Semidefinite Programming on a Shoestring

Alexandre d'Aspremont, CNRS & Ecole Polytechnique.

Joint work with **Noureddine El Karoui**, *U.C. Berkeley*.

Support from NSF, ERC and Google.

Focus on maximum eigenvalue minimization

$$\min_{x \in Q} \lambda_{\max} \left(A_0 + \sum_{i=1}^m x_i A_i \right) + c^T x$$

in the variable $x \in \mathbb{R}^m$, with $A_i \in \mathbf{S}_n$, $c \in \mathbb{R}^m$.

- The set Q is convex and simple, i.e. projections on Q can be computed with low complexity.
- We also implicitly assume that n is large while the target precision ϵ and the cost of forming $A(x) = A_0 + \sum_{i=1}^m x_i A_i$ remain relatively modest (e.g. A_i sparse).

- All semidefinite programs with constant trace can be expressed in this way.
- In particular, many semidefinite relaxations of combinatorial problems fall in this setting (large n, modest precision target).
- The objective is non differentiable but can be regularized (more later).

Solve

$$\min_{x \in Q} \lambda_{\max} \left(A(x) \right) + c^T x$$

using projected subgradient.

Input: A starting point $x_0 \in \mathbb{R}^m$.

1: **for** t = 0 to N - 1 **do**

2: Set

$$x_{t+1} = P_Q(x_t - \gamma \partial \lambda_{\max}(A(x))).$$

3: end for

Output: A point $x = (1/N) \sum_{t=1}^{N} x_t$.

- Here, $\gamma > 0$ and $P_Q(\cdot)$ is the Euclidean projection on Q.
- $lue{}$ The number of iterations required to reach a target precision ϵ is

$$N = \frac{D_Q^2 M^2}{\epsilon^2}$$

where D_Q is the diameter of Q and $\|\partial \lambda_{\max}(A(x))\| \leq M$ on Q.

The **cost per iteration** is the sum of

- The cost p_Q of computing the Euclidean projection on Q.
- The cost of computing $\partial \lambda_{\max}(A(x))$ which is e.g. $v_1v_1^T$ where v_1 is a leading eigenvector of X.

Computing one leading eigenvector of a dense matrix X with relative precision ϵ , using a randomly started Lanczos method, with probability of failure $1 - \delta$, costs

$$O\left(\frac{n^2\log(n/\delta^2)}{\sqrt{\epsilon}}\right)$$

flops [Kuczynski and Wozniakowski, 1992, Th.4.2].

Solving $\min_{X \in Q} \lambda_{\max}(A(x))$ using projected subgradient.

- Easy to implement.
- \blacksquare Very poor performance in practice. The $1/\epsilon^2$ dependence is somewhat punishing. . .

Example below on MAXCUT.

[Nesterov, 2007a] We can regularize the objective and solve

$$\min_{x \in Q} f_{\mu}(x) \triangleq \mu \log \mathbf{Tr} \left(\exp \left(\frac{A(x)}{\mu} \right) \right)$$

for some regularization parameter $\mu > 0$ (exp(·) is the **matrix** exponential here).

If we set $\mu = \epsilon/\log n$ we get

$$\lambda_{\max}(A(x)) \le f_{\mu}(x) \le \lambda_{\max}(A(x)) + \epsilon$$

■ The gradient $\nabla f_{\mu}(x)$ is Lipschitz continuous with constant

$$\frac{\|A\|^2 \log n}{\epsilon}$$

where $||A|| = \sup_{\|h\| \le 1} ||A(h)||_2$.

The number of iterations required to get an ϵ solution using the **smooth** minimization algorithm in Nesterov [1983] grows as

$$\frac{\|A\|\sqrt{\log n}}{\epsilon}\sqrt{\frac{d(x^*)}{\sigma}}$$

where $d(\cdot)$ is strongly convex with parameter $\sigma > 0$.

The cost per iteration is (usually) dominated by the cost of forming the matrix exponential

$$\exp\left(\frac{A(x)}{\mu}\right)$$

which is $O(n^3)$ flops [Moler and Van Loan, 2003].

Much better empirical performance.

