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Abstract: Estimation of kinetic parameters is a key step in modelling biochemical reaction
networks as, often, their direct estimation is expensive, time-consuming or even infeasible. This
article proposes a parameter estimation procedure, which explicitly takes into account the model
structure of the biological systems. The convergence is guaranteed using a dissipativity argument
and a coordinate transformation yielding a parameter-free system description. The application
to a basic enzyme kinetic model illustrates the proposed methodology.
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1. INTRODUCTION

Modelling biological systems on the intracellular level has
been a research topic for over half a century. For example,
Hodgkin and Huxley [1952] explained the neuron function
by means of a mathematical model of different ion chan-
nels. Hodgkin and Huxley were able to estimate the model
parameters from experimental data, a challenging task
still today in most biological systems. Nowadays, ever im-
proving developments of experimental techniques provide
more and more high quality experimental data, putting
the task of identification into reachable scope. However,
the straight forward application of systems theoretical
methods to biology is impaired by certain particularities
of biological systems. Difficulties concern large numbers
of parameters, sparse data and reduced sets of possible
stimulations.

Biological systems have peculiar system properties such
as for example positivity and monotonicity [Sontag, 2005].
Exploiting these properties has the potential of enhanc-
ing current identification techniques. This contribution
extends previous research, which proposed the use of ob-
servers for estimating kinetic parameters. Here we propose
to use state-observers that are based on dissipativity the-
ory for parameter estimation. As in earlier work, known
structural information such as stoichiometry and type of
reaction kinetics is explicitly used in designing the estima-
tor.

The manuscript is organised as follows. First, Section 2
gives a brief introduction to reaction kinetic modelling
of biological systems. Section 3 presents the proposed
identification methodology. Section 4 presents a dissipa-
tive observer scheme and derives sufficient conditions for
efficiently choosing the design parameters of the observer.
The applicability of the proposed parameter estimation
methodology is illustrates using an enzyme kinetic model
(Section 5), before Section 6 summarises the findings.

2. BIOLOGICAL MODELLING

A common framework for the modelling of biochemical
reaction networks are sets of reactions of the following form

α1S1 + . . . + αns
Sns

→ β1P1 + . . . + βnp
Pnp

, (1)

where Si denote substrates that are transformed into the
products Pi. The factors αi and βi denote the stoichiomet-
ric coefficients of the reactants.

Neglecting spatial and stochastic effects, these reactions
are often modelled with systems of ordinary differential
equations:

ċ = Nv(c, p), (2a)

where c ∈ R
nc

≥0 is the vector of concentrations, p ∈ R
m
>0

the parameter vector and v ∈ R
nc

≥0 × R
m
>0 7→ R

nv

≥0 the

vector of the flows. The stoichiometric matrix N ∈ R
nc×nv

depends on the coefficients αi, βi and, possibly on factors
compensating different units or volumina. For a more
detailed introduction, see for example Klipp et al. [2005]
or Keener and Sneyd [2001].

A variety of kinetics models exist for the reaction rates
v(c, p) [Cornish-Bowden, 2004]. Many of them can be
written in the following form

vi(c, p) = ki
∏

j

c
νij

j

Mij
, where Mij = c

ηij

j + K
ηij

ij . (2b)

If ηij = 0, then the arbitrary parameter Kij shall be
equal to 1. The general formulation of (2b) contains mass
action kinetics, generalised mass action kinetics, Michaelis-
Menten- and Hill-kinetics as well as their products. For
example, setting ηij = 0 leads to mass action kinetics.

We assume that we measure some species concentration
and/or reaction rates, or linear combinations thereof, e.g.
the sum of all molecules in a particular phosphorylation
state. Thus, the output is a (nonlinear) function R

nc 7→
R
ny



y = C

[

c
v(c, p)

]

, (2c)

where C ∈ R
ny×(nc+nv).

In most biological systems, the model structure, i.e. the
stoichiometry and the reaction rate models, are known,
while the parameters need to be estimated from input-
output data. This paper proposes a parameter estimation
method that utilises the model structure information.

3. PARAMETER ESTIMATION VIA
PARAMETER-FREE COORDINATE SYSTEM

The proposed parameter estimation method utilises the
peculiarities of the model structure. The latter, i.e. N , ν
and η, are often known while the kinetic parameters k and
K are frequently difficult to measure and vary greatly from
organism to organism.

In the context of the above stated model class, the problem
can be formulated as follows:

Given: The structure, i.e. N , ν and η, and continuous
time course measurements y(t).

