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Outline

@ Problems sizes

© Random coordinate search

© Confidence level of solutions

@ Sparse Optimization problems

© Sparse updates for linear operators
G Fast updates in computational trees
@ Simple subgradient methods

© Application examples
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Nonlinear Optimization: problems sizes

Class Operations Dimension Iter.Cost Memory
Small-size All 10°—-10° n* - n® Kilobyte: 103
Medium-size Al 103 —10* n® — n®> Megabyte: 10°
Large-scale Ax 10°—-10" n®> - n  Gigabyte: 10°
] Huge-scale X+y 108 — 10 n—logn Terabyte: 102

Sources of Huge-Scale problems
o Internet (New)
@ Telecommunications (New)
o Finite-element schemes (Old)

o Partial differential equations (Old)
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Very old optimization idea: Coordinate Search

Problem: milg f(x) (f is convex and differentiable).
xeR"

Coordinate relaxation algorithm
For k > 0 iterate
@ Choose active coordinate .

@ Update xx41 = xx — heV;, f(xk)ej, ensuring f(xky1) < f(xk).
(e is ith coordinate vector in R".)

Main advantage: Very simple implementation.
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Possible strategies

@ Cyclic moves. (Difficult to analyze.)
@ Random choice of coordinate (Why?)
© Choose coordinate with the maximal directional derivative.

Complexity estimate: assume

IVE(x) = VIl < Lix—yll, xyeR"

Let us choose h;, = % Then

F(x) = f(xkt1)

\Y]

31 Vif ()P > 5ar IV (a2
> Wle(f(Xk) — )2
Hence, f(xx) — * < #, k>1.  (For Grad.Method, drop n.)

This is the only known theoretical result known for CDM!
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Criticism

Theoretical justification:

@ Complexity bounds are not known for the most of the schemes.

@ The only justified scheme needs computation of the whole gradient.
(Why don't use GM?)

Computational complexity:

o Fast differentiation: if function is defined by a sequence of operations,
then C(Vf) < 4C(f).

@ Can we do anything without computing the function's values?

Result: CDM are almost out of the computational practice.
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Google problem

Let E € R™" be an incidence matrix of a graph. Denote e = (1,...,1)7

and B
E=E - diag(ETe) L.

Thus, ETe = e. Our problem is as follows:
Find x* >0: Ex* = x*.
Optimization formulation:

F(x) < JIEx = x|2+ 3l(e,x) =1 —  min
xER"
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Huge-scale problems

Main features
e The size is very big (n > 107).
@ The data is distributed in space.
@ The requested parts of data are not always available.
@ The data is changing in time.

Consequences

Simplest operations are expensive or infeasible:
@ Update of the full vector of variables.
@ Matrix-vector multiplication.

@ Computation of the objective function’s value, etc.
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Structure of the Google Problem

Let ua look at the gradient of the objective:

ViF(x) = (ang(x)) +llex) =1, i=1,....n,

g(x) = Ex—xeR", (E=(a1,...,an))

Main observations:

@ The coordinate move x; = x — h;V;f(x)e; needs O(p;) a.o.
(pi is the number of nonzero elements in a;.)
o di ¥ diag (sz CTETE | ’yeeT)_ =5+ % are available.
I 1

We can use them for choosing the step sizes (h; = ).

Reasonable coordinate choice strategy? Random!
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Random coordinate descent methods (RCDM)

min f(x), (f is convex and differentiable)
xeRN

Main Assumption:
|0+ hie) = ()] < Lill, hi€ R i=1,....N,

where ¢; is a coordinate vector. Then

f(x + hiej) < f(x) + f/(x)hi + 5h?. x € RN, h; € R.

Define the coordinate steps: T;(x) def - 1/ (x)e;. Then,

1

)~ F(Tix) > RGP i=1... N
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Random coordinate choice

We need a special random counter R, o € R:

) v 17
Prob[i] = py’ = L¢-|X Ly , i=1,... N
j=1

Note: Rg generates uniform distribution.

Method RCDM(«, xo)
For k > 0 iterate:
1) Choose ix = Rq.

