
Liege University: Francqui Chair 2011-2012

Lecture 3: Huge-scale optimization problems

Yurii Nesterov, CORE/INMA (UCL)

March 9, 2012

Yu. Nesterov () Huge-scale optimization problems 1/32March 9, 2012 1 / 32

Outline

1 Problems sizes

2 Random coordinate search

3 Confidence level of solutions

4 Sparse Optimization problems

5 Sparse updates for linear operators

6 Fast updates in computational trees

7 Simple subgradient methods

8 Application examples

Yu. Nesterov () Huge-scale optimization problems 2/32March 9, 2012 2 / 32

Nonlinear Optimization: problems sizes

Class Operations Dimension Iter.Cost Memory

Small-size All 100 − 102 n4 → n3 Kilobyte: 103

Medium-size A−1 103 − 104 n3 → n2 Megabyte: 106

Large-scale Ax 105 − 107 n2 → n Gigabyte: 109

Huge-scale x + y 108 − 1012 n→ log n Terabyte: 1012

Sources of Huge-Scale problems

Internet (New)

Telecommunications (New)

Finite-element schemes (Old)

Partial differential equations (Old)

Yu. Nesterov () Huge-scale optimization problems 3/32March 9, 2012 3 / 32

Very old optimization idea: Coordinate Search

Problem: min
x∈Rn

f (x) (f is convex and differentiable).

Coordinate relaxation algorithm

For k ≥ 0 iterate

1 Choose active coordinate ik .

2 Update xk+1 = xk − hk∇ik f (xk)eik ensuring f (xk+1) ≤ f (xk).
(ei is ith coordinate vector in Rn.)

Main advantage: Very simple implementation.

Yu. Nesterov () Huge-scale optimization problems 4/32March 9, 2012 4 / 32

Possible strategies

1 Cyclic moves. (Difficult to analyze.)

2 Random choice of coordinate (Why?)

3 Choose coordinate with the maximal directional derivative.

Complexity estimate: assume
‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖, x , y ∈ Rn.

Let us choose hk = 1
L . Then

f (xk)− f (xk+1) ≥ 1
2L |∇ik f (xk)|2 ≥ 1

2nL‖∇f (xk)‖2

≥ 1
2nLR2 (f (xk)− f ∗)2.

Hence, f (xk)− f ∗ ≤ 2nLR2

k , k ≥ 1. (For Grad.Method, drop n.)

This is the only known theoretical result known for CDM!

Yu. Nesterov () Huge-scale optimization problems 5/32March 9, 2012 5 / 32

Criticism

Theoretical justification:

Complexity bounds are not known for the most of the schemes.

The only justified scheme needs computation of the whole gradient.
(Why don’t use GM?)

Computational complexity:

Fast differentiation: if function is defined by a sequence of operations,
then C (∇f) ≤ 4C (f).

Can we do anything without computing the function’s values?

Result: CDM are almost out of the computational practice.

Yu. Nesterov () Huge-scale optimization problems 6/32March 9, 2012 6 / 32

Google problem

Let E ∈ Rn×n be an incidence matrix of a graph. Denote e = (1, . . . , 1)T

and
Ē = E · diag (ET e)−1.

Thus, ĒT e = e. Our problem is as follows:

Find x∗ ≥ 0 : Ē x∗ = x∗.

Optimization formulation:

f (x)
def
= 1

2‖Ē x − x‖2 + γ
2 [〈e, x〉 − 1]2 → min

x∈Rn

Yu. Nesterov () Huge-scale optimization problems 7/32March 9, 2012 7 / 32

Huge-scale problems

Main features

The size is very big (n ≥ 107).

The data is distributed in space.

The requested parts of data are not always available.

The data is changing in time.

Consequences

Simplest operations are expensive or infeasible:

Update of the full vector of variables.

Matrix-vector multiplication.

Computation of the objective function’s value, etc.