Unknown: The kinetic parameters, i.e. k and K.

These unknown parameters need to be estimated from
measurements y(t). Ideally, the methodology exploits the
known systems structure and leads reliably to accurate
estimates.

Farina et al. [2006] proposed the transformation into
the parameter independent form, which facilitates the
actual estimation process for mass action systems. Fey
et al. [2008, 2009] extended the transformation for systems
towards Hill-like kinetics of the form (2b) and proposed
to use nonlinear state-observers for the estimation. In
these previous publications, we developed a three stage
parameter estimation, consisting of the following steps:

(1) Transformation of the system of ordinary differential
equations (2) into a parameter independent form;

(2) Estimation of all states in the parameter free coordi-
nates;

(3) Calculation of the parameters based on the state
estimate.

Previously, the second step consisted of an observer de-
signed in observability normal form. The novelty of this
paper is to eliminate the need for this second coordinate
transformation by directly designing an observer for the
parameter independent system description.

3.1 Transformation into parameter independent form

Observer-based approaches to parameter estimation rely
on a certain state space extension. Under the assumption
of constant parameters, the parameter estimation problem
is transformed into a state estimation problem. Consider-
ing the extended system the parameters can be estimated
using a suitable observer. This section recapitulates the
coordinate transformation proposed by Farina et al. [2006]
and Fey et al. [2008]. Consider the system (2a) extended
by (trivial) differential equations for the parameters:

ċ = Nv(c, p), (3a)

ṗ = 0. (3b)

Note 1. The assumption ṗ = 0 is a formal construct
that enables to formulate the problem mathematically.
The same approach can be taken in order to estimate
time varying parameters. Then the assumption ṗ = 0
corresponds to a time scale separation of system dynamics
and varying parameters.

Further, assume that the following holds.

Assumption 1. The parameters p and the concentrations c
are strictly positive along trajectories of (3) and bounded,
i.e. 0 < δ ≤ ci(t, c0) ≤ δ < ∞ holds for all species i and
all initial conditions c0 for some positive constants δ < δ.

This condition is satisfied in many biological application,
in particular for models of metabolic pathways.

As system (3) depends on unknown parameters, designing
an observer is not straightforward and might require an it-
eration between state estimation and observer adaptation.
To avoid that drawback, an equivalent system description
can be found using Assumption 1. This descriptions is
free of parameters and explicitly uses the known systems
structure. The approach is first illustrated for a system
with a single reaction, before the general extension scheme
is presented.

Example 2. Let us consider the following system

ċ = −v(c), (4a)

v(c) = k
c2

c + K
. (4b)

Due to Assumption 1, c and therefore v are positive. It
is therefore possible to derive the differential equation for
the relative rate of change of the reaction rate, in essence
taking the logarithm and time derivative of (4b). Before
however we introduce the new state

M = c + K

with the differential equation

Ṁ = ċ.

Now taking the logarithm and time derivative of (4b) gives

v̇

v
=

d

dt
log v =

d

dt
log

(

k
c2

M

)

=
d

dt
(log k + 2 log c − log(M))

= 2
ċ

c
−

Ṁ

M
.

Finally, substituting ċ = −v yields an extended, parameter
free system

ċ = −v

Ṁ = −v

v̇ = v
(

−2
v

c
+

v

M

)

As the example illustrates, the states of the parameter
free extended system consists of the concentrations c, the
denominators of the reaction rates M and the reaction
rates v. The mapping

Θ :

[

c
p

]

7→

[

c
M(c, p)
v(c, p)

]

(5)

is diffeomorph if Assumption 1 holds, and defines a smooth
and bijective state-space transformation of the original



ċ = Nv(c, p) ẋ = Ax + GΨ(x, u, t)

ξ̇ = Aξ + L∆y + GΨ(ξ + N∆y, u, t)

p̂(t) ξ(t)

x = Θ(c, p)
design

estimate
p̂(t) = Θ−1(ξ)

Fig. 1. Overview of the proposed parameter estimation. The dotted line depicts the direct way of estimating the
parameter. The proposed approach however, first transforms the system into parameter free coordinates using the
mapping Θ(·). In these coordinates the observer estimates the states (dashed line), where ∆y = Cξ − y is the error
of estimated and measured output. Finally, the parameter estimate is obtained using the inverse transformation
Θ−1(·).

system (3) into the equivalent parameter free extended
system:

ċ = Nv + Nuu, (6a)

Ṁij = ηijc
ηij−1
j eTj (Nv + Nuu), (6b)

v̇ = diag(v)

(

ν
(

diag(c)
)−1

(Nv + Nuu) − m̃

)

, (6c)

where

m̃i =
∑

j

ηijc
ηij−1
j eTj (Nv + Nuu)

Mij
.

