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Nonsmooth Unconstrained Optimization

Problem: min { f(x): xe R"} = x* *=f(x¥),
where f(x) is a nonsmooth convex function.

Subgradients: g € 0f(x) < f(y) > f(x)+ (g,y —x) Vy € R".

Main difficulties:
e g € Of(x) is not a descent direction at x.
@ g € Of(x*) does not imply g = 0.

Example

f(x) = gjasxm{(aj,X) + bj},

0f(x) = Conv {a; : (aj,x) + bj = f(x)}.
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Subgradient methods in Nonsmooth Optimization

Advantages
@ Very simple iteration scheme.
@ Low memory requirements.
@ Optimal rate of convergence (uniformly in the dimension).

@ Interpretation of the process.

Objections:
@ Low rate of convergence. (Confirmed by theory!)

@ No acceleration.

@ High sensitivity to the step-size strategy.
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Lower complexity bounds

Nemirovsky, Yudin 1976
If £(x) is given by a local black-box, it is impossible to converge faster
than O (ﬁ) uniformly in n. (k is the # of calls of oracle.)

NB: Convergence is very slow.
Question: We want to find an e-solution of the problem

5 - 1 . n
lgaéxmﬂaj,x) + b} — min : x € R",

by a gradient scheme (n and m are big).

What is the worst-case complexity bound?

“Right answer” (Complexity Theory): O (}2) calls of oracle.

Our target: A gradient scheme with O (%) complexity bound.

Reason of speed up: our problem js not in a black box.

Yu. Nesterov () Structural Optimization March 2, 2012 5 /30



Complexity of Smooth Minimization

Problem: f(x) — min: x € R" , where f is a convex function and
[VE(x) = V)|« < L(F)||x — y| for all x,y € R™.

(For measuring gradients we use dual norms: ||s||. = ||m”ax (s,x).)

Rate of convergence: Optimal method gives O (L(f)>.

Complexity: O ( @) The difference with O (%) is very big.
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Smoothing the convex function

For function f define its Fenchel conjugate:
fi(s) = max[(s, x) — f(x)].
xeR"
It is a closed convex function with dom f, = Conv{f’(x) : x € R"}.

Moreover, under very mild conditions (f.(s)). = f(x).

Define f,(x) = max [(s,x) — fu(s) — &|Is]|2], where || - || is a Euclidean
norm. scdom fy
Note:  f(x) = su(x), and x = f/(s,(x)) + psu(x). Therefore,
It = 522 = (1) — ()2 + 2u(Fl(s1) — FI(2), 5" — 52)
st = %2 > p?st - s?)%.

Thus, f, € C;7, and f(x) > f,(x) > f(x) — uD?,
where D = Diam(dom f,).
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Main questions

1. Given by a non-smooth convex f(x), can we form its computable
smooth e-approximation f.(x) with

L(f)=0(2)?
If yes, we need only O ( @) = O (1) iterations.

2. Can we do this in a systematic way?

Conclusion: We need a convenient model of our problem.
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Adjoint problem

Primal problem:  Find f* = min{f(x): x € Q1}, where Q1 C E; is

convex closed and bounded.
Objective: f(x) = f(x) + max{(Ax, u)2 — d(u): ue @}, where
e 7(x) is differentiable and convex on Q;.
@ Q> C E;> is a closed convex and bounded.
e ¢(u) is continuous convex function on Qs.
@ linear operator A: E; — EJ.
Adjoint problem: max{¢(u): u € @}, where
d(u) = —d(u) + mXin{<Ax7 Wo+ F(x): x € Q).

NB: Adjoint problem is not unique!
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Example

Consider f(x) = |<a x)1 — bjl.
1. @=E A= I ¢(u) = f.(u) = max{(u x)1—f(x): x€ E}
= min {i sibj : u = Zsjaj, Z |sj| < 1}.
seRm =1 =177 =

2. B, = R™, ¢(u) = (b,u)s, f(x) = max |(aj,x)1 — bj]
1<j<m

= max ¢ > ui[{aj,x)1 — b X |y < 1.

3. E, = R?™m, qg(u) is a linear, @, is a simplex:

f(x) = maX{Z(u —uf)(aj, x)1 = bl Y (uf +uf) =1, u>0}.
j=1
NB: Increase in dim E;, decreases the complexity of representation.
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Smooth approximations

Prox-function: d>(u) is continuous and strongly convex on Q:

do(v) > do(u) + (Vda(u), v — u)o + 2oalv — ulf3.
Assume: dr(up) = 0 and da(u) > 0Vu € Q.
Fix > 0, the smoothing parameter, and define

fu(x) = mﬁx{(Ax, uys — o(u) — pda(u) = u e Q}.
Denote by u(x) the solution of this problem.
Theorem: f,(x) is convex and differentiable for x € E;. Its gradient
Vf.(x) = A*u(x) is Lipschitz continuous with

L(f) = 155 1Al 20

where [[Afl1,2 = max{(Ax, u)2 : [Ix[[1 =1, [[u]2 = 1}.