This means that the two classical complexity options for solving

$$\min_{X \in Q} \lambda_{\max}(A(x))$$

(assuming A(x) cheap)

Subgradient methods

$$O\left(\frac{D_Q^2(n^2\log n + p_Q)}{\epsilon^2}\right)$$

Smooth optimization

$$O\left(\frac{D_Q\sqrt{\log n}(n^3+p_Q)}{\epsilon}\right)$$

if we pick $\|\cdot\|_2^2$ in the prox term.

Approximate gradient is often enough. This means computing only a few leading eigenvectors.

Spectrum of $\exp((X - \lambda_{\max}(X)\mathbf{I})/0.1)$ at the MAXCUT solution.

[d'Aspremont, 2008] Convergence guarantees using approximate gradients.

If $\tilde{\nabla} f(x)$ is the approximate gradient, we require

$$|\langle \tilde{\nabla} f(x) - \nabla f(x), y - z \rangle| \le \delta \quad x, y, z \in Q,$$

hence the condition depends on the diameter of Q. For example, to solve

minimize
$$\lambda_{\max}(A+X)$$
 subject to $|X_{ij}| \leq \rho$

we only compute the j largest eigenvalues of A + X, with j such that

$$\frac{(n-j)e^{\lambda_j}\sqrt{\sum_{i=1}^j e^{2\lambda_i}}}{(\sum_{i=1}^j e^{\lambda_i})^2} + \frac{\sqrt{n-j} e^{\lambda_j}}{\sum_{i=1}^j e^{\lambda_i}} \le \frac{\delta}{\rho n}.$$

The impact of the diameter makes these conditions quite conservative.

Other conditions (often less stringent) are detailed in [Devolder, Glineur, and Nesterov, 2011] when solving

$$\min_{x \in Q} \ \max_{u \in U} \Psi(x, u)$$

If u_x is an approximate solution to $\max_{u \in U} \Psi(x, u)$, we can check $V_i(u_x) \leq \delta$

$$V_1(u_x) = \max_{u \in U} \nabla_2 \Psi(x, u_x)^T (u - u_x)$$

$$V_2(u_x) = \max_{u \in U} \{ \Psi(x, u) - \Psi(x, u_x) + \kappa ||u - u_x||^2 / 2 \}$$

$$V_3(u_x) = \max_{u \in U} \Psi(x, u) - \Psi(x, u_x)$$

where

$$V_1(u_x) \le V_2(u_x) \le V_3(u_x) \le \delta$$

- The target accuracy δ on the oracle is a function of the target accuracy ϵ .
- Not clear yet if they can be tested independently of the diameter.

- Approximate gradients reduce empirical complexity. No a priori bounds on iteration cost.
- More efficient to run a lot of cheaper iterations, everything else being equal.

Objectives

- Keep some of the performance of smooth methods, while lowering the cost of smoothing?
- Get a more refined understanding of the iteration complexity versus convergence speed tradeoff?

One possible solution here: stochastic gradient approximations.

Outline

- Introduction
- Stochastic Smoothing
- Maximum Eigenvalue Minimization

Gaussian smoothing. Suppose $f(x): \mathbb{R}^n \to \mathbb{R}$ is Lipschitz continuous w.r.t. the Euclidean norm, with constant μ . The function

$$g(x) = \mathbf{E}[f(x + (\sigma/\sqrt{n})u)]$$

where $u \sim \mathcal{N}(0, \mathbf{I}_n)$ and $\sigma > 0$, has a Lipschitz continuous gradient with

$$\|\nabla g(x) - \nabla g(y)\| \le \frac{2\mu n}{\sigma} \|x - y\|.$$

Used in e.g. [Nesterov, 2011] to get explicit complexity bounds on gradient free optimization methods.

• $g(X) = \mathbf{E}[\lambda_{\max}(X + (\sigma/n)U]$ where $U \in \mathbf{S}_n$ is a symmetric matrix with standard normal upper triangle coefficients, has a Lipschitz continuous gradient with constant

 $O\left(\frac{n^3}{\sigma}\right)$

A smooth algorithm (if implementable) would require $O(n^{3/2})$ iterations.