2) Update x+1 = Tj, (xk)-
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Complexity bounds for RCDM

We need to introduce the following norms for x, g € R":

i=1

N 12 N 12
bl = [SEROP] L el = 2 27|

After k iterations, RCDM(«, xg) generates random output xx, which
depends on & = {ip,...,ix}. Denote ¢y = E¢, ,f(xk).

Theorem. For any kK > 1 we have

N
J:

where Rg(xp) = max{ max Ix = x||g 0 f(x) < f(xo)}.
X X €EX*
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Interpretation

1. «=0. Then Sy = N, and we get
(z)k —f* S % . Rlz(Xo).
Note

N .
o We use the metric ||x||2 = 3 L;[x()]2.

=
o A matrix with diagonal {L;}" | can have its norm equal to n.

@ Hence, for GM we can guarantee the same bound.

But its cost of iteration is much higher!

Yu. Nesterov () Huge-scale optimization problems March 9, 2012 13 /32



Interpretation

2. a= % Denote
— (i) — ()] <
D (x0) max {yr’ge)]()i \max, |x yWl: f(x) < f(xo)} .

Then, R12/2(x0) < 81/,D2(x0), and we obtain

2
_ 2 [s~ 2| pe
¢k < k Z:lL, Doo(XO)'

Note:

@ For the first order methods, the worst-case complexity of minimizing
over a box depends on M.

@ Since 51/ can be bounded, RCDM can be applied in situations when
the usual GM fail.
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Interpretation

3. a =1. Then Ry(xp) is the size of the initial level set in the standard
Euclidean norm. Hence,

N N
¢ —f* < 2. [ZILI] -R3(xo) = 3 [/bZLi] - R§ (x0)-

i=1
Rate of convergence of GM can be estimated as

Fx) = £ < RS (o).

where v satisfies condition f(x) < v-/, x € RV.
Note: maximal eigenvalue of symmetric matrix can reach its trace.

In the worst case, the rate of convergence of GM is the same as that of
RCDM.
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Minimizing the strongly convex functions

Theorem. Let f(x) be strongly convex with respect to || - ||1—o with
convexity parameter 014 > 0.
Then, for {xx} generated by RCDM(«, xp) we have

e ) (Fx0) — 7).

Proof: Let x4 be generated by RCDM after k iterations.
Let us estimate the expected result of the next iteration.

ok — " < (

FO) — En(FOrn)) = 32 P 170 — F(Tix))]

i=1

Pl

N
> E [ () = s (I (x)ll1-0)?
> ” F(xic) — 7).
It remains to compute expectation in &x_1. O
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Confidence level of the answers

Note: We have proved that the expected values of random f(xy) are
good.
Can we guarantee anything after a single run?

Confidence level: Probability 5 € (0,1), that some statement about
random output is correct.
Main tool: Chebyschev inequality (£ > 0):

Prob[¢ > T] < £
Our situation:
Prob[f(xk) — f* >¢] <1i[pp—F] < 1-5.

We need ¢y — f* <e-(1— 7). Too expensive for 8 — 17
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Regularization technique

Consider f,(x) = f(x) + §lx — x0[|3_,- It is strongly convex.
Therefore, we can obtain ¢, — f; <e-(1— f3)in

O( Saln = ﬁ)) iterations.

Theorem. Define a =1, u= 4R+(XO), and choose
0

— €

K > 1+851R§(X0) [| 251R(X0) +1In ]

Let x, be generated by RCDM(1, xp) as applied to f,.Then
Prob (f(x,) — f* <¢) > B.

Note: B=1-10"° = Inl0P =23p.
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Implementation details: Random Counter

Given the values L;, i =1,..., N, generate efficiently random

i€{l,..., N} with probabilities Prob [i = k] = L/ % L.

Solution: a) Trivial = O(N) operations. -

b). Assume N = 2P. Define p + 1 vectors Sy € R¥™ k= 0,...,p:
SO = L i=1,.. N

R S S =

Algorithm: Make the choice in p steps, from top to bottom.

