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Abstract
Background:Receptors and scaffold proteins possess a number of distinct domains and bind
multiple partners. A common problem in modeling signaling systems arises from a combinatorial
explosion of different states generated by feasible molecular species. The number of possible
species grows exponentially with the number of different docking sites and can easily reach several
millions. Models accounting for this combinatorial variety become impractical for many
applications.

Results:Our results show that under realistic assumptions on domain interactions, the dynamics
of signaling pathways can be exactly described by reduced, hierarchically structured models. The
method presented here provides a rigorous way to model a large class of signaling networks using
macro-states (macroscopic quantities such as the levels of occupancy of the binding domains)
instead of micro-states (concentrations of individual species). The method is described using
generic multidomain proteins and is applied to the molecule LAT.

Conclusion:The presented method is a systematic and powerful tool to derive reduced model
structures describing the dynamics of multiprotein complex formation accurately.

Background
Receptor-mediated signal transduction is the subject of
intense research since it plays a crucial role in the regula-
tion of a variety of cellular functions. The ligand binding
to a receptor triggers conformational changes that allow
for receptor dimerization and phosphorylation of numer-
ous residues. The subsequent formation of multiprotein
signaling complexes on these receptors and their scaffold-
ing adaptor proteins initiates a variety of signaling path-

ways. The number of feasible different multiprotein
species grows exponentially with the number of binding
domains, and can easily reach thousands or even millions
[1,2]. In the past years, a large number of mathematical
models have attempted to describe signaling phenomena
and to get deeper insights into the dynamics of cellular
responses [3-11]. Most of these models did not consider
the combinatorial variety of all possible species and inter-
actions [1,2]. The obvious advantage of models neglecting
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the combinatorial complexity is there are less ordinary
differential equations (ODEs) that have to be considered.
For example, if all possible species were included in the
model of Schoeberl et al. [6], the number of variables
would grow from around 100 to almost 40000 [2]. How-
ever, there is no general method to decide a priori which
species play a crucial role and which can be neglected.
Recent investigations indicate that the structure of
reduced models which focus on the most important spe-
cies, is highly dependent on the kinetic parameters [12].
The procedure described in [12] is based on deleting spe-
cies from a full network model to find the smallest net-
work that reproduces the dynamics of a set of observed
quantities.

In 1998, the stochastic simulation tool StochSim was
developed to handle the problem of combinatorial com-
plexity [11,13]. The number of multi-state protein com-
plexes and chemical reactions could reach millions in
deterministic models of bacterial chemotaxis, and Stoch-
Sim was employed to circumvent this problem [11]. The
use of StochSim is especially practical for networks in
small volumes with low numbers of molecules, where a
stochastic algorithm more closely describes the physical
reality than a deterministic algorithm. For large networks
with hundreds of different proteins the computational
cost would be extremly high increasing proportionally to
the number of molecules squared. An alternative deter-
ministic approach considers a complete mechanistic
description that accounts for all possible species and reac-
tions [1,14]. In the software tool BioNetGen, an algorithm
for rule-based modeling is implemented [15]. However,
the computational cost also appears to be very high, mak-
ing it difficult to analyze large networks with a vast
number of states.

Recently, a new approach has been introduced where a
mechanistic picture of all possible states is substituted by
a macro-description that follows the occupancy levels and
other characteristics of individual domains, e.g. the phos-
phorylation states of these sites [16]. These quantitative
indicators of the system (levels of occupancy) are referred
to as macro-states. A modeling description using macro-
states accounts for limitations in the current techniques to
measure concentrations of individual multiprotein spe-
cies. The results of common biological measurements
(e.g. immunoprecipitation followed by western blotting)
correspond to cumulative quantities like levels of occu-
pancy or degrees of phoshorylation. Thus, the introduc-
tion of these and similar quantities into modeling
facilitates the comparison of model variables with experi-
mental readouts. This approach adopts the point of view
of Pawson and Nash [17] that molecular domains instead
of molecules are the fundamental elements of signal
transduction. In their review they discuss that the regula-

tion of many different cellular processes and functions
require the use of protein interaction domains, and that
aberrant interactions can induce abnormal cellular behav-
iour and diseases. We show that besides these considera-
tions this macroscopic description also provides a number
of mathematical benefits. In their work Borisov et al. dem-
onstrate that for scaffold proteins with independent bind-
ing sites and scaffolds with one controling domain, the
dynamics of these macroscopic states can be accurately
described by reduced models [16]. However, a methodol-
ogy to derive the reduced model equations for any scaf-
fold with a more complex pattern of domain interactions
is still missing. In this contribution, we will introduce a
new systematic approach formalizing and extending the
model reduction presented in [16]. Our method not only
answers the questions whether a mathematically accurate
model reduction is possible in a given system, but also
how many and which equations are required. Our
approach is based on a state space transformation linking
the approaches provided in [15] and [16]. This link is
achieved by a hierarchical structure of the state space
transformation introducing mesoscopic state variables
(describing different levels of detail) in addition to mac-
roscopic and microscopic states defined in [16]. In con-
trast to many other model reduction methods our
approach is independent of exact numerical values. Often,
only qualitative biological knowledge about domain
interactions is needed to derive the reduced model equa-
tions. For instance, data reported for receptor tyrosine
kinases provide qualitative knowledge about domain
interactions [18]. The ligand binding to these receptors
controls their dimerization and the rate of phosphoryla-
tion of docking sites, which bind multiple partners. Here,
we address the question of how different domain interac-
tions influence the structure of a reduced model and how
many states are required in order to describe the system
dynamics accurately. We demonstrate which signaling
systems can be described using only macro-states, and
which additionally require the consideration of mes-
oscopic states.

The contribution is structured as follows. First, we intro-
duce our method using simple examples reconsidering
some of the cases described in [16] in order to show that
our method provides the exact same results. For example,
if the binding sites are independent, or only one of the
domains controls some others (which is the case of a scaf-
folding adaptor protein phosphorylated by receptor
kinase, e.g., insulin receptor substrate phosphorylated by
the insulin receptor [19]) it can be shown that the number
of states can be strongly reduced. Additionally, we con-
firm our results via dynamical simulations and discuss the
advantages of the reduced models. Second, we generalize
these results and also consider an example with a more
complex pattern of domain interactions, and finally, we
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apply the method to a real scaffold protein, namely the
adaptor molecule LAT (Linker for activation of T-cells).

