented methodology is easily extended to systems
with rational kinetics. All that is required for the re-
laxation to a semi-definite program as presented in the
previous sections is a sum of squares representation of the
system of ordinary differential equations

r(c,p)
ale,p)’
where 7, ¢ € Re, p] are polynomial functions.

¢ = Nu(c, p), with v;(c,p) = (10)

A polynomial representation of System (10) is easily ob-
tained by multiplying left- and righthand-side of each
equation with all denominators of v(c, p), yielding

> Nigps(e(t),p) = ] ale(ts). p) = cit) | [ ax(e(t), p).
y T CTkiJT] )

Defining 27 = [p this can be expressed as

where f € R[z]?? is a multivariate polynomial of degree

2d < oo. Let ¢ be a basis of R[z]? consisting of monomials,
then there exists a symmetric matrix @Q € S?? such that

filz) = T Qic,

1=1,...,n

1=1,...,n.

In practice the polynomial representations is often sparse,
i.e. the matrices @); have common zero-rows and -columns.
Then these zero-rows and -columns in ); as well as
the corresponding monomials in the basis ¢ should be
removed (Waldherr et al., 2008). Let @; be these reduced

matrices and let ¢ be the corresponding reduced basis,
then @; is to be used in the semi-definite programm RP2,
and the matrices B have to be constructed according

to the monotone mapping (c¢,p,¢) +— (¢ as described in
Section 4.2.

6. RELATION TO BARRIER CERTIFICATES

Similar approaches in the literature use the so called bar-
rier certificates to certify parameter regions inconsistent
with data and model (Anderson and Papachristodoulou,
2009). Similar to a Lyapunov function, a barrier certificate
B(xz,p,t) is a function depending on the states, parameters
and time. Given two measurements x1, r9 at different time
points, the idea is to find a real-valued function that
for some parameter region P 5 p has a higher value at
the second time point compared to the first time point
B(zg,p,t2) — B(z1,p,t1) > 0 but at the same time is
nonincreasing along the trajectory %—f f+ %—Eg < 0. Such
construction obviously creates a contradiction and it can
be concluded that the parameter region P is inconsistent
with the measurement.

The advantage of a barrier certificate is that it incorpo-
rates the righthandside of the differential equations be-
tween the measurement points. Generally this may allow
to find tighter bounds on the feasible parameter regions
compared to the simple method proposed here (Sections 3
to 5) that only uses the differential equations at the mea-
sured time points.

The drawback of a barrier certificate is that it requires the
construction of a polynomial function, which is compu-
tationally demanding for complicated systems. The num-
ber of decision variables required for this construction
increases polynomially with the number of states. In con-
trast, the here presented method (Sections 3 to 5) does not
require the construction of a certificate function and the
number of decision variables increases only linearly with
the states.

7. EXAMPLE

The proposed methodology is illustrated using two simple
toy examples.

Simple toy model

We chose this toy example such that an analytical solution
to the parameter estimation problem can be found easily.
This allowed us to validate the proposed approach by
comparing to the analytical solution.

Consider the following reaction
S+E=C+EL.

Using the law of mass action the concentrations are
described by the following system of ordinary differential
equations
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Fig. 1. Consistent parameter regions for measurements at
two different points in time. Red: for the transient
at t=0. Blue: in steady state (t=1). The dashed lines
indicate the parameter dependencies for perfect mea-
surements. The true parameter value that generated
the data is the intersection of both dashed lines. The
cones represent the admissible parameter values for
10% measurement uncertainty. Only the intersection
is consistent with both measurements.

d e 1 -1
a [§‘| = [P]_ ?‘|V(Cap)v

Using that e is constant (¢ = 0) we can set p; = ke
as a constant parameter. Further using the conservation
law s(t) + ¢(t) = So, the system is described by a single
ordinary differential equation for the concentration of C

vy = p1So — p1c
Vg = Pac '
A monomial basis vector for this system is
¢=[pip28cd,
which allows the application of the method as described
in Section 4. However, due to the simplicity of the system
we can also analyse the problem analytically as follows. By
setting ¢ = 0 we can see that in steady state the parameter
p1 depends linearly on the parameter py with p; = %pg
(see Figure 1). In the case of perfect measurements, this de-
pendency is a one dimensional line in the parameter space.
In the case of uncertain measurements (i.e. upper and
lower bounds on the measured concentration), this depen-
dency results in a two dimensional cone in the parameter
space (see Figure 1 for an example with 10% measurement
accuracy). In the dynamic case, the concentration changes
over time depending on the initial condition ¢(t = 0) # ¢.
When ¢ is measured or estimated from measurement of ¢
at several time points ¢;, the cone of admissible parameter
regions changes over time. Figure 1 illustrates this time
dependency for t = 0 and ¢ = 1. Since the parameters have
to be consistent at all time points, only the intersection
contains admissible parameter values, and in fact also the
true parameter values.

v = kyce
V2 = p2cC.

¢= [1 _1] V(Cvp)a

Lotka-Volterra model

The famous LotkaVolterra equations describe the popula-
tion dynamics of two interacting species, with one being
the prey, the other being a predator:

¢é1 = ci(p1 — c2),

éa = c2(—p2 +c1),
where ¢; and c¢p are the concentration (e.g. number of
animals per habitat) of prey and predator respectively,
and p; and py are parameters describing the birth rate of
the prey and the mortality rate of the predator (Lotka,
1925; Volterra, 1926).

The model is used to illustrate that the proposed method-
ology is applicable to systems with periodic (non-steady-
state) trajectories. The model was chosen because it is well
studied and results obtained by the proposed methodology
can thus be verified easily. The semi-definite program was
constructed according to Section 4 with the monomial
basis vector

C=1[1p1p2 Soc1cacrea €1 éa].
Feasibility checking on a grid of parameter regions yielded
the following results.

e Measuring cy, ca, ¢1, ¢o resulted in small oval-shaped
parameter regions. For measurements at different
time points, these regions were slightly different,
such that the admissible parameter region could be
reduced slightly by taking the intersection.

e Not measuring ¢; or ¢ rendered p; or ps respectively
unidentifiable. The admissible parameter region was
a narrow rectangle parallel to the unidentifiable pa-
rameter axis.

e Not measuring c; yielded nonlinearly curved admissi-
ble parameter regions that changed dramatically over
time (Figure 2). Taking measurements at different
time points reduced the region of admissible param-
eter values dramatically by taking the intersection.

The two examples nicely illustrate that the methodology
is applicable to measurements of transients, and that
combining measurements at two or more time points
significantly reduces the region of admissible parameters.

8. CONCLUSIONS

We presented a methodology that is capable of proving
inconsistency of entire parameter regions with the data.
Based on the polynomial representation of the system,
we formulate a feasibility problem that can be solved
efficiently by semi-definite programming. The feasibility
problem allows us to check consistency of entire parameter
regions by using different upper and lower bounds on the
parameters. This drastically limits the search space for
subsequent parameter estimation methods. In contrast to
similar approaches in the literature, the here presented
approach does not require a steady state assumption
(Kuepfer et al., 2007), nor a discretisation of the system
(Borchers et al., 2009). In fact, the presented examples
show that using dynamic information by measuring the
transient at different time points significantly reduce the
regions of admissible parameter regions. Further, mea-
surement uncertainties can be included in the feasibility
problem naturally by using upper and lower bounds and
regular sampling times are not required.
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