@ If the element i of Sy is chosen, then choose in S,_1 either 2/ or
(2') (2i-1)
s s
2i — 1 in accordance to probabilities =7+ or ~=4—
sk 5k

Difference: for n = 220 > 10° we have p = log, N = 20.
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Sparse problems

Problem: mig f(x), where Q is closed and convex in RV, and
X€e

e f(x) = W(Ax), where V is a simple convex function:

V(y1) > V(o) + (W (y2),y1 — y2),  y1,y2 € RV,

o A: RN — RM is a sparse matrix.

Let p(x) o # of nonzeros in x. Sparsity coefficient: y(A) o ’;\S,—?\‘,.

Example 1: Matrix-vector multiplication
e Computation of vector Ax needs p(A) operations.

o Initial complexity MN is reduced in y(A) times.
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Gradient Method

Xo € Q, Xk41 = 7TQ(Xk — hf/(Xk)), k> 0.

Main computational expenses
@ Projection of simple set Q needs O(N) operations.
o Displacement xx — xx — hf’(xx) needs O(N) operations.

o f'(x) = ATW/(Ax). If W is simple, then the main efforts are spent
for two matrix-vector multiplications: 2p(A).

Conclusion: As compared with full matrices, we accelerate in v(A)

times.
Note: For Large- and Huge-scale problems, we often have
v(A) =~ 107*...107°. Can we get more?
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Sparse updating strategy

Main idea

o After update x; = x+d we have y, et Ax; = Ax +Ad.

y
@ What happens if d is sparse?

Denote o(d) = {j : dU) #£0}. Theny, =y+ > dU). Ae;.

Jj€o(d)
Its complexity, xa(d) def > p(Aej), can be VERY smalll
Jjeo(d)
ra(d) = M 3 ~(Ag) = 2(d) 5i; X 7(Ae) - MN
j€a(d) Jjea(d)
< ) .
< V(d)lgagxmv(Aej) MN.

If 7(d) < c7(A), 7(Aj) < cy(A), then |ka(d) < c-7*(A)- MN |,
Expected acceleration: (107°)2 = 10712 = 1sec ~ 32000 years
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When it can work?

@ Simple methods: No full-vector operations! (Is it possible?)

@ Simple problems: Functions with sparse gradients.

Examples
O Quadratic function f(x) = 3(Ax,x) — (b,x). The gradient
f'(x)=Ax—b, xeRV,
is not sparse even if A is sparse.

@ Piece-wise linear function g(x) = max [(a;, x) — b()]. Its
1<i<m

subgradient f'(x) = aj(x), i(x) : f(x) = (aj(x), x) — b)) can be
sparse if a; is sparse!

But: We need a fast procedure for updating max-operations.
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Fast updates in short computational trees

Def: Function f(x), x € R", is short-tree representable, if it can be
computed by a short binary tree with the height = In n.

Let n = 2% and the tree has k + 1 levels: vo,i = x) i=1,...

, n.

Size of the next level halves the size of the previous one:
— . k—i—1 : __
Vil = ¢i+l,j(vi,2j717vf,2j)a J= 1)"'72 ! y ! _07"‘7k_1a
where 1); ; are some bivariate functions.
Vi1
Vk—1,1 l Vk—1,2
Va1 V2.n/4
Vi1 V12 Vi,n/2—-1 Vi,n/2
vo,1 | Vo2 | V0,3 ] V0,4 V0,n—3V0,n—2V0,n—1] V0,n
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Main advantages

e Important examples (symmetric functions)

f(x) = lxlpy =1, Wij(ti,t) = [|ta]P + |2]P VP,

) = '”<Zexm>’ Gif(tt2) = In(eh + e),
i=1

) = max - wig(t,0) = max{n, ).

@ The binary tree requires only n — 1 auxiliary cells.

o Its value needs n — 1 applications of v (-, ) ( = operations).

e If x; differs from x in one entry only, then for re-computing f(x;) we
need only k = log, n operations.

Thus, we can have pure subgradient minimization schemes with
Sublinear Iteration Cost
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Simple subgradient methods

|. Problem:  £* %< mlg f(x), where
(S
e Qis a closed and convex and ||f'(x)|| < L(f), x € Q,

@ the optimal value f* is known.