Here, u denotes the external, measured input. Defining the
extended state as

x =

[

c
vectM

v

]

(7)

the system (6) can be compactly written as

ẋ = f(x, u) =

[

fc(c, u)
fM (c, v, u)

fv(c, M, v, u)

]

(8)

Both the transformation and the transformed system are
independent of the parameters. These are now hidden in
the initial conditions of the states M and v. The parameter
free system simplifies the design of an observer. The next
section describes the design of a dissipative observer.

4. DESIGN OF A DISSIPATIVE OBSERVER

The concept of dissipativity was proposed by Willems
[1972a,b] and applied to the observer design by Osorio and
Moreno [2006], Moreno [2008]. Its underlying idea is to
decompose the nonlinear system into the interconnection
of a linear dynamical system (A, G, F ),

ẋ = Ax + Gw, (9a)

ỹ = Fx =

[

y
σ

]

=

[

Cx
Hx

]

, (9b)

where y denotes the measured and σ the unmeasured
output, and a static, possibly time-varying nonlinearity

w = Ψ(σ, u, t). (9c)

Generally, an observer is a dynamic system that estimates
all (unmeasured) states x from the measured output y.
Moreno [2008] proposed a Luenberger observer for sys-
tem (9) composed of an copy of the system equations (9)

and two additional correction terms feeding back the error
of predicted Cξ and measured output y

ξ̇ = Aξ + GΨ
(

ξ + N · (Cξ − y), u, t
)

+ L · (Cξ − y),
(10)

where the matrices L and N are design parameters.

For analysing the convergence of the estimate, i.e. ξ(t) →
x(t) for t → ∞, it is convinient to look at the error of
the estimate e = ξ−x. Straight forward calculation shows
that the dynamics of the error are given by

ė = ALe + Gυ (11a)

z = HNe (11b)

υ = −Φ(z, x, u, t), (11c)

where

AL = A + LC, (11d)

HN = H + NC (11e)

Φ(z, x, u, t) = Ψ(x, u, t) − Ψ(x + z, u, t). (11f)

To ensure convergence of the estimate, e = 0 must be a
globally attractive steady state of System (11).

System (11) is a linear dynamical system (11a) with a
input dependent, static nonlinear state feedback (11c).
From (11f) it is clear that for vanishing error ess = 0 the
feedback becomes zero υ = 0, and that ess = 0 is indeed
a steady state. This steady state condition holds for any
input u(t) and any trajectory x(t, x0).

To achieve that ess = 0 is a globally stable steady state, we
combine a dissipativity condition on the linear part (11a)
with a matched dissipativity condition on the nonlinear
feedback (11c).

Definition 3. [Osorio and Moreno, 2006]. The nonlinear
part of the error dynamics Φ is called (Q, S, R)-dissipative
if there exists a non positive semidefinite quadratic form

ω(Φ, z) = ΦTQΦ + 2ΦTSz + zTRz ≥ 0, (12)

for all x, u and t.

Definition 4. [Osorio and Moreno, 2006]. The error dy-
namics are called (−R, ST , −Q)-state strictly dissipative,
if there are matrices L and N , a matrix P = PT < 0 1

and a scalar ε > 0 such that
[

PAL + AT
LP + εP + HT

NRHN PG − HT
NST

GTP − SHN Q

]

4 0. (13)

1 Throughout this manuscript, the curly symbols 4 and < refer to
inequalities in terms of semi-definiteness.



Fig. 2. Bounding Φ using a quadratic term.

Osorio and Moreno [2006] derived the following theorem,
proving exponential convergence of the observer error.

Theorem 5. (Dissipative Observer). Assume that the non-
linearity Φ is (Q, S, R)-dissipative and the linear part
(AL, HN ) is (−R, ST ,−Q)-state strictly dissipative, then
the system (4) is a globally exponential observer for the
closed loop system (9), i.e. it holds

‖e(t)‖2 ≤

√

λmax(P )

λmin(P )
‖e(0)‖2 exp

(

−
1

2
εt

)

.