Yu. Nesterov () Huge-scale optimization problems 8/32March 9, 2012 8 / 32

Structure of the Google Problem

Let ua look at the gradient of the objective:

∇i f (x) = 〈ai , g(x)〉+ γ[〈e, x〉 − 1], i = 1, . . . , n,

g(x) = Ē x − x ∈ Rn, (Ē = (a1, . . . , an)).

Main observations:

The coordinate move x+ = x − hi∇i f (x)ei needs O(pi) a.o.
(pi is the number of nonzero elements in ai .)

di
def
= diag

(
∇2f

def
= ĒT Ē + γeeT

)
i

= γ + 1
pi

are available.

We can use them for choosing the step sizes (hi = 1
di

).

Reasonable coordinate choice strategy? Random!

Yu. Nesterov () Huge-scale optimization problems 9/32March 9, 2012 9 / 32

Random coordinate descent methods (RCDM)

min
x∈RN

f (x), (f is convex and differentiable)

Main Assumption:

|f ′i (x + hiei)− f ′i (x)| ≤ Li |hi |, hi ∈ R, i = 1, . . . ,N,

where ei is a coordinate vector. Then

f (x + hiei) ≤ f (x) + f ′i (x)hi + Li
2 h

2
i . x ∈ RN , hi ∈ R.

Define the coordinate steps: Ti (x)
def
= x − 1

Li
f ′i (x)ei . Then,

f (x)− f (Ti (x)) ≥ 1
2Li

[f ′i (x)]2, i = 1, . . . ,N.

Yu. Nesterov () Huge-scale optimization problems 10/32March 9, 2012 10 / 32

Random coordinate choice

We need a special random counter Rα, α ∈ R:

Prob [i] = p
(i)
α = Lαi ·

[
N∑
j=1

Lαj

]−1
, i = 1, . . . ,N.

Note: R0 generates uniform distribution.

Method RCDM(α, x0)

For k ≥ 0 iterate:

1) Choose ik = Rα.

2) Update xk+1 = Tik (xk).

Yu. Nesterov () Huge-scale optimization problems 11/32March 9, 2012 11 / 32

Complexity bounds for RCDM

We need to introduce the following norms for x , g ∈ RN :

‖x‖α =

[
N∑
i=1

Lαi [x (i)]2
]1/2

, ‖g‖∗α =

[
N∑
i=1

1
Lαi

[g (i)]2
]1/2

.

After k iterations, RCDM(α, x0) generates random output xk , which
depends on ξk = {i0, . . . , ik}. Denote φk = Eξk−1

f (xk).

Theorem. For any k ≥ 1 we have

φk − f ∗ ≤ 2
k ·

[
N∑
j=1

Lαj

]
· R2

1−α(x0),

where Rβ(x0) = max
x

{
max
x∗∈X∗

‖x − x∗‖β : f (x) ≤ f (x0)

}
.

Yu. Nesterov () Huge-scale optimization problems 12/32March 9, 2012 12 / 32

Interpretation

1. α = 0. Then S0 = N, and we get

φk − f ∗ ≤ 2N
k · R

2
1 (x0).

Note

We use the metric ‖x‖21 =
N∑
i=1

Li [x
(i)]2.

A matrix with diagonal {Li}Ni=1 can have its norm equal to n.

Hence, for GM we can guarantee the same bound.

But its cost of iteration is much higher!

Yu. Nesterov () Huge-scale optimization problems 13/32March 9, 2012 13 / 32

Interpretation

2. α = 1
2 . Denote

D∞(x0) = max
x

{
max
y∈X∗

max
1≤i≤N

|x (i) − y (i)| : f (x) ≤ f (x0)

}
.

Then, R2
1/2(x0) ≤ S1/2D

2
∞(x0), and we obtain

φk − f ∗ ≤ 2
k ·
[

N∑
i=1

L
1/2
i

]2
· D2
∞(x0).

Note:

For the first order methods, the worst-case complexity of minimizing
over a box depends on N.