Gradient smoothness. Call $f(X) = \lambda_{\max}(X)$, define

$$g(X,Y) = \lim_{t \to 0} \frac{\partial^2 f(X + tY)}{t^2}$$

and $L_f > 0$ such that

$$\|\nabla f(X) - \nabla g(Y)\| \le L_f \|X - Y\|$$

we have

$$L_f = \sup_{X,Y} g(X,Y) = \sup_X \frac{1}{2(\lambda_1(X) - \lambda_2(X))}$$

The spectral gap controls the gradient's smoothness.

Rank one updates. Suppose $D \in \mathbf{S}_n$, we have almost explicit expressions for the eigenvalue decomposition of the matrix

$$X + \sigma u u^T$$

where $u \in \mathbb{R}^n$ and $\sigma > 0$.

- W.I.o.g. we can assume D is diagonal (just change u).
- If we write $\lambda_1(X + \sigma uu^T) = \lambda_1(X) + \eta$, we know that

$$\eta > 0$$
 if $u_i \neq 0$ for $i = 1, \dots, n$

- The eigenvalues of X and $X + \sigma uu^T$ are interlaced.
- The increment η^* is the unique positive root of the **secular equation**

$$s(\eta) \triangleq \frac{1}{\sigma} - \frac{u_1^2}{\eta} - \sum_{i=2}^n \frac{u_i^2}{(\lambda_1(X) - \lambda_i(X)) + \eta} = 0$$

Spectrum of X is $\{-2,-2,0,1\}$, fourth eigenvalue of $X+\sigma uu^T$ at -2.

The function

$$s^+(\eta) \triangleq \frac{1}{\sigma} - \frac{u_1^2}{\eta}$$

is an upper bound on $s(\eta)$.

■ This means that the root of $s^+(\eta)$ is a **lower bound** on η^* and we get

$$\eta^* \ge \frac{u_1^2}{\sigma}$$

Together with interlacing, this yields

$$\lambda_2(X + \sigma u u^T) \le \lambda_1(X) \le \lambda_1(X) + \eta^* \le \lambda_1(X + \sigma u u^T)$$

Finally, we get a lower bound on the spectral gap

$$\lambda_1(X + \sigma u u^T) - \lambda_2(X + \sigma u u^T) \ge \frac{u_1^2}{\sigma}$$

Rank one Gaussian smoothing. Suppose we pick $u \in \mathbb{R}^n$ with i.i.d. $u_i \sim \mathcal{N}(0,1)$ and define

$$f(X) = \mathbf{E}[\lambda_{\max}(X + (\epsilon/n)uu^T)]$$

for some $\epsilon > 0$.

■ Because $uu^T \succeq 0$ and $\lambda(\cdot)$ is 1-Lipschitz

$$\lambda_{\max}(X) \le \mathbf{E}[\lambda_{\max}(X + (\epsilon/n)uu^T)] \le \lambda_{\max}(X) + \epsilon$$

 The Gaussian distribution is rotationally invariant, so the spectral gap is bounded below by

$$\frac{\epsilon u_1^2}{n}$$

where $u_1 \sim \mathcal{N}(0,1)$.

Unfortunately $\mathbf{E}[1/u_1^2] = +\infty$, easy to fix. . .

Max-rank one Gaussian smoothing. Suppose we pick $u_i \in \mathbb{R}^n$ with i.i.d. $u_{ij} \sim \mathcal{N}(0,1)$ and define

$$f(X) = \mathbf{E} \left[\max_{i=1,\dots,k} \lambda_{\max}(X + (\epsilon/n)u_i u_i^T) \right]$$

• Approximation results are preserved up to a constant $c_k > 0$

$$\lambda_{\max}(X) \le \mathbf{E}[\lambda_{\max}(X + (\epsilon/n)uu^T)] \le \lambda_{\max}(X) + c_k \epsilon$$

 The Gaussian distribution is rotationally invariant, so the spectral gap is bounded below by

$$\max_{i=1,\dots,k} \frac{\epsilon \ u_{i,1}^2}{n}$$

where u_i are i.i.d. with $u_{i,1} \sim \mathcal{N}(0,1)$.

■ The complexity of computing $\max_{i=1,...,k} \lambda_{\max}(X + (\epsilon/n)u_iu_i^T)$ is

$$O(kn^2 \log n)$$
.