Results
In order to introduce and discuss our method in an
descriptive manner, we first want to introduce some defi-
nitions and outline the principles shortly. Afterwards, we
will consider some simple generic examples (scaffold pro-
teins with three and four binding domains) in more
detail. Of course, these examples might also be treated
without recourse to our theoretical developments,
because the number of states is relatively small. But pre-
cisely because some of the results may appear intuitive,
this shows the potential of our method which is also
applicable to other more complicated problems. Addi-
tionally, we generalize two important cases to scaffolds
with n binding sites (namely independent binding
domains and domains that are controlled by one control-
ling site). We also provide the generalized transformation
matrix for proteins with n binding sites and exemplify our
method considering the scaffold molecule LAT (Linker of
activation in T-cells).

Definitions

In the following, we will consider a receptor or scaffold pro-
tein R with n distinct binding domains i (i.e i = 1, 2, ..., n).
Each of these domains i can bind mi different effector pro-

teins  with j = 1, ..., mi, and hence can be in mi + 1 dif-

ferent states (unoccupied or occupied by one of the mi

effectors). The number of feasible micro-states for such a
scaffold protein is

The number of possible reactions that have to be consid-
ered is

 denotes the j-th effector which can bind to the i-th

binding domain i. We introduce labels for the status of the
different binding sites such as 0 for an unoccupied bind-

ing domain and  for the domain i occupied with the

j-th effector. Alternatively, the different states of a domain
can also be enumerated. For instance, the two representa-

tions R[ , , 0, ] and R[4, 1, 0, 2] for a scaffold pro-

tein with four binding sites are equivalent. In addition,
the representation R[a1, 0, 0, 0] denotes all scaffold pro-

teins R with unoccupied binding domains 2 to 4 inde-
pendent of the status of domain 1, etc.

All these definitions shall be clarified by considering a
simple scaffold protein R with two domains 1 and 2
(i = 1, 2). Assuming it is known that binding domain 1

can bind three different effectors ,  and  (m1 = 3

and j = 1, 2, 3), and that the second domain 2 can bind

two different effectors  and  (m2 = 2 and j = 1, 2).

The number of feasible states of domain 1 is m1 + 1 = 4,

namely either unoccupied or occupied by one of the three
effectors. According to these considerations the number of
different states of domain 2 is m2 + 1 = 3. The total number

of complexes results from ∏(mi + 1) = 4·3 = 12. In order

to calculate the number of reactions that may occur in this
example we first assume that domain 1 is unoccupied.
Now three different effectors may bind to this domain,
which corresponds to three different reactions. At the
same time binding domain 2 can be unoccupied or occu-

pied by one of the two effectors . Hence, one has to

consider 3·3 reactions describing the occupation of
domain 1. Now we repeat these considerations for
domain 2. This results in 2·4 reactions. The total number
of reactions in our example is

Reduction method

Our method can be divided into three essential steps.
First, we start generating a complete mechanistic descrip-
tion of the considered scaffold or receptor like described
in [1,14,15]. This step also includes the incorporation of
qualitative information about domain interactions. Sec-
ond step is the introduction of macro-states (levels of
occupancy of each domain) using a state space transfor-
mation following a hierarchical pattern. The transformed
system is reduced in a third step by eliminating all equa-
tions which do not influence the dynamics of the output

variables . In the following we assume that one of the

goals of signaling pathway modeling is to accurately
describe the dynamics of the macro-states. Hence, we

choose the levels of occupancy as output variables . This

choice seems to be reasonable since these values corre-
spond to experimentally verifiable quantities as discussed
before. Additionally, similar examples can be found in lit-
erature where the same or very similar output quantities
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are defined [6,14,20]. Note that in principle one also may
define other quantities of interest instead of the discussed

levels of occupancy. Another choice of  would not affect

the applicability of our method. However, it would mod-
ify the number of ODEs to be considered.

Step 1: The reaction networks considered are described by
a system of ordinary differential equations (ODEs). All
feasible reactions A + B G C are translated into reaction
rates r = koncAcB - koffcC using the law of mass action. Here,
kon and koff denote the association and dissociation con-
stants, while ci refers to the concentrations of the compo-
nents. The ODEs for all feasible micro-states have the
form

In vector notation, Equation 4 can be written as

, where  denotes the vector of all considered

micro-states and  denotes all possible input signals (e.g.
extra-cellular ligand concentration in the case of a recep-
tor at the cell membrane). The macro-states/output varia-

bles we are interested in will be denoted as ,

which can be calculated using . Incorporating qualita-
tive information about domain interactions helps to
reduce the number of relevant parameters. For example, if
it is known that two binding sites A and B are independ-
ent, the on- and off-rate constants do not change upon
effector binding to the other domains. Note, that this is
not a simplification, but merely a systematic incorpora-
tion of real physico-chemical constraints.

Step 2: In order to introduce new coordinates  including
the macro-states, we perform a linear transformation

, where T is a quadratic, non-singular matrix. The
transformed model equations are

In the following, we will introduce this transformation for
a number of simple cases to exemplify our method and
discuss the general pattern of this transformation. A strict
mathematical and general formulation is also provided.

Step 3: Figure 1 shows that a state space transformation
can simplify a model. In many relevant cases the trans-
formed model equations of the considered scaffold pro-
teins can be divided into two modules as shown in the
following Equations

Since T is a quadratic and non-singular (i.e. invertible)
matrix these transformed equations still contain exactly
the same information as the complete mechanistic model.
Equation 6 shows that the macro-states (which are a sub-

set of  and correspond to the output variables) are not

influenced by the states . This implies that a reduced

model only has to account for the ODEs ,

and that this reduced model provides exactly the same
output dynamics as the complete mechanistic model.

However, note that by eliminating the equations for 

one looses the possibility of using the inverse mapping T-

1 in order to retrieve the original variables .