Since S1/2 can be bounded, RCDM can be applied in situations when
the usual GM fail.

Yu. Nesterov () Huge-scale optimization problems 14/32March 9, 2012 14 / 32

Interpretation

3. α = 1. Then R0(x0) is the size of the initial level set in the standard
Euclidean norm. Hence,

φk − f ∗ ≤ 2
k ·
[

N∑
i=1

Li

]
· R2

0 (x0) ≡ 2N
k ·
[

1
N

N∑
i=1

Li

]
· R2

0 (x0).

Rate of convergence of GM can be estimated as

f (xk)− f ∗ ≤ γ

k
R2
0 (x0),

where γ satisfies condition f ′′(x) � γ · I , x ∈ RN .
Note: maximal eigenvalue of symmetric matrix can reach its trace.

In the worst case, the rate of convergence of GM is the same as that of
RCDM.

Yu. Nesterov () Huge-scale optimization problems 15/32March 9, 2012 15 / 32

Minimizing the strongly convex functions

Theorem. Let f (x) be strongly convex with respect to ‖ · ‖1−α with
convexity parameter σ1−α > 0.
Then, for {xk} generated by RCDM(α, x0) we have

φk − φ∗ ≤
(

1− σ1−α
Sα

)k
(f (x0)− f ∗).

Proof: Let xk be generated by RCDM after k iterations.
Let us estimate the expected result of the next iteration.

f (xk)− Eik (f (xk+1)) =
N∑
i=1

p
(i)
α · [f (xk)− f (Ti (xk))]

≥
N∑
i=1

p
(i)
α
2Li

[f ′i (xk)]2 = 1
2Sα

(‖f ′(xk)‖∗1−α)2

≥ σ1−α
Sα

(f (xk)− f ∗).

It remains to compute expectation in ξk−1.

Yu. Nesterov () Huge-scale optimization problems 16/32March 9, 2012 16 / 32

Confidence level of the answers

Note: We have proved that the expected values of random f (xk) are
good.

Can we guarantee anything after a single run?

Confidence level: Probability β ∈ (0, 1), that some statement about
random output is correct.
Main tool: Chebyschev inequality (ξ ≥ 0):

Prob [ξ ≥ T] ≤ E(ξ)
T .

Our situation:

Prob [f (xk)− f ∗ ≥ ε] ≤ 1
ε [φk − f ∗] ≤ 1− β.

We need φk − f ∗ ≤ ε · (1− β). Too expensive for β → 1?

Yu. Nesterov () Huge-scale optimization problems 17/32March 9, 2012 17 / 32

Regularization technique

Consider fµ(x) = f (x) + µ
2‖x − x0‖21−α. It is strongly convex.

Therefore, we can obtain φk − f ∗µ ≤ ε · (1− β) in

O
(

1
µSα ln 1

ε·(1−β)

)
iterations.

Theorem. Define α = 1, µ = ε
4R2

0 (x0)
, and choose

k ≥ 1 +
8S1R2

0 (x0)
ε

[
ln

2S1R2
0 (x0)
ε + ln 1

1−β

]
.

Let xk be generated by RCDM(1, x0) as applied to fµ.Then

Prob (f (xk)− f ∗ ≤ ε) ≥ β.

Note: β = 1− 10−p ⇒ ln 10p = 2.3p.

Yu. Nesterov () Huge-scale optimization problems 18/32March 9, 2012 18 / 32

Implementation details: Random Counter

Given the values Li , i = 1, . . . ,N, generate efficiently random

i ∈ {1, . . . ,N} with probabilities Prob [i = k] = Lk/
N∑
j=1

Lj .

Solution: a) Trivial ⇒ O(N) operations.

b). Assume N = 2p. Define p + 1 vectors Sk ∈ R2p−k
, k = 0, . . . , p:

S
(i)
0 = Li , i = 1, . . . ,N.