NB: 1. For any x € E; we have fo(x) > f,(x) > fo(x) — uD>, where
Dy = max{da(u) : u e @Q}.

u
2. All norms are very important.
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Optimal method

Problem: min{f(x): x € @1} with f € C*1(Qy).
Prox-function: strongly convex di(x), di(x°) =0, di(x) >0, x € Q1.

Gradient mapping:
Tu(x) = arg min {(VF(x).y = )1 + LIy = x|},

Method. For kK > 0 do:
1. Compute f(x¥), V£(x¥).
2. Find y* = Ty (5)(x¥).

k. ,
3. Find z¥ = arg mln{ B (x) + 32 BL(VF(x), x)1}.
i=0

k+1 2 k+1 k
4. Set x _k+3z + sy

4L(F)di(x")

Convergence: f(y¥) — f(x*) < o1(k+1)2

solution.

where x* is the optimal
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Applications

Smooth problem: f,(x) =

Lipschitz constant: L, = L(f) +
x € Qi}.

D1 = mfx{dl( ) .

fu(x) — min: x€ Q.

Fx)+

o L |A|2 - Denote

Theorem: Let us choose N > 1. Define

After N iterations set X =

Then 0 < f(X) —

¢(0) <

_ _ 2||AllL, / D
= 'LL(N) - N-i—i2 ’ 0'10'21D2'
G @1 and
2(i+1) 1
Z (N+1)(N+2) u(x') € Qa.
4||A||1,2 . [ DiD; + 4L(F)D,
N+1 0102 0’1-(N+1)2 '

Corollary. Let L(f)

H: 202)

Yu. Nesterov ()

= 0. For getting an e-solution, we choose

_ D, lIAlZ,
— 20» e

DiD; 1

0102 €’

N> 4[[All2
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Example: Equilibrium in matrix games (1)

n .
Denote A, = {x € R": x>0, > x() =1}. Consider the problem
i=1
Jmin max {(Ax, u)z + (¢, x)1 + (b, u)2}.
Minimization form:

min £(x), £(x) = {e;x)1+ max [{a, x)1 + b,

— (b in [(3: .

max 6(u), $(u) = (b )z + min [(3;.0)2 + Gl

where a; are the rows and 3; are the columns of A.

1. Euclidean distance: Let us take .
X7 =X 7, Nullz =X o,
i=1 j=1
di(x) = 3lIx — Lenll2,  da(u) = 5llu— Len|3.

1/2 T
Then [|All12 = AMax(ATA) and  £(8) — ¢(2) < P2 A)
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Example: Equilibrium in matrix games (2)

2. Entropy distance. Let us choose

n n
Ix[l1 = > Ixil, di(x)=Inn+ > xjInx;,
i=1 i=1

m m
|ull2 = Z’Uj\, C/2(U)=|nm—|—2uj|nuj.
J=1 j=1

n 42
LM: 01 =0, = 1. (Hint: (d{(x)h, h) = > 5 min = |[[}3.)
i=1"" XE€An
Moreover, since D; = Inn, Do = Inm, and
IAll.2 = max{ max [(z;,)] : (X = 1} = max 4,

we have f(X) — ¢(0) < @ : ml.j‘.X|AiJ|-

NB: 1. Usually max |A;j| << AHZ(ATA).
IJ

m

2. We have ?M(X) = <C,X>]_ + Iu|n (1 Z e[<aj7x>+bj]/ﬂ>_
j=1
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Part Il: Interior Point Methods

Black-Box Methods: Main assumptions represent the bounds for the size
of certain derivatives.

Example

2
N
Consider the function f(xi,x) =< »x’ >0,
0, X1 = Xp = 0

It is closed, convex, but discontinuous at the origin.

However, its epigraph {x € R® : x;x3 > x3} is a simple convex set:

X1 =uU1+uz, Xo=Up, X3 =U] — U3 = U > \/ug—i—ug.

(Lorentz cone)

Question: Can we always replace the functional components by convex
sets?
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Standard formulation

Problem: f* = min (c, x),

XEQ . .
where Q@ C E is a closed convex set with nonempty interior.
How we can measure the quality of x € Q7

1. The residual (c,x) — f* is not very informative since it does not
depend on position of x inside Q.

2. The boundary of a convex set can be very complicated.

3. It is easy to travel inside provided that we keep a sufficient distance to
the boundary.

Conclusion: we need a barrier function f(x):
o domf =int Q,
e f(x) > o0ast— 0Q.
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Path-following method

Central path: for t > 0 define x*(t) tc+ f'(x*(t)) =0

(hence x*(t) = arg m|n [ t(x = t (c,x) + f(x)] )

Lemma. Suppose (f'(x),y —x) < Afor all x,y € dom Q. Then
(e, x*(t) — x > (F'(x*(£), x* = x*(t)) < (A

Method: t; > 0, xk =~ X*(tk) = tky1 > L, xkt+1 X*(tk+1).