Generic example with three binding domains
We will start with a scaffold protein with three binding
domains. In our example, each domain can bind one dis-
tinct effector molecule. Hence, the scaffold protein can
exist in eight different micro-states (R[0, 0, 0], R[1, 0, 0],
R[0, 1, 0], R[0, 0, 1], R[1, 1, 0], R [1, 0, 1], R[0, 1, 1],
R[1,1,1]). Even in this simple example 12 elementary
reactions have to be considered (see Table 1).

Functionality of a scaffold protein
Using the law of mass action and the reactions defined in
Table 1, the model equations can be derived using Equa-
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State space transformationFigure 1
State space transformation. The idea of our method can 
be described more easily by considering a mechanical exam-
ple: In order to model the movement of a mass in space one 
has to choose a certain coordinate system. However, if this 
coordinate system is not adjusted to the problem (like 
shown on the left site) the model equations will be more 
complicate than in a transformed coordinate system.
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tion 4. However, besides the model structure the kinetic
parameters play a crucial role in determining the system
dynamics. A scaffold protein can perform a number of dif-
ferent functionalities, which can be characterized in terms
of domain-interactions. One can think of a variety of cases
such as non-interacting binding sites or the existence of a
controlling domain influencing the others. A scaffold pro-
tein with 3 binding domains may provide 13 different
functionalities or interaction motifs [21]. Qualitative
knowledge about domain interactions have to be
included in the modelling step. By defining the occuring
domain interactions the number of relevant parameters
follows immediately as exemplified in Figure 2. The
assumption that, e.g., all three domains are completely
independent implies that the kinetic on- and off-rate con-
stants of one domain do not change upon effector bind-
ing at another domain. In the following, we want to show
that for a number of interesting functionalities of scaffold
proteins, we are able to find considerably reduced models
using our method. Additionally, our method is also appli-
cable to all other kind of functionalities which shall be

exemplified considering a scaffold protein with four dock-
ing sites and a more complicated structure of occuring
domain interactions. More detailed information about
how the kinetic parameters have to be adjusted to realize
a certain functionality can be found in the supplementary
material (simulation files provided).

Hierarchical transformation
The second step after having formulated a complete
mechanistic model is to perform a state space transforma-
tion. This transformation introduces new states, including
the levels of occupancy of each domain. Choosing a glo-
bally invertible and smooth transformation assures that
the system's dynamics is preserved and, as long as none of
the new equations is eliminated, the original micro-states
can be retrieved from the new ones at any time [22].

We choose a hierarchical transformation matrix, consist-
ing of different tiers (Table 2). Each tier represents a cer-
tain level of detail. First, we define the 0th tier of our
transformation matrix, which includes only one state rep-

Table 1: Reactions for scaffold with 3 binding sites. A complete mechanistic model of a scaffold protein with 3 binding domains (1,2,3), 
where each domain can bind one effector protein (E1, E2, E3), has to consider the following 12 reactions. The kinetic parameters for 
each reaction can be denoted with k+i for the association and k-i for the dissociation reaction

Binding of E1 Binding of E2 Binding of E3

R[0, 0, 0]+E1 G R[1, 0, 0]  (49a) R[0, 0, 0]+E2 G R[0, 1, 0]  (50a) R[0, 0, 0]+E3 G R[0, 0, 1]  (51a)
R[0, 1, 0]+E1 G R[1, 1, 0]  (49b) R[0, 0, 1]+E2 G R[0, 1, 1]  (50b) R[0, 1, 0]+E3 G R[0, 1, 1]  (51b)
R[0, 0, 1]+E1 G R[1, 0, 1]  (49c) R[1, 0, 0]+E2 G R[1, 1, 0]  (50c) R[1, 0, 0]+E3 G R[1, 0, 1]  (51c)
R[0, 1, 1]+E1 G R[1, 1, 1]  (49d) R[1, 0, 1]+E2 G R[1, 1, 1]  (50d) R[1, 1, 0]+E3 G R[1, 1, 1]  (51d)

Domain interactionsFigure 2
Domain interactions. We assume that binding domain one controls the other two domains like indicated by the arrows. 
From this assumption the kinetic parameters for the model follow immediately. As soon as binding domain one is occupied, the 
affinities of the docking sites two and three will change. Since binding domain one is independent of the other binding sites, the 
on- and off-rate constants of this domain are also independent.
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resenting the total concentrations of the scaffold protein
(Equation 52a). Since there is no production nor degrada-
tion of R in our example, z0 will be constant. However, in
the general case (including production and degradation)
this is also an important dynamic and macroscopic quan-
tity of interest. The 1st tier of our matrix corresponds to
the discussed levels of occupancy of each binding domain
(Equations 52b to 52d in our example). All states belong-
ing to both of these tiers are called macro-states. The 2nd
tier describes the levels of occupancy of all pairs of
domains, corresponding to the concentration of scaffold
proteins R with concurrently occupied binding domains
{1,2}, {1,3} and {2,3} (Equations 52e to 52g in our
example), which we call mesoscopic states. The 3rd and,
in our example, last tier represents the levels of occupancy
of all triples of domains corresponding to the micro-state
R[1, 1, 1] (Equation 52h). The transformation matrix in
the general case is structured completely similar. One
starts with the overall concentration and the levels of
occupancy, followed by all possible pairs, triples and
higher tuples of concurrently occupied domains until one
reaches the tier describing the micro-states. We define that
all new states describing macroscopic properties as overall
concentrations or levels of occupancy of distinct docking
sites are called macro-states. Others describing pairs, tri-
ples or higher tuples of concurrently occupied binding
sites are mesoscopic states and those specifying single
multiprotein species correspond to the original micro-
states. A generalized transformation applicable to scaffold
proteins with n binding domains as well as a proof that
any transformation matrix deduced with the described
pattern is invertible is provided in the following. As men-
tioned above, the functionality of a scaffold protein or a
receptor is uniquely determined by the choice of parame-
ters. Hence, the transformation only depends on the
number of binding domains and effectors, not on the
functionality of the protein. This means that each scaffold
protein with n docking sites has to be transformed in
exactly the same way no matter which functionality it pro-
vides. However, the number of equations of the reduced
model will of course depend on the functionality of the
protein as will be shown in the following.