S
(i)
k = S

(2i)
k−1 + S

(2i−1)
k−1 , i = 1, . . . , 2p−k , k = 1, . . . , p.

Algorithm: Make the choice in p steps, from top to bottom.

If the element i of Sk is chosen, then choose in Sk−1 either 2i or

2i − 1 in accordance to probabilities
S
(2i)
k−1

S
(i)
k

or
S
(2i−1)
k−1

S
(i)
k

.

Difference: for n = 220 > 106 we have p = log2N = 20.

Yu. Nesterov () Huge-scale optimization problems 19/32March 9, 2012 19 / 32

Sparse problems

Problem: min
x∈Q

f (x), where Q is closed and convex in RN , and

f (x) = Ψ(Ax), where Ψ is a simple convex function:

Ψ(y1) ≥ Ψ(y2) + 〈Ψ′(y2), y1 − y2〉, y1, y2 ∈ RM ,

A : RN → RM is a sparse matrix.

Let p(x)
def
= # of nonzeros in x . Sparsity coefficient: γ(A)

def
= p(A)

MN .

Example 1: Matrix-vector multiplication

Computation of vector Ax needs p(A) operations.

Initial complexity MN is reduced in γ(A) times.

Yu. Nesterov () Huge-scale optimization problems 20/32March 9, 2012 20 / 32

Gradient Method

x0 ∈ Q, xk+1 = πQ(xk − hf ′(xk)), k ≥ 0.

Main computational expenses

Projection of simple set Q needs O(N) operations.

Displacement xk → xk − hf ′(xk) needs O(N) operations.

f ′(x) = ATΨ′(Ax). If Ψ is simple, then the main efforts are spent
for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with full matrices, we accelerate in γ(A)
times.
Note: For Large- and Huge-scale problems, we often have
γ(A) ≈ 10−4 . . . 10−6. Can we get more?

Yu. Nesterov () Huge-scale optimization problems 21/32March 9, 2012 21 / 32

Sparse updating strategy

Main idea

After update x+ = x + d we have y+
def
= Ax+ = Ax︸︷︷︸

y

+Ad .

What happens if d is sparse?

Denote σ(d) = {j : d (j) 6= 0}. Then y+ = y +
∑

j∈σ(d)
d (j) · Aej .

Its complexity, κA(d)
def
=

∑
j∈σ(d)

p(Aej), can be VERY small!

κA(d) = M
∑

j∈σ(d)
γ(Aej) = γ(d) · 1

p(d)

∑
j∈σ(d)

γ(Aej) ·MN

≤ γ(d) max
1≤j≤m

γ(Aej) ·MN.

If γ(d) ≤ cγ(A), γ(Aj) ≤ cγ(A), then κA(d) ≤ c2 · γ2(A) ·MN .

Expected acceleration: (10−6)2 = 10−12 ⇒ 1 sec ≈ 32 000 years

Yu. Nesterov () Huge-scale optimization problems 22/32March 9, 2012 22 / 32

When it can work?

Simple methods: No full-vector operations! (Is it possible?)

Simple problems: Functions with sparse gradients.

Examples

1 Quadratic function f (x) = 1
2〈Ax , x〉 − 〈b, x〉. The gradient

f ′(x) = Ax − b, x ∈ RN ,

is not sparse even if A is sparse.

2 Piece-wise linear function g(x) = max
1≤i≤m

[〈ai , x〉 − b(i)]. Its

subgradient f ′(x) = ai(x), i(x) : f (x) = 〈ai(x), x〉 − b(i(x)), can be
sparse if ai is sparse!

But: We need a fast procedure for updating max-operations.

Yu. Nesterov () Huge-scale optimization problems 23/32March 9, 2012 23 / 32

Fast updates in short computational trees

Def: Function f (x), x ∈ Rn, is short-tree representable, if it can be
computed by a short binary tree with the height ≈ ln n.

