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Introduction

Focus on maximum eigenvalue minimization

in the variable z € R™, with 4; € S,,, c € R™,

m The set (Q is convex and simple, i.e. projections on () can be computed with
low complexity.

m We also implicitly assume that n is large while the target precision € and the
cost of forming A(x) = Ag+ > ., x;A; remain relatively modest (e.g. A;
sparse).
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Introduction

m All semidefinite programs with constant trace can be expressed in this way.

m In particular, many semidefinite relaxations of combinatorial problems fall in
this setting (large n, modest precision target).

= The objective is non differentiable but can be regularized (more later).

A. d'Aspremont U. Liege, February 2012. 3/30



Introduction

Solve

. )\max A r
N Amax (A(2)) + ¢ 2

using projected subgradient.

Input: A starting point xg € R™.
1: fort =0to N —1 do
2. Set
Tir1 = Po(re — Y0 Amax(A(7))).
3. end for
Output: A point = = (1/N)>,, z;.

= Here, v > 0 and Pg(-) is the Euclidean projection on Q).

m The number of iterations required to reach a target precision € is

D2 M?
N=—"%

€

where Dy, is the diameter of Q) and ||[0Apmax(A(2))|| < M on Q.
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Introduction

The cost per iteration is the sum of

m The cost pg of computing the Euclidean projection on ().

= The cost of computing OAmax(A(z)) which is e.g. vvi where vy is a leading
eigenvector of X.

Computing one leading eigenvector of a dense matrix X with relative precision e,
using a randomly started Lanczos method, with probability of failure 1 — ¢, costs

5 <n2 10%7;/52))

flops [Kuczynski and Wozniakowski, 1992, Th.4.2].
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Introduction

Solving min x e Amax(A(x)) using projected subgradient.

m Easy to implement.

= Very poor performance in practice. The 1/¢* dependence is somewhat
punishing. . .

Example below on MAXCUT.
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Introduction

[Nesterov, 2007a] We can regularize the objective and solve

min f,(z) £ plog T (eXp (A(:v)>>

e v

for some regularization parameter > 0 (exp(-) is the matrix exponential here).

m If we set u = ¢/logn we get

Amax(A(7)) < fu(r) < Amax(A(T)) + €

m The gradient V f,(x) is Lipschitz continuous with constant

|A[* log n

€

where ||A| = sup <1 [|A(R)]|2-
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Introduction

m The number of iterations required to get an ¢ solution using the smooth
minimization algorithm in Nesterov [1983] grows as

|AllV1ogn [d(z*)

where d(-) is strongly convex with parameter o > 0.

= The cost per iteration is (usually) dominated by the cost of forming the
matrix exponential
(A(CU))
exp
L

which is O(n?) flops [Moler and Van Loan, 2003].

m Much better empirical performance.
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Introduction

This means that the two classical complexity options for solving

. max A
il Amax (A(2))

(assuming A(z) cheap)

s Subgradient methods

O (Dé(”? log n + p@))

62

= Smooth optimization

O (DQ@(ng +pQ)>

if we pick || - ||5 in the prox term.
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Introduction

Approximate gradient is often enough. This means computing only a few leading
eigenvectors.

5 10 15 20 25 30

Spectrum of exp((X — Apax(X)I)/0.1) at the MAXCUT solution.
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Introduction

[d' Aspremont, 2008] Convergence guarantees using approximate gradients.

If Vf(x) is the approximate gradient, we require

~

|<Vf(£l?) —Vf(a:),y—z)\ < 0 x,Y,z € Qa

hence the condition depends on the diameter of (). For example, to solve

minimize  Apax(A + X)
subject to | X, < p

we only compute the j largest eigenvalues of A + X, with j such that

(n —j)e’\j\/Zizl e L vn —jeM o0
(ios ) Y T

The impact of the diameter makes these conditions quite conservative.
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Introduction

Other conditions (often less stringent) are detailed in [Devolder, Glineur, and
Nesterov, 2011] when solving

min max V(x,u)
reQ@ ueU

If u, is an approximate solution to max,cyy ¥(x,u), we can check Vi(uz) <46

T(u —uy)

Vi(ugz) = maxyecy VaV(z, uy)
Vo(uy) = maxycy {\I!(x, u) — V(x,uz) + Kl|lu — uxHZ/Q}

VS(ux) — MaXyecUu \I/(ZC,U) o \Ij(x7ua})

where

m The target accuracy ¢ on the oracle is a function of the target accuracy e.

m Not clear yet if they can be tested independently of the diameter.
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Introduction

m Approximate gradients reduce empirical complexity. No a priori bounds on
iteration cost.

m More efficient to run a lot of cheaper iterations, everything else being equal.