Independent binding domains
First, a reduced model describing the example with three
independent binding domains shall be introduced. The
mechanistic model (Equation 4) is transformed as speci-
fied in Table 2. The transformed model equations have a
very special structure (see Table 3). The total concentra-
tion of the scaffold protein z0 is constant. Additionally, the
output variables (levels of occupancy) which are
described by the states z1 to z3 in the model appear to be
completely decoupled from all other ODEs. This finding
implies that a model describing the levels of occupancy
does not need to consider the whole set of ODEs. They are
accurately described by Equations 53b to 53d. From the
structure of the equations it can be also seen that all
kinetic parameters of the model can only be identified if
one has measurements for all three states.

One site controls the others

Now we assume that binding domain 1 controls the
domains 2 and 3 (see Figure 3b). Again, this functionality
corresponds to a special parameter combination, and the
model is transformed using the same transformation as in
the example above (see Table 2). In this case the states z1

to z5 are completely independent of states z6 and z7 (Table

4). As we are only interested in the levels of occupancy
(states z1 to z3), the Equations for z6 and z7 can be

excluded. Additionally, the Equations for z1 to z5 can be

divided into three modules that are completely free of ret-
roactive effects thus facilitating the analysis of the model
as well as the application of parameter identification tools
[23-25]. In comparison to the previous example two more
equations are required in order to describe the dynamics
of the macro-states. An explanation of this fact is provided
by the following example. Consider the binding domains
1 and 2 of two equal scaffold molecules R. Only consider-
ing the macro-states ("domain 1 occupied" and "domain
2 occupied"), it is not possible to distinguish between the
following two scenarios: [1] one molecule has both sites
occupied and the other has none (R[1, 1,a3] and R[0, 0,

Table 2: State Space Transformation for scaffold with three binding domains. Transformation for a scaffold protein with 3 binding 
domains. The transformation is hierarchically structured and introduces macroscopic quantities like the overall concentration of R and 
the levels of occupancy of each domain (z0 to z3), mesoscopic quantities describing pairs of concurrently occupied domains (z4 to z6) 
and microscopic quantities corresponding to individual multiprotein species (z7).

z0 = R[0, 0, 0] + R[1, 0, 0] + R[0, 1, 0] + R[0, 0, 1] + R[1, 1, 0] + R[1, 0, 1] + R[0, 1, 1] + R[1, 1, 1]  (52a)
z1 = R[1, 0, 0] + R[1, 1, 0] + R[1, 0, 1] + R[1, 1, 1]  (52b)
z2 = R[0, 1, 0] + R[1, 1, 0] + R[0, 1, 1] + R[1, 1, 1]  (52c)
z3 = R[0, 0, 1] + R[1, 0, 1] + R[0, 1, 1] + R[1, 1, 1]  (52d)
z4 = R[1, 1, 0] + R[1, 1, 1]  (52e)
z5 = R[1, 0, 1] + R[1, 1, 1]  (52f)
z6 = R[0, 1, 1] + R[1, 1, 1]  (52g)
z7 = R[1, 1, 1]  (52h)
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a3]) and [2] one has the first site occupied, but not the sec-

ond, and the other has the second, but not the first (R[1,
0, a3] and R[0,1, a3]). However, this information is essen-

tial if binding domain 2 is controlled by domain 1, since

in the first case the affinity of R[0, 0, a3] to the effector 

has a different value from the second case R[1, 0, a3].

Analysis and dynamic simulations
In order to illustrate the advantages of our method, the
previous example will be discussed (see Figure 3b) in
more detail, including dynamic simulations. Using the
parameters listed in Table 5, we create three different
models for this case: (i) a complete mechanistic descrip-
tion, (ii) an 'heuristically' reduced model, and (iii) an
exactly reduced model according to the method described
herein. Simulation results of the models are compared,
and the advantages and disadvantages of the models are
discussed.

Model 1: We create a complete mechanistic model
accounting for all molecular species and all possible reac-
tions (compare Table 1). Creating such a model one has
to address the problem of combinatorial complexity. In
this simple example the combinatorial variety of all feasi-
ble molecules includes only 11 different chemical species
(8 complexes and 3 effectors). After incorporating conser-
vation relations, the model only consists of 7 ODEs. How-
ever, most real problems would lead to models with tens
of thousands or even millions of equations and the com-
putational cost in these cases is extremely high. However,
an advantage of such a detailed model is that it accurately
represents the real reaction network. Now we want to
compare the predictions of this complete mechanistic
model with two different reduced models.

Model 2: We already mentioned that most heuristic mod-
els do not account for all molecular species. However, the
equations of these models still describe the system at a
microscopic level. The complete mechanistic network
structure is substituted by a reduced structure focusing on

E2
1

Table 3: Transformed equations for independent domains. Transformed model equations for a scaffold protein with independent 
binding domains. The levels of occupancy (z1 to z3) do not depend on the states z4 to z7.

ż0 = 0  (53a)
ż1 = k1 (z0 - z1) E1 - k-1z1  (53b)
ż2 = k2 (z0 - z2) E2 - k-2z2  (53c)
ż3 = k3 (z0 - z3) E3 - k-3z3  (53d)
ż4 = k1 (z2 - z4) E1 - k-1z4 + k2 (z1 - z4) E2 - k-2z4  (53e)
ż5 = k1 (z3 - z5) E1 - k-1z5 + k3 (z1 - z5) E3 - k-3z5  (53f)
ż6 = k2 (z3 - z6) E2 - k-2z6 + k3 (z2 - z6) E3 - k-3z6  (53g)
ż7 = k1 (z6 - z7) E1 - k-1z7 + k2 (z5 - z7) E2 - k-2z7 + k3 (z4 - z7) E3 - k-3z7.  (53h)