Proposition 1

Max-rank one Gaussian smoothing. The function

$$f(X) = \mathbf{E} \left[\max_{i=1,\dots,k} \lambda_{\max}(X + (\epsilon/n)u_i u_i^T) \right]$$

is smooth and the Lipschitz constant of its gradient is bounded by

$$L_f \le \mathbf{E} \left[\frac{n}{2\epsilon} \left(\min_{i=1,\dots,k} \frac{1}{u_{i,1}^2} \right) \right] \le C_k \frac{n}{\epsilon}$$

where $C_k < \infty$ when $k \geq 3$.

Gradient variance. We have

$$\partial \lambda_{\max}(X) = v_1(X)v_1(X)^T$$

where $v_1(X)$ is a leading eigenvector of X.

lacktriangle We have, when D is diagonal

$$v_1(D + uu^T)_i = c \frac{u_i}{\lambda_1(D + uu^T) - \lambda_i(D)}$$

where c > 0 is a normalization term.

By symmetry, when u is Gaussian, $A = \mathbf{E}[v_1(X + uu^T)v_1(X + uu^T)^T]$ is diagonal, with

$$\mathbf{E}[\mathbf{Tr}\left(v_1v_1^T - A\right)^2] = 1 - \mathbf{Tr}A^2,$$

where $\operatorname{Tr} A = 1$ with $A_{ii} \geq 0$.

This means that $\mathbf{E}[\mathbf{Tr} (v_1 v_1^T - A)^2]$ is of order 1.

Outline

- Introduction
- Stochastic Smoothing
- Maximum Eigenvalue Minimization

Solve maximum eigenvalue minimization after stochastic smoothing

$$\min_{x \in Q} \mathbf{E} \left[\max_{j=1,\dots,3} \lambda_{\max} \left(A_0 + \sum_{i=1}^m x_i A_i + \frac{\epsilon}{n} u_j u_j^T \right) \right] + c^T x$$

in the variable $x \in \mathbb{R}^m$, with $A_i \in \mathbf{S}_n$, $c \in \mathbb{R}^m$ and the u_j are Gaussian.

We use an optimal stochastic minimization algorithm in [Lan, 2009] which is a generalization of the algorithm in Nesterov [1983].

Optimal Stochastic Composite Optimization. The algorithm in Lan [2009] solves

$$\min_{x \in Q} \Psi(x) \triangleq f(x) + h(x)$$

with the following assumptions

- f(x) has Lipschitz gradient with constant L and h(x) is Lipschitz with constant M,
- we have a **stochastic oracle** $G(x, \xi_t)$ for the gradient, which satisfies

$$\mathbf{E}[G(x,\xi_t)] = g(x) \in \partial \Psi(x) \quad \text{and} \quad \mathbf{E}[\|G(x,\xi_t) - g(x)\|_*^2] \le \sigma^2$$

After N iterations, the iterate x_{N+1} satisfies

$$\mathbf{E}\left[\Psi(x_{N+1}^{ag}) - \Psi^*\right] \le \frac{8LD_{\omega,Q}^2}{N^2} + \frac{4D_{\omega,Q}\sqrt{4\mathcal{M}^2 + \sigma^2}}{\sqrt{N}}$$

which is optimal. Additional assumptions guarantee convergence w.h.p.

Stochastic line search.

- The bounds on variance and smoothness are very conservative.
- Line search allows to take full advantage of the smoothness of $\lambda_{\max}(X)$ outside of pathological areas.

Monotonic line search. In Lan [2009], we test

$$\Psi(x_{t+1}^{ag}, \xi_{t+1}) \leq \Psi(x_t^{md}, \xi_t) + \langle G(x_t^{md}, \xi_t), x_{t+1}^{ag} - x_t^{md} \rangle
+ \frac{\alpha}{4\gamma_t \beta_t} ||x_{t+1}^{ag} - x_t^{md}||^2 + 2\mathcal{M} ||x_{t+1}^{ag} - x_t^{md}||$$

while decreasing the step size monotonically across iterations.

Optimal Smooth Stochastic Minimization with Line Search.