Objectives

m Keep some of the performance of smooth methods, while lowering the cost of
smoothing?

m Get a more refined understanding of the iteration complexity versus
convergence speed tradeoff?

One possible solution here: stochastic gradient approximations.
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Outline

= Introduction
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s Maximum Eigenvalue Minimization
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Stochastic Smoothing

Gaussian smoothing. Suppose f(z) : R™ — R is Lipschitz continuous w.r.t. the
Euclidean norm, with constant u. The function

9(z) = E[f (z + (¢/v/n)u)]
where u ~ N(0,1,) and o > 0, has a Lipschitz continuous gradient with

204m
|Vg(z) = Vo)l < =lle —y].

Used in e.g. [Nesterov, 2011] to get explicit complexity bounds on gradient free
optimization methods.

m g(X) = E[Auax(X + (6/n)U] where U € S,, is a symmetric matrix with
standard normal upper triangle coefficients, has a Lipschitz continuous gradient
with constant

= A smooth algorithm (if implementable) would require O(n?/2) iterations.
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Stochastic Smoothing

Gradient smoothness. Call f(X) = A\pax(X), define

. O*f(X +tY
9(X,Y) = lim (tg )

and L; > 0 such that
IVA(X) = Vg(Y)[l < Ly[| X = Y|

we have |
Ly =supg(X,Y)=sup

XY x 2(A1(X) = A2(X))

The spectral gap controls the gradient's smoothness.
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Stochastic Smoothing

Rank one updates. Suppose D € S,,, we have almost explicit expressions for the
eigenvalue decomposition of the matrix

X + oun?t

where v € R™ and o > 0.

s W.l.o.g. we can assume D is diagonal (just change u).

s If we write A\ (X + cuu?) = A (X) + 1, we know that
n>0 ifu;#0fori=1,....n

T

m The eigenvalues of X and X + cuu’ are interlaced.

m The increment n* is the unique positive root of the secular equation

=0

2 n 2
1

n 1l uy u
S0 2 T A N S M) S
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Stochastic Smoothing

)\1(X) AM(X)+n"

4 > 0o 2 y 6
AM(X) +7n

Spectrum of X is {—2,—2,0, 1}, fourth eigenvalue of X + cuu! at -2.
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Stochastic Smoothing

m [ he function

is an upper bound on s(n).

= This means that the root of s™(n) is a lower bound on 1* and we get

m Together with interlacing, this yields

Ao (X + ouu®) < M (X) < M(X) + 1" < (X +ouu?)

Finally, we get a lower bound on the spectral gap

2
M (X + ouu’) = Xao(X + ount) > b}
o
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Stochastic Smoothing

Rank one Gaussian smoothing. Suppose we pick ©v € R™ with i.i.d.
u; ~ N(0,1) and define

F(X) = EAmax(X + (e/n)uu’)]
for some € > 0.
= Because uu! = 0 and \(-) is 1-Lipschitz

Amax(X) < EDmax(X + (6/n)un?)] < Amax(X) + €

m [he Gaussian distribution is rotationally invariant, so the spectral gap is

bounded below by

€ u2

n
where u; ~ N(0,1).

Unfortunately E[1/uf] = 400, easy to fix. . .
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Stochastic Smoothing

Max-rank one Gaussian smoothing. Suppose we pick u; € R™ with i.i.d.
WUgg ~ N(O, 1) and define

f(X)=E Z.:nglaw;k)\maX(X + (e/n)uzu,LT)

m Approximation results are preserved up to a constant c; > 0

Amax(X) < Emax(X + (6/n)uu’)] < Apax(X) + cre

m [he Gaussian distribution is rotationally invariant, so the spectral gap is

bounded below by

2
€ uy

1

max
i=l,...k M

where wu; are i.i.d. with u; 1 ~ N(0,1).