Interaction motifsFigure 3
Interaction motifs. Generic examples of scaffold proteins with 3 or 4 docking sites. (a) A scaffold protein with 3 distinct 
docking sites which do not interact. (b) Another pattern of domain interactions for the same scaffold protein. Here binding 
domain 1 controls the other two domains. (c) A scaffold protein with 4 docking sites and a more complex pattern of domain 
interactions. Each pattern of domain interactions can be translated into special kinetic properties (like exemplified in Figure 2).
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a reduced number of species and a reduced number of
reactions. As shown by Faeder et al. [12], which species
and which reactions play an important role is highly
dependent on the kinetic parameters, and it can hardly be
found without the consideration of dynamic simulations
of a complete mechanistic model. To illustrate the prob-
lems associated with this heuristic approach, we will show
that even in our simple example a number of simplifica-
tions that may appear reasonable lead to a wrong model.
The parameter values (see Table 5) show that if binding
domain 1 is unoccupied the affinity of the other domains
is extremely low. Hence, it may seem reasonable to neglect
these reactions. Thus, the unoccupied receptor R[0, 0, 0]
first has to bind the effector E1. Since the resulting affinity
as well as the resulting on-rate of binding domain 2 is
approximately several hundred-fold higher than the affin-
ity or the on-rate of domain 3, we assume that the effector
E2 in the majority of cases will bind before E3. Therefore,
the reduced model only includes the following three reac-
tions

R[0, 0, 0] + E1 G R[1, 0, 0]  (8)

R[1, 0, 0] + E2 G R[1, 1, 0]  (9)

R[1, 1, 0] + E3 G R[1, 1, 1]  (10)

which are parametrized with the known kinetic constants.
This case represents a commonly performed simplifica-
tion. In [6], e.g. the two effectors GAP and Shc bind con-
secutively to the receptor, although the EGF receptor
provides two distinct binding domains for these effectors
similar to the scaffold in our example. In order to compare

the predictions of this reduced model with the complete
one we again consider the levels of occupancy of each
domain. A comparison of the simulation results shows
that the predictions of the reduced model, for these
parameter values, are incorrect. Certainly, it would be pos-
sible to improve the predictions by fitting the parameter
values using the curves provided by the correct model, but
then the parameters would be phenomenological param-
eters and would not correspond to the kinetic parameters
of the reactions. The general problem of models with such
a linear chain of reactions is that the resulting levels of
occupancy are always higher than one would expect con-
sidering the equilibrium constants of the reactions. The
reason is quite simple. The equilibrium constant for reac-
tion 8 determines the equilibrium between R[0, 0, 0], E1
and R[1, 0, 0]. However, in equilibrium only a small frac-
tion of scaffold proteins which have bound E1 are in the
state R[1, 0, 0]. Most of them have also bound E2 and E3,
and the structure of Model 2 does not allow E1 to dissoci-
ate after E2 and E3 have bound to the scaffold protein.

Model 3: At last we want to consider the reduced model,
derived using our method (compare equations for z1 to z5
in Table 4). The dynamic simulations of the two models
analyzed above show that both have disadvatages. The
complete model is an accurate model describing all spe-
cies and reactions, but the number of ODEs grows expo-
nentially with the number of binding domains. While the
second approach has the advantage that the number of
equations is manageable, the error is not known. Our
method combines the merits of both approaches: the
number of equations is lower than in the complete model,
but the predictions of both models are exactly the same

Table 4: Transformed ODEs for scaffold with on controlling domain. Transformed model equations for a scaffold protein with one 
controlling domain. The levels of occupancy (z1 to z3) are only influenced by the states z4 and z5 but not by z6 and z7.

ż0 = 0  (54a)
ż1 = k1 (z0 - z1) E1 - k-1z1  (54b)
ż2 = k2 (z0 - z1 - z2 + z4) E2 - k-2 (z2 - z4) + k3 (z1 - z4) E2 - k-3z4  (54c)
ż3 = k4 (z0 - z1 - z3 + z5) E3 - k-4 (z3 - z5) + k5 (z1 - z5) E3 - k-5z5  (54d)
ż4 = k1E1 (z2 - z4) - k-1z4 + k3E2 (z1 - z4) - k-3z4  (54e)
ż5 = k1E1 (z3 - z5) - k-1z5 + k5E3 (z1 - z5) - k-5z5  (54f)
ż6 = k2 (z3 - z5 - z6 + z7) E2 - k-2 (z6 - z7) + k4 (z2 - z4 - z6 + z7) E3 - k-4 (z6 - z7) + k3 (z5 - z7) E2 + k5 (z4 - z7) E3 - (k-3 + k-5) z7  (54g)
ż7 = k1 (z6 - z7) E1 - k-1z7 + k3 (z5 - z7) E3 - k-3z7 + k5 (z4 - z7) - k-5z7  (54h)

Table 5: Kinetic parameters for dynamic simulation

Affinity of domain kon [M-1min-1] koff [min-1] Equilibrium Kd [M-1]

1 (always) k1 = 3·105 k-1 = 6 5·104

2 (domain 1 unoccupied) k2 = 1 k-2 = 18 5.6·10-2

2 (domain 1 occupied) k3 = 5·107 k-3 = 24 2.1·106

3 (domain 1 unoccupied) k4 = 1 k-4 = 12 8.3·10-2

3 (domain 1 occupied) k5 = 1·105 k-5 = 60 1.7·103
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(compare Figure 4). Additionally, our method gives rise to
a very useful modular structure, which simplifies greatly
the model analysis. In our example the model consists of
three modules. The first module only includes the equa-
tion for z1, whereas the second consists of the two states z2
and z4 and the third of z3 and z5. The states of the second
module do not influence the states of the third module
and vice versa. The dynamics of z1 is neither influenced by
the states of the second nor the third module, but z1 influ-
ences all the other states. Therefore, the model is not only
modular but also hierarchically structured. This motivates
a modular approach in order to analyze the model
dynamics. First, one can analyze the dynamics of the first
module. Afterwards the other two modules can also be

analyzed separately. A similar approach is possible for the
parameter identification since our transformation also
leads to a modularization of the parameters. The only
parameters of the first module are k1 and k-1. The parame-
ters k2, k-2, k3 and k-3 can be found only in the second mod-
ule, and the remaining parameters are present only in the
third module. This allows one to identify the parameters
step by step, which is a much simpler task than to identify
all parameters at once. In addition, it also shows which
parameters can be identified by certain measurements: for
example, a measured time course of z2 (level of occupancy
of domain 2) does not allow the identification of the
parameters k4, k-4, k5 and k-5. The same also holds true for
the complete model (model 1), but it is not intuitive to