The inequalities (12) and (13) are nonlinear in the un-
knowns. The next section derives sufficient conditions for
solving these inequalities, by transforming them into linear
matrix inequalities.

4.1 Sufficient Conditions for the Dissipative Observer

To simplify the observer design, the dissipativity condi-
tions are reformulated as linear matrix inequalities (LMIs),
which semidefinite programming can solve efficiently.

From (16) it is clear that R needs to be positive semi-
definite and Q must be negative semi-definite. To com-
pensate for the mixed term ΦTSz, R or Q needs to be
sufficiently large. A sufficient condition is for example
R > 0 together with

zTRz ≥ −ΦTQΦ − 2ΦTSz.

This condition is satisfied if

σRmin‖z‖
2
2 ≥ σQmax‖Φ‖2

2 + 2‖S‖2 · ‖Φ‖2 · ‖z‖2,

where σXmin and σXmax denote the smallest and largest
singular value of X respectively.

From (11f) it is clear that Φ(0, x) = 0, and a Taylor
expansion of Φ(·, x) with respect to z gives

σRmin‖z‖
2
2 ≥ σQmaxδ

2‖z‖2
2 + 2δ‖S‖2 · ‖z‖

2
2 + O3(z), (14)

where δ denotes an upper bound on the slope of Φ(·, x).
Considering the definition of Φ from (11f) such an upper
bound is given by δ = maxx∈M || ∂∂xΨ||.

Assumption 6. The nonlinearity Φ is bounded, i.e. it holds
that maxz,x ‖Φ(z, x)‖2 < ω̃.

If φ is bounded, then the higher order terms O3(z) in (14)
are bounded and there exists a constant ω > 0 such that
with

σRmin ≥ σQmaxδ
2 + 2δ‖S‖2 + ω, (15)

the dissipativity condition (12) holds globally (Figure 2).

The matrix inequality A Schur complement on the upper
left element of the matrix inequality (13) yields





−R−1 HN 0
HT
N PAL + AT

LP + εP PG − HT
NST

0 GTP − SHN Q



 4 0. (16)

This is a linear matrix inequality in the unknowns R−1,
P , Q, L, N and S∗ = SHN Thus, for a given ε, (16) can
be solved efficiently using semi-definite programming. In
particular, this gives the observer gain matrices L and N .

Note 2. We can demand HN ∈ R
nx,nx to be non-singular,

and after solving (16), calculate S as S = S∗H−1
N = (H +

NC)−1.

Recall that ω(Φ, z) > 0 must also hold, which can be
achieved by incorporating (15) as additional constraint
for (16). Unfortunately, the two inequalities are coupled
in a nonlinear fashion. This is resolved by adding two
constraints, first setting S = 0 and second defining a lower
bound for the singular values of R. Under these conditions,
(15) is equivalent to the following LMIs in the unknowns
Q and R−1

R−1 ≺
1

σRmin

, (17a)

σRmin ≥ ‖Q‖2δ
2 + ω. (17b)

To see this, note that (σRmin)
−1 = σR

−1

max and that R is

symmetric positive definite, i.e. σR
−1

max equals the largest
eigenvalue of R−1.

Summarising, the above considerations derived simple,
linear conditions guaranteeing that both nonlinear dissipa-
tivity conditions (3) and (3) are satisfied. For convenience
these conditions are collected in the following system of
linear matrix inequalities:

P � 0, (18a)

R−1 ≺
1

σmin
, (18b)

σRmin ≥ ‖Q‖2δ
2 + ω, (18c)





−R−1 HN 0
HT
N PAL + AT

LP + εP PG
0 GTP Q



 4 0. (18d)

To solve the system of LMIs, we choose a desired conver-
gence rate ε of the observer and a lower bound σRmin on the
singular values of R.

Note 3. We set S = 0 because the nonlinear coupling
S∗ = H−1

N prevents us from formulating an upper bound
on ‖S‖2 in terms of a LMI.

Sufficient condition for the existence of a solution for an
arbitrarily large δ

Note 4. If the pair (A, C) is observable, then the system
of LMIs (18) is solvable for any given δ < ∞. To see this,
note that if (A, C) is observable, then there exists an L
such that AL = A−LC is Hurwitz. Then PAL+AT

LP +εP
is negative definite. For sufficiently large P , the LMI (16)
is diagonal dominant. Thus, the LMI (16) is solvable for
all R � 0 and Q ≺ 0.