Let n = 2k and the tree has k + 1 levels: v0,i = x (i), i = 1, . . . , n.
Size of the next level halves the size of the previous one:

vi+1,j = ψi+1,j(vi ,2j−1, vi ,2j), j = 1, . . . , 2k−i−1, i = 0, . . . , k − 1,

where ψi ,j are some bivariate functions.

v2,1
v1,1 v1,2

v0,1 v0,2 v0,3 v0,4

v2,n/4
v1,n/2−1 v1,n/2

v0,n−3v0,n−2v0,n−1 v0,n

.

. . .

vk−1,1 vk−1,2
vk,1

Yu. Nesterov () Huge-scale optimization problems 24/32March 9, 2012 24 / 32

Main advantages

Important examples (symmetric functions)

f (x) = ‖x‖p, p ≥ 1, ψi ,j(t1, t2) ≡ [|t1|p + |t2|p]1/p ,

f (x) = ln

(
n∑

i=1
ex

(i)

)
, ψi ,j(t1, t2) ≡ ln (et1 + et2) ,

f (x) = max
1≤i≤n

x (i), ψi ,j(t1, t2) ≡ max {t1, t2} .

The binary tree requires only n − 1 auxiliary cells.

Its value needs n − 1 applications of ψi ,j(·, ·) (≡ operations).

If x+ differs from x in one entry only, then for re-computing f (x+) we
need only k ≡ log2 n operations.

Thus, we can have pure subgradient minimization schemes with
Sublinear Iteration Cost

.

Yu. Nesterov () Huge-scale optimization problems 25/32March 9, 2012 25 / 32

Simple subgradient methods

I. Problem: f ∗
def
= min

x∈Q
f (x), where

Q is a closed and convex and ‖f ′(x)‖ ≤ L(f), x ∈ Q,

the optimal value f ∗ is known.

Consider the following optimization scheme (B.Polyak, 1967):

x0 ∈ Q, xk+1 = πQ

(
xk −

f (xk)− f ∗

‖f ′(xk)‖2
f ′(xk)

)
, k ≥ 0.

Denote f ∗k = min
0≤i≤k

f (xi). Then for any k ≥ 0 we have:

f ∗k − f ∗ ≤ L(f)‖x0−πX∗ (x0)‖
(k+1)1/2

,

‖xk − x∗‖ ≤ ‖x0 − x∗‖, ∀x∗ ∈ X∗.

Yu. Nesterov () Huge-scale optimization problems 26/32March 9, 2012 26 / 32

Proof:

Let us fix x∗ ∈ X∗. Denote rk(x∗) = ‖xk − x∗‖. Then

r2k+1(x∗) ≤
∥∥∥xk − f (xk)−f ∗

‖f ′(xk)‖2
f ′(xk)− x∗

∥∥∥2
= r2k (x∗)− 2 f (xk)−f ∗

‖f ′(xk)‖2
〈f ′(xk), xk − x∗〉+ (f (xk)−f ∗)2

‖f ′(xk)‖2

≤ r2k (x∗)− (f (xk)−f ∗)2
‖f ′(xk)‖2

≤ r2k (x∗)− (f ∗k −f
∗)2

L2(f)
.

From this reasoning, ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2, ∀x∗ ∈ X ∗.
Corollary: Assume X∗ has recession direction d∗. Then

‖xk − πX∗(x0)‖ ≤ ‖x0 − πX∗(x0)‖, 〈d∗, xk〉 ≥ 〈d∗, x0〉.

(Proof: consider x∗ = πX∗(x0) + αd∗, α ≥ 0.)

Yu. Nesterov () Huge-scale optimization problems 27/32March 9, 2012 27 / 32

Constrained minimization (N.Shor (1964) & B.Polyak)

II. Problem: min
x∈Q
{f (x) : g(x) ≤ 0}, where

Q is closed and convex,

f , g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.