Dynamic simulationsFigure 4
Dynamic simulations. Dynamic simulations of the example shown in Figure 3b using the parameter values presented in 
Table 5. Here we compare the levels of occupancy of the three protein domains. The left picture shows the level of occupancy 
of domain 1, the second picture shows the levels of occupancy of domain 2 and the right picture shows that of domain 3. The 
results show that the reduced model we obtained by applying our method (model 3) accurately describes the real time course 
represented by a complete mechanistic model (model 1). The other model which follows from a number of reasonable simpli-
fications which can also be found in literature provides completely different results.
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untangle this feature in the structure of the ODEs of the
complete model. Because of all these advantages we think
that the method proposed here offers a useful framework
to handle multiprotein complex formation in signaling
and regulation networks.

Example with more than one controlling domain
In the previous chapter we analyzed scaffold proteins with
completely independent binding domains or with only
one controlling domain. However, our method can also
be applied to a more general case. This will be exemplified
by considering a scaffold protein with 4 binding domains,
where each domain can be free or occupied by an effector.
We assume that binding domain 1 controls domains 2, 3
and 4. Additionally, binding domain 3 also interacts with
binding domain 4 (see Figure 3c). The number of feasible
micro-states in this example is 24 = 16. Applying our
method to this example (details can be found in the
Appendix), one finds that 9 equations are sufficient to
describe the complete dynamics of the macro-states. The
states that are required are the levels of occupancy of all 4
binding domains, the pairs of concurrently occupied
binding domains {1,2}, {1,3}, {1,4} and {3,4}, as well
as the triple of concurrently occupied binding domains
{1,3,4}. This result shows that the more binding domains
interact, more ODEs are required in order to describe the
dynamics of the macro-states. Indeed, if all binding
domains interact with each other, one really has to con-
sider the whole combinatorial variety.

Scaffold proteins with n binding sites
Generalized transformation matrix
Here we want to formalize the transformation matrix for
any scaffold protein with n binding sites i. Additionally,
we assume that a number of mi effectors compete for the
binding domain ai. Hence, each binding domain i can
exist in mi + 1 different states. The transformation matrix
is independent of the intramolecular domain interac-
tions. The 0th tier of our transformation matrix consists of
only one state describing the overall concentration of the
scaffold protein. The new state z0 corresponds to the sum
of all feasible micro-states

The levels of occupancy of each binding domain are
described in the 1st tier. The status of the binding domain
i is fixed at the status k (with k � {1, ..., mi} ) and one

sums up all micro-states whose binding domain i is occu-

pied by the effector . Mathematically, this tier can be

described by

with . The 2nd tier, which represents all

pairs of concurrently occupied binding sites, corresponds
to

with .

The following tiers represent all possible tuples, and the
last tier of the transformation matrix (the n + 1-th tier)
contains the micro-states with all binding sites being
occupied and can be written as

with  and

. Using this pattern to derive the trans-

formation matrix one can handle each possible scaffold
protein.

Independent binding domains
Now we want to consider a scaffold protein with n bind-
ing sites and we assume that all binding domains are inde-
pendent like we already did for a scaffold protein with
three domains (see above). The parameters of the reaction
network have to be adjusted to the case of independent
binding domains as discussed above. The transformation
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matrix in this case also follows the hierarchical pattern as
discussed in the section above. It can be shown that the
whole dynamical behavior can be described by ∑ mi equa-
tions (i.e., states) instead of ∏ (mi + 1) equations. A proof
that in this case the macro-states are always sufficient to
describe the system can also be found in [16].

One site controls the others

We also want to generalize the case that binding domain
1 controls all other (n - 1) binding domains, in a manner
such that the affinity of each binding domain i to its

respective effectors  only depends on the status of the

binding domain 1. As already mentioned, the transforma-
tion matrix remains the same as for a protein with n inde-
pendent binding domains. However, since the kinetic
parameters are different, in this case more equations are
required to describe the dynamics of the macro-states. In
addition to the macro-states one requires all states
describing pairs of concurrently occupied binding

domain 1 and i with i ≠ 1 (i.e. all states describing allos-
terically interacting domains). The total number of equa-

tions in this case is 2 ∑ mi - m1 instead of ∏ (mi + 1).

Linker for activation of T cells (LAT)
LAT (Linker for Activation of T cells) is a scaffold molecule
that plays a pivotal role in T cell signaling [26]. LAT has 9
conserved cytoplasmatic tyrosines, of which the four
membrane-distal tyrosines (at residues 132/171/191/226
in human LAT) are essential and are phosphorylated upon
ligand binding to the T cell receptor [26]. Different signal-
ing molecules, such as PLCγ1, Grb2 and Gads can bind to
the different residues. Grb2 recruits Sos, which in turn
activates Ras, and subsequently the Raf/MEK/ERK MAP
Kinase cascade. On the other hand, binding of PLCγ1 and
Gads (bound to the adaptor SLP76 that additionally
recruits Itk), allows the activation of PLCγ1, leading to the
cleavage of phosphatidyl-inositol-4,5 bisphosphate
(PIP2) and the generation of dyacilglycerol (DAG) and
inositol trisphosphate IP3. DAG activates RasGRP, which
in turn activates Ras, as well as PKC, while IP3 regulates
Calcium signaling [27].

PLCγ1 binds at the Y132 tyrosine, Grb2 at Y171, Y191 and
Y226, and Gads at Y171 and Y191 (see Figure 4) [26]. The
number of different protein complexes occurring in this
simple example is already 2·3·3·2 = 36, and the number
of reactions that have to be considered is 86. In the follow-
ing we will show how one can precisely describe the levels
of occupancy without considering all 36 complexes. First,
it is assumed that the binding domains do not interact
with each other. In order to reduce the model, the system
has to be transformed using the transformation pattern
discussed above. The transformed model equations show

that only six differential equations are sufficient to com-
pletely describe the dynamics of the quantities of interest,
namely the levels of occupancy of Y132, Y171, Y191 and
Y226 with PLCγ1, Grb2 and Gads. Additionally, the equa-
tion describing PLCγ1 binding is decoupled from the
other equations, while these are interlinked because Grb2
can bind to Y171, Y191 and Y226 and compete with Gads
for the binding domains Y171 and Y191.