4.2 Dissipative observer for the parameter-free system

For the extended system (6), a dissipative observer design
is very well suited as the system is fully known and can



be written as a Lur’e system, i.e. the feedback of a linear
dynamical and a static nonlinear part. With

H = I, G =

[

0
I

]

,

the system (6) is of the form (9), where in the simplest
case, the linear part contains just the stoichiometry

A =

[

0 0 N
0 0 0

]

(19a)

and the nonlinear part contains the functions fM and fv

Ψ(σ, u, t) = Ψx, u =

[

fM (x, u)
fv(x, u)

]

. (19b)

An alternative is to use the Jacobian at some reference
point xref AΨ = ( ∂∂xf)(xref) wherewith

A =

[

0 0 N
Aψ

]

and

Ψ(x, u) =

[

fM (x, u)
fv(x, u)

]

− GAΨx. (20)

We can guarantee that Assumption 6 is satisfied as follows.
With Assumption 1 follows from the rational form of the
reaction kinetics that the norm of Ψ(x) possesses an upper
bound for any trajectory x(t, x0). This is not necessarily
true for the observer Ψ(x+z). However, if we bound Ψ(x+

z) artificially with Ψ̂(x+z) such that no error is introduced

on the true trajectories, i.e. Ψ̂(x(t, x0)) = Ψ(x(t, x0)), then
Assumption 6 holds globally.

4.3 Calculation of the parameter values

The final step of the methodology is the actual calculation
of the parameter values from the extended state estimate





ĉ

M̂
v̂



 = ξ. (21)

Using the definition of the reaction kinetics (2b), the
parameter estimate is

K̂ij(t) =







(

M̂ij(t) − ĉj(t)
)1/ηij

for ηij > 0,

1 for ηij = 0.
(22a)

k̂i(t) = v̂i(t)

nc
∏

j

M̂ij(t)

ĉj(t)νij
. (22b)

Clearly the parameter estimate is time dependent. It
converges to the true, constant values if and only if the
observer converges.

5. EXAMPLE

The proposed methodology is illustrated using a generic
enzyme kinetic model as it appears in many biological
systems. A substrate is transformed into a product after
forming a complex with an enzyme:

u
−→ S,

S + E
r1−⇀↽−
r2

C
r3−→ P,

P
r4−→,

Parameter and initial conditions that
generated the true output y(t)

k1 k2 k3 k4 S0 E0 C0 P0

1 0.1 1.5 2 1 9 1 1

Initial conditions of the observer

ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8
5 5 5 5 5 5 5 5

Table 1. Parameter values and initial condi-
tions generating the data shown in Figures 3

and 4.
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Fig. 3. Estimated parameter values converge nicely to the
true values.

where S denotes the substrate, E the enzyme, C the
enzyme-substrate complex and P the product. The flow
u denotes the input of the system supplying the substrate.

Applying the law of mass action, the corresponding ordi-
nary differential equations are

d

dt







S
E
C
P






=







−r1 +r2 +u
−r1 +r2 +r3

+r1 −r2 −r3

+r3 −r4






,







r1

r2

r3

r4






=







k1SE
k2C
k3C
k4P






,

where the reaction constants [k1 k2 k3 k4] = p denote the
parameters.

With the following output

y = [S E C P r1]
T

,

the pair (A,C) of the extended system as in (9) is observ-
able. The observability guarantees that the corresponding
LMIs can be solved for arbitrarily large δ, ensuring global
convergence of the observer.

Simulation studies using artificially generated data shows
nice convergence of the state and parameter estimates.
Figures 3 and 4 show a representative simulation with true
parameter values as in Table 1. In order to solve the LMIs
for the observer the following design specifications were
chosen: ε = 0.5, σRmin = 1 and δ = 500. As indicated by
Figure 4 the presented observer is an exponential observer
with a guaranteed convergence rate of ε.
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Fig. 4. Top: Comparison of some true (dashed, dash-dotted, dotted) and observed (solid) states. Inlay shows the input.
Bottom: Exponential decay of the total relative error ‖(x − ξ)/x‖2.

6. CONCLUSIONS

This paper proposes to recast the estimation of kinetic
parameters in biological systems into a state observation
problem of an extended system. Using structural informa-
tion only, an extended system model can be derived that
is independent of the parameters and in Lur’e form. This
special structure is advantageous for using a dissipative
observer approach. Several sufficient conditions are pre-
sented that simplify the design of a dissipative observer.
The applicability of the methodology is illustrated at the
example of a enzyme kinetic model.
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