Input: An initial point $x^{ag}=x_1=x^w\in\mathbb{R}^n$, an iteration counter t=1, the number of iterations N, line search parameters $\gamma^{min}, \gamma^{max}, \gamma^d, \gamma>0$, with $\gamma^d<1$.

- 1: Set $\gamma = \gamma^{max}$.
- 2: for t=1 to N do
- 3: Define $x_t^{md} = \frac{2}{t+1}x_t + \frac{t-1}{t+1}x_t^{ag}$
- 4: Call the stochastic gradient oracle to get $G(x_t^{md}, \xi_t)$.
- 5: repeat
- 6: Set $\gamma_t = \frac{(t+1)\gamma}{2}$.
- 7: Compute the prox mapping $x_{t+1} = P_{x_t}(\gamma_t G(x_t^{md}, \xi_t))$.
- 8: Set $x_{t+1}^{ag} = \frac{2}{t+1}x_{t+1} + \frac{t-1}{t+1}x_t^{ag}$.
- 9: **until** $\Psi(x_{t+1}^{ag}, \xi_{t+1}) \le$

$$\Psi(x_t^{md}, \xi_t) + \langle G(x_t^{md}, \xi_t), x_{t+1}^{ag} - x_t^{md} \rangle + \frac{\alpha \gamma^d}{4\gamma} \|x_{t+1}^{ag} - x_t^{md}\|^2 + 2\mathcal{M} \|x_{t+1}^{ag} - x_t^{md}\|$$
or $\alpha \leq \alpha^{min}$. If exit condition fails, set $\alpha = \alpha \alpha^d$ and go back to stop 5.

or $\gamma \leq \gamma^{min}$. If exit condition fails, set $\gamma = \gamma \gamma^d$ and go back to step 5.

- 10: Set $\gamma = \max \{ \gamma^{min}, \gamma \}$.
- 11: end for

Output: A point x_{N+1}^{ag} .

For maximum eigenvalue minimization

- We have $\sigma \leq 1$, but we can reduce this by averaging q gradients, to control the tradeoff between smooth and non-smooth terms.
- If we set $q=\max\{1,D_Q/(\epsilon\sqrt{n})\}$ and $N=2D_Q\sqrt{n}/\epsilon$ we get the following complexity picture

Complexity	Num. of Iterations	Cost per Iteration
Nonsmooth alg.	$O\left(\frac{D_Q^2}{\epsilon^2}\right)$	$O(p_Q + n^2 \log n)$
Smooth stochastic alg.	$O\left(\frac{D_Q\sqrt{n}}{\epsilon}\right)$	$O\left(p_Q + \max\left\{1, \frac{D_Q}{\epsilon\sqrt{n}}\right\} n^2 \log n\right)$
Smoothing alg.	$O\left(\frac{D_Q\sqrt{\log n}}{\epsilon}\right)$	$O(p_Q + n^3)$

Conclusion

- Stochastic smoothing with a few eigenvalues.
- Explicit control of the iteration cost versus smoothness tradeoff.

Some open problems. . .

- Not clear how to get convergence with high probability.
- Stochastic algorithm with non monotonic step sizes?

References

- A. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. *Cell Biology*, 96:6745–6750, 1999.
- A. d'Aspremont. Smooth optimization with approximate gradient. SIAM Journal on Optimization, 19(3):1171-1183, 2008.
- O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization with inexact oracle. *CORE Discussion Papers*, (2011/02), 2011.
- J. Kuczynski and H. Wozniakowski. Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl, 13(4):1094–1122, 1992.
- G. Lan. An optimal method for stochastic composite optimization. *Technical report, School of Industrial and Systems Engineering, Georgia Institute of Technology, 2009*, 2009.
- C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. *SIAM Review*, 45(1):3–49, 2003.
- Y. Nesterov. A method of solving a convex programming problem with convergence rate $O(1/k^2)$. Soviet Mathematics Doklady, 27(2): 372–376, 1983.
- Y. Nesterov. Smoothing technique and its applications in semidefinite optimization. *Mathematical Programming*, 110(2):245–259, 2007a.
- Y. Nesterov. Gradient methods for minimizing composite objective function. CORE DP2007/96, 2007b.
- Y. Nesterov. Random gradient-free minimization of convex functions. CORE Discussion Papers, 2011.