Recent experimental data from LAT mutation studies indi-
cate that the binding domains can influence one another,
which contradicts the assumption of the complete inde-
pendence [28]. Binding of Grb2 to Y226 appears to help
the binding of Gads to LAT [28]. This effect can be readily
incorporated into the model by changing the kinetic
parameters for Gads binding if the binding site Y226 is
occupied by Grb2. Transforming the model equations
shows that now ten ODEs are required to exactly describe
the system dynamics (see supplementary information).
The four additional states that are required here describe
the number of LAT molecules, with concurrently occupied
residues Y226 and either Y171 or Y191, while Y171 and
Y191 can be occupied either by Grb2 or Gads. Although
the model includes 4 additional states compared to the
previously discussed one, the model can still be notably
reduced from over thirty equations to ten. Hence, our
method is capable of reducing signal transduction models
including scaffold proteins notably. The modular struc-
ture of the derived model equations also strongly facili-
tates the model analysis as well as parameter estimation
[25].

Discussion
We have presented an approach which allows one to cre-
ate reduced models of multiprotein complex formation
processes often occuring in signal transduction cascades,
but also in regulation mechanisms (e.g. cell cycle regula-
tion [29]). Since each model reduction results in the loss
of information, it is essential to define quantities of inter-

est (output variables ) whose dynamics should be pre-

served. As discussed in the background section, a
reasonable choice are macroscopic values, such as levels
of occupancy or phosphorylation degrees. Besides the
determination of the output variables, the incorporation
of qualitative knowledge about domain interactions is a
key element in our approach. Both the choice of output
variables as well as the considered domain interactions
determine the number of ODEs in the reduced model.
Hence, it is clear that for some patterns of domain interac-
tions a reduction of the model may not be possible (e.g. if
each domain interacts with all other domains). However,
our preliminary results indicate that in many of these
cases good approximate solutions can be found (data not

Ei
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y

Page 11 of 15
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:34 http://www.biomedcentral.com/1471-2105/7/34
shown). Since each possible pattern of domain interac-
tions can be realized in the modeling step, and the state
space transformation which has to be performed is com-
pletely independent of this interaction pattern, our
method is generally applicable to all kind of molecules
offering several binding sites. The only limitation is the
possibility that no exact model reduction is possible
which, however, is a general mathematical limitation and
not an insufficiency of the method. Since our approach is
very systematic, independent of exact numerical values for
kinetic parameters and can be easily implemented as a
computer algorithm, our hope is that this method will
help to standardize, improve and simplify modeling and
the analysis of important signaling networks.

Conclusion
We have shown that a complete mechanistic model of
scaffold proteins or receptors as discussed in [1,14,15],
which describes the system at a microscopical level, can be
linked in a analytical manner with the macroscopic and
reduced description introduced in [16]. Our method is
based on a linear state space transformation with a hierar-
chical structure (substituting the original mechanistic
description by macroscopic, mesoscopic and a special set
of microscopic states). It is a systematic and powerful tool
to derive reduced model structures to describe the dynam-
ics of multiprotein complex formation accurately.

Appendix
Proof
In order to prove that the transformation matrix is invert-
ible, we will first show that the transformation matrix is
quadratic, which is a necessary condition. Second, we will
show that this matrix can be written as a upper triangular
matrix, which is a sufficient condition for invertibility.

For each protein domain/site i, we introduce a set
{ai, 1, ..., mi}, where the numbers 1, ..., mi denote possible

states of site i and the character aireplaces 0, which was

used to designate the basal state of site i. Having n such
sets for all n domains (i = 1, ..., n), we select one element
from each set and denote the resulting combination by

. Thus, any  is a set of n elements where each element

corresponds to one of the n domains and is either a

number or a character (ai). There are  differ-

ent combinations , exactly equaling the number of

micro-states (columns in the transformation matrix T).

The transformation of combination  into the variable zk

is straightforward: summing up all micro-states that (1)
correspond to each character entry ai (from i = 0 to mi) and

(2) have the states of the other domain given by the num-

bers in , we obtain the variable . We conclude that

the number of rows in the matrix T (the variables Zk)

equals the number of columns (the micro-states).

The next step is to proof that all columns of the transfor-
mation matrix are linearly independent by complete
induction. If we look consecutively at all the new defined
variables, starting with the last one in our listing above,
one can show that each state is a sum of already defined
states plus one additional new state. Hence, the transfor-
mation matrix is an upper triangular matrix, and an upper
triangular matrix has linearly independent columns and is
hence invertible. Considering the last tier of our transfor-
mation matrix, which corresponds to a number of differ-
ent micro-states, it is obvious that in each column a new
micro-state is introduced. The i-th tier is a sum of micro-
states, which have i - 1 binding domains with a well-
defined status. In contrast, the status of the remaining
binding domains can vary. One possible state is that all n
- i + 1 undetermined binding domains are unoccupied.
This state is introduced here the first time, since all previ-
ous tiers consist of micro-states with a higher number of
binding domains with well-defined status (excluding the
unoccupied status). Hence, the number of unoccupied
binding domains in the previous tiers is lower and cannot
contain the described micro-state.