For approximating x*(tk“), we need a powerful minimization scheme.

Main candidate: Newton Method.
(Very good local convergence.)
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Classical results on the Newton Method

Method:  xK*1 = xk — [f"(x})]71F'(x¥).
Assume that:

o f"(x*)>1-1,

o [[f"(x) = f"(Y)Il < Ml[x = yll. Vx,y € R".

o The starting point x¥ is close to x*: ||x? — x* [|< F = 25.

Then || x¥ — x* ||< 7 for all k, and the Newton method converges
. M k__ %2

quadratically: || xk*1 — x* || < %

Note:

@ The description of the region of quadratic convergence is given in
terms of the metric (-, ).

@ This region is changing when we choose another metric.
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Simple observation

Let f(x) satisfy our assumptions. Consider ¢(y) = f(Ay),
where A is a non-degenerate (n X n)-matrix.

Lemma: Let {x*} be a sequence, generated by Newton Method for
function f.

Consider the sequence {y*}, generated by the Newton Method for
function ¢ with y0 = A=1x0.

Then y* = A=1xk for all k > 0.

Proof: Assume y, = A~lx, for some k > 0. Then

[0 (Y N1 (v¥)

i [ATf”(Ay JA] AT 1(Ay)
= A7Ixk — AT ()T (xF) = ATIXARL O

k+1
y

Conclusion: The method is affine invariant. Its region of quadratic
convergence does not depend on the metric!
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What was wrong?

Old assumption: || f'(x) —f"(y) [ M| x—y|.

Let f € C3(R"). Denote " (x)[u] = olziLno LIF"(x + au) — f"(x)]. Thisis a
matrix!

Then the old assumption is equivalent to: || f”/(x)[u] |[<K M || u ||

Hence, at any point x € R" we have
) (") [u]v, v) S M ull || v |? forall u,v € R
Note:
@ The LHS of (x) is an affine invariant directional derivative.
@ The norm || - || has nothing common with our particular f.

@ However, there exists a local norm, which is closely related
to f. Thisis || u ||r)= (F"(x)u, u)t/2.

@ Let us make a similar assumption in terms of || - ||z (y).
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Definition of Self-Concordant Function

Let f(x) € C3(dom f) be a closed and convex, with open domain. Let us
fix a point x € dom f and a direction v € R".

Consider the function ¢(x; t) = f(x + tu). Denote
Df (x)[u] = ¢¢(x; 0) = (f'(x), u),
D2f(x)[u, u] = ¢ (x; 0) = (F"(x)u, u) =[| u |7
D3 (x)[u, u, u] = Pige(x: 0) = (F"[u]u, u).
Def. We call function f self-concordant if the inequality
| D3f(X)[u, u,u] <2 u H3,,(X) holds for any x € dom f, u € R".
Note:

x)?

@ We cannot expect that these functions are very common.

@ We hope that they are good for the Newton Method.
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Examples

1. Linear function is s.c. since f(x) =0, f"(x) =0
2. Convex quadratic function is s.c. (f"”/(x) = 0).

3. Logarithmic barrier for a ray {x > 0}:

f(x)=—Inx, f'(x)= —%, f(x) = %, " (x) = —%.
4. Logarithmic barrier for a quadratic region. Consider a concave
function ¢(x) = a + (a,x) — 3(Ax,x). Define f(x) = —In ¢(x).

DF (x)[u] = — 55 [(a, u) — (Ax, u)] = wy,

D2F(x)[u]* = gotgyl(a, u) — (Ax, W] + g5 (Au, u),

D3 (x)[u]® = =551, u) — (Ax, )] — 25850 [(a,u) — (Ax, )],

Dy = w% +wy, D3 = 2wf — 3wiwz. Hence, |Ds| < 2|D2|3/2.
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Simple properties

1. If 1, f, are s.c.f., then f; + £ is s.c. function.
2. If f(y) is s.c.f., then ¢(x) = f(Ax + b) is also a s.c. function.
Proof: Denote y = y(x) = Ax+ b, v =Au. Then
Do(x)[u] = (f'(y(x)), Au) = (F'(y), v),
D2g(x)[uf? = {f"(y(x))Au, Au) = {f"(y)v,v),
D3¢(x)[u® = D*f(y(x))[Au® = D3f(y)[v]>.O0

Example: f(x) = — Z In(a; — ||Aix — bj||?) is a s.c.-function.
i=1
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Main properties

Let x e domf and v € R", u#0. For x + tu € dom f, consider
1
o(t) = (F7 (x+tu)u,u) 172"

Lemma. For all feasible t we have: | ¢'(t) |< 1.