If g(xk) > h ‖g ′(xk)‖, then (A): xk+1 = πQ

(
xk − g(xk)

‖g ′(xk)‖2
g ′(xk)

)
,

else (B): xk+1 = πQ

(
xk − h

‖f ′(xk)‖ f
′(xk)

)
.

Let Fk ⊆ {0, . . . , k} be the set (B)-iterations, and f ∗k = min
i∈Fk

f (xi).

Theorem: If k > ‖x0 − x∗‖2/h2, then Fk 6= ∅ and

f ∗k − f (x) ≤ hL(f), max
i∈Fk

g(xi) ≤ hL(g).

Yu. Nesterov () Huge-scale optimization problems 28/32March 9, 2012 28 / 32

Computational strategies

1. Constants L(f), L(g) are known (e.g. Linear Programming)

We can take h = ε
max{L(f),L(g)} . Then we need to decide on the number

of steps N (easy!).

Note: The standard advice is h = R√
N+1

(much more difficult!)

2. Constants L(f), L(g) are not known

Start from a guess.

Restart from scratch each time we see the guess is wrong.

The guess is doubled after restart.

3. Tracking the record value f ∗k
Double run. Other ideas are welcome!

Yu. Nesterov () Huge-scale optimization problems 29/32March 9, 2012 29 / 32

Application examples

Observations:

1 Very often, Large- and Huge- scale problems have repetitive sparsity
patterns and/or limited connectivity.

I Social networks.
I Mobile phone networks.
I Truss topology design (local bars).
I Finite elements models (2D: four neighbors, 3D: six neighbors).

2 For p-diagonal matrices κ(A) ≤ p2.

Yu. Nesterov () Huge-scale optimization problems 30/32March 9, 2012 30 / 32

Nonsmooth formulation of Google Problem

Main property of spectral radius (A ≥ 0)

If A ∈ Rn×n
+ , then ρ(A) = min

x≥0
max
1≤i≤n

1
x(i)
〈ei ,Ax〉.

The minimum is attained at the corresponding eigenvector.

Since ρ(Ē) = 1, our problem is as follows:

f (x)
def
= max

1≤i≤N
[〈ei , Ē x〉 − x (i)] → min

x≥0
.

Interpretation: Maximizing the self-esteem!
Since f ∗ = 0, we can apply Polyak’s method with sparse updates.
Additional features; the optimal set X ∗ is a convex cone.
If x0 = e, then the whole sequence is separated from zero:

〈x∗, e〉 ≤ 〈x∗, xk〉 ≤ ‖x∗‖1 · ‖xk‖∞ = 〈x∗, e〉 · ‖xk‖∞.

Goal: Find x̄ ≥ 0 such that ‖x̄‖∞ ≥ 1 and f (x̄) ≤ ε.
(First condition is satisfied automatically.)

Yu. Nesterov () Huge-scale optimization problems 31/32March 9, 2012 31 / 32

Computational experiments: Iteration Cost

We compare Polyak’s GM with sparse update (GMs) with the standard
one (GM).

Setup: Each agent has exactly p random friends. Thus, κ(A) ≈ p2.

Iteration Cost: GMs ≈ p2 log2N, GM ≈ pN.

Time for 104 iterations (p = 32)

N κ(A) GMs GM

1024 1632 3.00 2.98
2048 1792 3.36 6.41
4096 1888 3.75 15.11
8192 1920 4.20 139.92

16384 1824 4.69 408.38

Time for 103 iterations (p = 16)

N κ(A) GMs GM

131072 576 0.19 213.9
262144 592 0.25 477.8
524288 592 0.32 1095.5

1048576 608 0.40 2590.8

1 sec ≈ 100 min!

Yu. Nesterov () Huge-scale optimization problems 32/32March 9, 2012 32 / 32

	Problems sizes
	Random coordinate search
	Confidence level of solutions
	Sparse Optimization problems
	Sparse updates for linear operators
	Fast updates in computational trees
	Simple subgradient methods
	Application examples