Example with more than one controlling domain
In this example we assume that the considered scaffold
molecule has four binding domains (1, 2, 3 and 4), which
can bind four distinct effectors E1, E2, E3 and E4. The
domain-domain interactions are depicted in Figure 1c
(Binding domain 1 controls all other domains and bind-
ing domain 3 additionally influences binding domain 4).
A mechanistic model accounting for all possible reactions
of this scaffold molecule R with the effectors consists of 16
ordinary differential equations and incorporates 32 reac-
tions. We provide a Mathematica-File, including all reac-
tions, the mechanistic model equations as well as the
transformation and the resulting reduced model. As
already denoted, the reduced model consist of 9 ordinary
differential equation, namely

ż0 = 0  (20)

ż1 = k1(z0 - z1)E1 - k-1z1  (21)

ż2 = k2(z0 - z1 -  z2 + z5)E2 - k-2(z2 - z5) + k3(z1 - z5)E2 - k-3z5
(22)

ż3 = k4(z0 - z1 - z3 + z6)E3 - k-4 (z3 - z6) + k5(z1- z6)E3 - k-5z6
(23)

�zk �zk

( )mii
n +=∏ 1

1

�zk

�zk

�zk �zk
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ż4 = k6(z0 - z1 + z10 - z13 - z3 - z4 + z6 + z7)E4 - k-6(z4 - z7 - z10 +
z13)  (24)

 k7(z1 - z6 - z7 + z13)E4 -  k-7(z7 -  z13) + k8(z3 -  z6 -  z10 +
z13)E4 

 - k-8(z10 -  z13) + k9(z6 -  z13)E4 -  k-9z13  (25)

ż5 = k1(z2 -  z5)E1 -  k-1z5 + k3(z1 -  z5) - k-3z5  (26)

ż6 = k1(z3 -  z6)E1 -  k-1z6 + k5(z1 -  z6) - k-5z6  (27)

ż7 = k1(z4 - z7)E1 - k-1z7 + k9(z6 - z13)E4 - k-9z13  (28)

 + k7(z1 -  z6 -  z7 + z13)E4 -  k-7(z7 -  z13)

ż10 = k4 (z4 - z7 - z10 + z13)E3 - k-4(z10 - z13) + k5(z7 - z13)E3 - k-

5z13  (29)

 + k8(z3 -  z6 -  z10 + z13)E4 -  k-8(z10 - z13) + k9(z6 -  z13)E4 -
k-9z13

ż13 = k1(z10 -  z13)E1 -  k-1z13 + k5(z7 -  z13) - k-5z13  (30)

 + k9(z6 - z13)E4 - k-9z13.

In these differential equations z0 denotes the overall con-
centration of the scaffold protein. The states z1 to z4 repre-
sent the levels of occupancy of the four distinct binding
domains. The remaining states describe the number of
scaffold proteins with two or three concurrently occupied
binding domains ( z5 corresponds to concurrently occu-
pied binding domains {1,2}, z6 equals {1,3}, z7 {1,4},
z10 {3,4} and z13 {1,3,4}).

Linker for activation of T cells (LAT)
Applying our method to the adaptor protein LAT (Linker
for activation of T cells), we derived two different reduced
models (dependent of the assumptions that are made).
First, we assume that the binding residues Y132, Y171,
Y191 and Y226 are completely independent (see Figure
2). Hence, the reduced model only includes six differen-
tial equations. The derivation of these equations as well as
the reactions and the mechanistic model equations are
provided as a Mathematica-File. The reduced model equa-
tions are

ż0 = 0  (31)

ż1 = k1(z0 -  z1)PLC - k-1z1  (32)

ż2 = k2(z0 - z2 - z3)Grb2- k-2z2  (33)

ż3 = k5(z0 -  z2 -  z3)Gads - k-5z3  (34)

ż4 = k3(z0 - z4 - z5)Grb2 - k-3z4  (35)

ż5 = k6(z0 - z4 - z5)Gads - k-6z5  (36)

ż6 = k4(z0 - z6)Grb2 - k-4z6.  (37)

The state z0 denotes the overall concentration of LAT mol-
ecules, which is assumed to be constant. The state z1
equals the level of occupancy of Y132 with PLCγ1. z2 and
z3 describe the levels of occupancy of Y171 either with
Grb2 or Gads, z4 and z5 are the equivalent values for the
binding domain Y191, and z6 denotes the level of occu-
pancy of Y226 with Grb2.

However, recent experimental results show that the bind-
ing domains of LAT influence each other. In a second
example we assume that Y226 interacts with the two
domains Y171 and Y191. The whole calculation can be
found in the provided Mathematica-File. In this case the
reduced model consists of ten ordinary differential equa-
tions, namely

ż1 = k1(z0 - z1)PLC - k-1z1  (38)

ż2 = k2(z0 - z2 - z3)Grb2 - k-2z2  (39)

ż3 = k5(z0 -  z2 -  z3 -  z6 + z14 + z17)Gads - k-5(z3 -  z17)  (40)

 + k6(z6 - z14 - z17)Gads - k-6z17

ż4 = k3(z0 -  z4 -  z5)Grb2 - k-3z4  (41)

ż5 = k7(z0 - z4 - z5 - z6 + z18 + z19)Gads - k-7(z5 -  z19)  (42)

 + k8(z6 -  z18 -  z19)Gads - k-6z19

ż6 = k4(z0 - z6)Grb2 - k-4z6  (43)

Linker for activation of T-cellsFigure 5
Linker for activation of T-cells. The four distal tyrosine 
rests on LAT and the binding possibilities, according to [26, 
28].

Grb2
Gads

Grb2
Gads

LAT
Y132 Y171 Y191 Y226

Grb2γPLC  1

P P PP
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ż14 = k2(z6 - z14 - z17)Grb2 - k-2z14 + k4(z2 - z14)Grb2 - k-4z14
 (44)

ż17 = k4(z3 - z17)Grb2 - k-4z17 + k6(z6 - z14 - z17)Gads - k-6z17
(45)

ż18 = k3(z6 -  z18 -  z19)Grb2 - k-3z18 + k4 (z4 -  z18)Grb2 - k-4z18
 (46)

ż19 = k4(z5 - z19)Grb2 - k-4z19 + k8(z6 - z18 - z19)Gads - k-8z19.
 (47)

 (48)

Again the states z0 to z6 correspond to the same quantities
as described above. The state z14 equals to all LAT mole-
cules with Grb2 being concurrently bound to the residues
Y171 and Y226, z17 describes the molecules with Gads
being bound to Y171 and Grb2 bound to Y226. The states
z18 and z19 are equivalent quantities describing the same
binding motifs for Y191 and Y226.
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