11 (et-tu) [u]3
Proof: Indeed, ¢/(t) = % O
Corollary 1: dom ¢ contains the interval (—¢(0), ¢(0)).

Proof: Since f(x + tu) — oo as x + tu — ddom f, the same is true for
(f"(x + tu)u,u). Hence dom ¢(t) = {t| ¢(t) > 0}. O

Denote WO(x;r) ={y € R"| || y — x [|f7(xy< r}. Then
WO(x; r) C domf for r < 1.
Main Theorem: for any y € W(x;r), r € [0,1), we have

(L= PF/6) = FY(y) = e F ().
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Local convergence

For x close to x*, f/(x*) =0, function f(x) is almost quadratic:
F(x) 2 £* + J(F7(x*)(x — x*),x — x*).
Therefore, f(x) — f* & 1||x — x Hf,,(x o R ~ Lx — x*Hf_,, )
_ def df
~ 3 (PO, I I (x) = 5P (IR = AF ().

The last value is the local norm of the gradient. It is computable!

Theorem: Let x € dom f and A¢(x) < 1.
Then the point x; = x — [f”(x)]~1f’(x) belongs to dom f and
2
Ar(x

NB: Region of quadratic convergence is A¢(x) < A, e A) =1.

It is affine-invariant!
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Following the cental path

Consider W(x) = t(c, x) + f(x) with s.c. function f.

o For Wy, Newton Method has local quadratic convergence.

@ The region of quadratic convergence (RQC) is given by
)\\Ut(X) < ﬂ <A

Assume we know x = x*(t). We want to update t, t; =t + A, keeping
x in RQC of function Wy a: Ay, ,(x) < B.

Question: How large can be A? Since tc + f'(x) = 0, we have:
A

Ma () =l tre+ F(x) = A] || e 3= 21 F(x) [5< 8.

Conclusion: for the linear rate, we need to assume that

([F"(x)]7F'(x), f'(x)) is uniformly bounded on dom f.

Thus, we come to the definition of self~concordant barrier.
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Definition of Self-Concordant Barrier

Let F(x) be a s.c.-function. It is a v-self-concordant barrier, if
max [2(F'(x),u) — (F"(x)u,u)] < v for all x € dom F.

The value v is called the parameter of the barrier.

If F”(x) is non-degenerate, then ([F”(x)]~1F'(x), F'(x)) < v.

Another form: (F/(x), u)? < v{(F"(x)u, u).

Main property: (F'(x),y —x) <v, x,y € int Q.

NB: v is responsible for the rate of p.-f. method: t; =t + Val—/tz

Complexity: O (ﬁln %) iterations of the Newton method.

Calculus: 1. Affine transformations do not change v.

2. Restriction on a subspace can only decrease v.

3. F=R+FHL = v=vi+uw.
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Examples

1. Barrier for a ray: F(t) = —Int, F'(t) = -1 F"(t)= %2 v=1.

2. Polytop {x : (3X) < bi}, F(x) = = 3= by = (3.%)) v = m.

3. h-ball: F(x) = —In(1—||x||?), D1 = wl D> = w? +wy, v=1.

4. Intersection of ellipsoids: F(x) = — Z In(r? — ||Aix — bi|?), v = m.
5. Lorentz cone {t > ||x||}, F(x,t) = In(t2 Ix]1?), v = 2.

6. LMl-cone {X = XT =0}, F(X) = —Indet X, v = n.

7. Epigraph {t > &*}, F(x,t) = —In(t — &) —In(Int — x), v = 4.

8.

Universal barrier. Define the polar set
P(x)={s:(s,y —x) <1, y € Q}.
Then F(x) = —Invol,P(x) is an O(n)-s.c. barrier for Q.
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Further directions: specification of the model description

Path-following methods
@ Conic problems. Gain: primal-dual IPM.
o Self-scaled cones: F,(F"(x)u) = F(u) —2F(x) —v. Gain: long-step
methods, very good search directions.

o Positive polynomials: p(t) >0, t€ Riffpp= 5. Y™, Y =0
i+j=k
Gain: very cheap computation of determinants.

Black-box methods

e Composite functions: f(x) + h(x), where f is smooth but complex,
and h is nonsmooth and simple. Gain: rate O(7).

@ Huge-scale problem: very sparse linear operators. Gain: extremely
cheap iterations. (Next Lecture.)
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