= The complexity of computing max;—1, .k Amax(X + (€/n)u;ul) is

O(kn?logn).
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Stochastic Smoothing

Max-rank one Gaussian smoothing. The function

1=1,....k

) = B[ 1 A X+ (¢/ )|

Is smooth and the Lipschitz constant of its gradient is bounded by

n , 1
— 1min 5
26 'l::].,...,k: u’l, 1

Ly <E SC’].CE
€

where C), < oo when k > 3.
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Stochastic Smoothing

Gradient variance. We have
EMmaX(X) = ’Ul(X)’Ul(X)T
where v1(X) is a leading eigenvector of X.

m We have, when D is diagonal

U;

A (D + uuT) — (D)

(D +uu'); =c

where ¢ > 0 i1s a normalization term.

= By symmetry, when u is Gaussian, A = E[v(X + vul)v (X +uu?)1] is
diagonal, with
E[Tr (v;0] — A)%] = 1 — Tr 42,
where Tr A = 1 with A4;; > 0.

This means that E[Tr (viv] — A) ’]'is of order 1.
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Maximum Eigenvalue Minimization

Solve maximum eigenvalue minimization after stochastic smoothing

m
. €
min E | max Apax | Ao + g r;A; + —uju;‘-F + 'y
TEQ 7=1,...,3 — n

1=

in the variable x € R™, with A; € S,,, ¢ € R™ and the u; are Gaussian.

We use an optimal stochastic minimization algorithm in [Lan, 2009] which is a
generalization of the algorithm in Nesterov [1983].
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Maximum Eigenvalue Minimization

Optimal Stochastic Composite Optimization. The algorithm in Lan [2009]

solves

;Iéicgl U(z) £ f(z) + h(x)

with the following assumptions

= f(x) has Lipschitz gradient with constant L and h(z) is Lipschitz with
constant M,

= we have a stochastic oracle G(x,&;) for the gradient, which satisfies

E[G(z,&)] = g(z) € 0¥(z) and  E[|G(z,&) — g(2)[i] < o

After N iterations, the iterate x 1 satisfies

8LD? 4D, oV 4M? + o2
N?2 VN

which is optimal. Additional assumptions guarantee convergence w.h.p.
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Maximum Eigenvalue Minimization

Stochastic line search.

m The bounds on variance and smoothness are very conservative.

m Line search allows to take full advantage of the smoothness of A .x(X)
outside of pathological areas.

Monotonic line search. In Lan [2009], we test

Uyl 641) < U(z], &) + (G(a, &), Tyly — zy)

Q
+ %9 — ™2 L o M|z, — g
it — 2+ 2 Mt — o]

while decreasing the step size monotonically across iterations.
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Maximum Eigenvalue Minimization

Optimal Smooth Stochastic Minimization with Line Search.

Input: An initial point 2% = 1 = % € R", an iteration counter t = 1, the
number of iterations IV, line search parameters ™" ~™T ~d ~ > (), with
d
v¢ < 1.
1: Set v = ™M®
2: fortzltoNdo
d _ 209
3. Define z}* t+1xt 4 ¢ t+1
Call the stochastic gradient oracle to get G(x"?, &;).
repeat
Set v, =
Compute the prox mapping Tip1 = P, (1:G (279, &)).
t—1 ag
Set z}{) = £HTr41 + {517

until U(2yY,,§41) <

\Ij(xgndaft)"% ( aft) xt+1 Ztnd> th+1_37t d||2‘|‘2MH$t+1 x?dH
or v < /™" |f exit condition fails, set fy vv® and go back to step 5.

10:  Set v = max {7™", v}.

11: end for

Output: A point z/ ;.

(t+1)7

© o N o 9 A
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Maximum Eigenvalue Minimization

For maximum eigenvalue minimization

m We have o0 < 1, but we can reduce this by averaging g gradients, to control the
tradeoff between smooth and non-smooth terms.

m If we set ¢ = max{1, Dg/(e\/n)} and N = 2Dg+/n/e we get the following
complexity picture

Complexity | Num. of Iterations Cost per lteration
Nonsmooth alg. O (2—2?9) O(pg + n?logn)
Smooth stochastic alg. @) (DQT\/H) O (pQ + max {1, GDTQH} n? log n)

Smoothing alg. O (DQ\/em> O(pg + n?)
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Conclusion

m Stochastic smoothing with a few eigenvalues.

m Explicit control of the iteration cost versus smoothness tradeoff.

Some open problems. . .

m Not clear how to get convergence with high probability.

m Stochastic algorithm with non monotonic step sizes?
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