Consider the following optimization scheme (B.Polyak, 1967):

f(xg) — F*
X € Q, Xk+1 = TQ <Xk ||(fl() )||2 f' (X )) , k=>0.
Denote f; = min f(x;). Then for any kK > 0 we have:
k™ o<i<
o < LOlxo—mx, (o)l

(k+1)1/2 9

Ik —x*| < lxo—x*]|, ¥x*e€ X..
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Proof:

Let us fix x* € X,. Denote re(x*) = ||xx — x*||. Then

2
* f *
) [ ibpren ol
= el - 2”%@ o (710 =) + S
< R6) - SR < ”3(" )= ey
From this reasoning, ||xx:1 — x*||? < |Ixk — x*||?, ¥x* € X*. O

Corollary: Assume X, has recession direction d,. Then

Xk — 7mx, (x0) |l < [Ix0 — 7x. (x0)ll,  (ds, xk) > (dx, x0)-

(Proof: consider x* = mx,(x0) + ads, a > 0.) O

Yu. Nesterov () Huge-scale optimization problems March 9, 2012 27/ 32



Constrained minimization (N.Shor (1964) & B.Polyak)
Il. Problem: meig{f(x) : g(x) <0},  where

@ @ is closed and convex,

e f, g have uniformly bounded subgradients.

Consider the following method. It has step-size parameter h > 0.
If g(xi) > hllg’ ()]l then (A): xiep1 = mq (i — m g'(x)),
else (B) Xk+1 = TQ | Xk — ||f’(Xk)|| ' (Xk)

Let Fix C {0,..., k} be the set (B)-iterations, and f = m}_[l f(xi)-
ISV
Theorem: If k > ||xo — x*||?/h?, then Fx # 0 and

fi —f(x) < hL(f), maxg(x) < hL(g).
ISV
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Computational strategies

1. Constants L(f), L(g) are known (e.g. Linear Programming)
We can take h = m. Then we need to decide on the number
of steps N (easy!).

Note: The standard advice is h = \//\%1 (much more difficult!)

2. Constants L(f), L(g) are not known
e Start from a guess.
@ Restart from scratch each time we see the guess is wrong.

@ The guess is doubled after restart.

3. Tracking the record value £

Double run. Other ideas are welcome!
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Application examples

Observations:

@ Very often, Large- and Huge- scale problems have repetitive sparsity
patterns and/or limited connectivity.

» Social networks.

Mobile phone networks.

Truss topology design (local bars).

Finite elements models (2D: four neighbors, 3D: six neighbors).

v vy

@ For p-diagonal matrices k(A) < p?.
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Nonsmooth formulation of Google Problem

Main property of spectral radius (A > 0)

If A€ REX", then p(A) = min max (e, Ax).

The minimum is attained at the corresponding eigenvector.

Since p(E) = 1, our problem is as follows:

def = ; .
f(x) = max[(e, Ex) —xD] =  min.
() X maxl(enBx)—x] - min
Interpretation: Maximizing the self-esteem!
Since f* = 0, we can apply Polyak’s method with sparse updates.
Additional features; the optimal set X* is a convex cone.
If xg = e, then the whole sequence is separated from zero:

(el < xig) < Xl Iadloe = (57 €) - x| oo

Goal:  Find X > 0 such that ||X||s > 1 and f(X) <e.
(First condition is satisfied automatically.)
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Computational experiments: lteration Cost

We compare Polyak's GM with sparse update (GMs) with the standard

one (GM).

Setup: Each agent has exactly p random friends. Thus, k(A) ~ p2.

Iteration Cost: GM, ~ p?log, N, GM ~ pN.

Time for 10* iterations (p = 32)

Time for 103 iterations (p = 16)

N (A GM, | GM N (A GM,| GM
1024 | 1632 | 3.00 2.98 131072 | 576 | 0.19 | 213.9
2048 | 1792 | 3.36 6.41 262144 | 592 | 0.25 | 477.8
4096 | 1888 | 3.75 | 15.11 524288 | 592 | 0.32 | 1095.5
8192 | 1920 | 4.20 | 139.92 1048576 | 608 | 0.40 | 2590.8
16384 | 1824 | 4.69 | 408.38 1 sec =~ 100 min!
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