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Outline

Outline

The (two page) crossing numbers of complete bipartite graphs.

A nonconvex quadratic programming relaxation of the two page crossing
number of Km,n.

A semidefinite programming relaxation of the quadratic program and its
implications.
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Definitions

What is semidefinite programming?

Standard form problem

min
X�0
〈A0,X 〉 subject to 〈Ak ,X 〉 = bk (k = 1, . . . ,m),

where the symmetric data matrices Ai (i = 0, . . . ,m) are linearly independent.

The inner product is the Euclidean one: 〈A0,X 〉 = trace(A0X );

X � 0: X symmetric positive semi-definite.
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Definitions

Why is semidefinite programming interesting?

Many applications in control theory, combinatorial optimization, structural
design, electrical engineering, quantum computing, etc.

There are polynomial-time interior-point algorithms available to solve these
problems to any fixed accuracy.
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Definitions

How do we know this?
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Definitions

The authors ...

... at the HPOPT 2008 conference in Tilburg.
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Definitions

Crossing number of a graph

Definition

The crossing number cr(G ) of a graph G = (V ,E ) is the minimum number of
edge crossings that can be achieved in a drawing of G in the plane.

Example: the complete bipartite graph

An optimal drawing of K4,5 with cr(K4,5) = 8 edge crossings.
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Definitions

Two-page crossing number of a graph

Definition

In a two-page drawing of G = (V ,E ) all vertices V must be drawn on a straight
line (resp. circle) and all edges either above/below the line (resp. inside/outside
the circle). The two-page crossing number ν2(G ) corresponds to two-page
drawings of G .

Example: the complete graph K5

Equivalent two-page drawings of K5 with ν2(K5) = 1 crossing.
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Applications and hardness results

Applications and complexity

Crossing numbers are of interest for graph visualization, VLSI design,
quantum dot cellular automata, ...

It is NP-hard to compute cr(G ) or ν2(G ) [Garey-Johnson (1982), Masuda et al.

(1987)];

The (two-page) crossing numbers of Kn and Kn,m are only known for some
special cases ...

Crossing number of Kn,m known as Turán brickyard problem — posed by
Paul Turán in the 1940’s.

Erdös and Guy (1973):

”Almost all questions that one can ask about crossing numbers remain unsolved.”
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Known results and conjectures

The Zarankiewicz conjecture

Km,n can be drawn in the plane with at most Z (m, n) edges crossing, where

Z (m, n) =

⌊
m − 1

2

⌋⌊
m

2

⌋⌊
n − 1

2

⌋⌊
n

2

⌋
.

A drawing of K4,5 with Z(4, 5) = 8 crossings.

Zarankiewicz conjecture (1954)

cr(Km,n)
?
= Z (m, n).

Known to be true for min{m, n} ≤ 6 (Kleitman, 1970), and some special cases.
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Known results and conjectures

The 2-page Zarankiewicz conjecture

The Zarankiewicz drawing may be mapped to a 2-page drawing:

”Straighten the dotted line”.

2-page Zarankiewicz conjecture

ν2(Km,n)
?
= Z (m, n).

Weaker conjecture since cr(G ) ≤ ν2(G ).
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Known results and conjectures

The (2-page) Harary-Hill conjecture

Conjecture (Harary-Hill (1963))

cr(Kn)
?
= ν2(Kn)

?
= Z (n) :=

1

4

⌊
n

2

⌋⌊
n − 1

2
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n − 2

2

⌋⌊
n − 3

2

⌋
NB: it is only known that cr(Kn) ≤ ν2(Kn) ≤ Z (n) in general.

Example: the complete graph K5

Optimal two-page drawings of K5 with Z (5) = 1 crossing.
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Known results and conjectures

Some known results

Theorem (De Klerk, Pasechnik, Schrijver (2007))

One has

1 ≥ lim
n→∞

cr(Kn)

Z (n)
≥ 0.8594, 1 ≥ lim

n→∞

cr(Km,n)

Z (m, n)
≥ 0.8594 if m ≥ 9,

Theorem (Pan and Richter (2007), Buchheim and Zheng (2007))

cr(Kn) = Z (n) if n ≤ 12, ν2(Kn) = Z (n) if n ≤ 14.
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New results

New results (this talk)

Theorem (De Klerk and Pasechnik (2011))

For the complete graph Kn, one has

1 ≥ lim
n→∞

ν2(Kn)

Z (n)
≥ 0.9253

and
ν2(Kn) = Z (n) if n ≤ 18 or n ∈ {20, 22}.

For the complete bipartite graph Km,n, one has

lim
n→∞

ν2(Km,n)

Z (m, n)
= 1 if m ∈ {7, 8}.
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New results

New results: outline of the proofs

For Kn:

The problem of computing ν2(Kn) has a formulation as a maximum cut
problem (Buchheim and Zheng (2007));

The new results for ν2(Kn) follow by computing the Goemans-Williamson
maximum cut bound for n = 899.

The Goemans-Williamson bound is computed using semidefinite
programming (SDP) software and using algebraic symmetry reduction.

For Km,n:

We will formulate a (nonconvex) quadratic programming (QP) lower bound
on ν2(Km,n).

Subsequently we compute an SDP lower bound on the QP bound for m = 7,
again using algebraic symmetry reduction.
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Results for Km,n

Drawings of Km,n

Consider a drawing of Km,n with the n coclique colored red, and the m coclique
blue.

Definition

Each red vertex r has a position p(r) ∈ {1, . . . ,m} in the drawing, and a set of
incident edges U(r) ⊆ {1, . . . ,m} drawn in the upper half plane. We say r is of
the type (p(r),U(r)). The set of all possible types is denoted by Types(m), i.e.
|Types(m)| = m2m.

b3b2b1 r b4 b5
xr ′

In the figure, r has type (p(r),U(r)) = (2, {1, 2, 3, 5}).
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Results for Km,n

A quadratic programming relaxation of ν2(Km,n)

We define a m2m ×m2m matrix Q with rows/colums indexed by Types(m).

Definition

Let σ, τ ∈ Types(m). Define Qτ,σ as the number of unavoidable edge crossings in
a 2-page drawing of K2,m, where the vertices from the 2-coclique have type σ and
τ respectively in the drawing.

Lemma

ν2(Km,n) ≥ n2

2

(
min
x∈∆

xTQx

)
− m(m − 1)n

4

where ∆ =

{
x ∈ Rm2m

∣∣∣∣ ∑τ∈Types(m) xτ = 1, xτ ≥ 0

}
is the standard simplex.

xτ is the fraction of red vertices of type τ .

This is a nonconvex quadratic program — we use a semidefinite
programming relaxation (next slide).
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Results for Km,n

A semidefinite programming relaxation of ν2(Km,n) (ctd)

Standard semidefinite programming relaxation:

min
x∈∆

xTQx ≥ min
{

trace(QX )
∣∣ trace(JX ) = 1, X � 0, X ≥ 0

}
,

where J is the all-ones matrix and X ≥ 0 means X is entrywise nonnegative.

We may perform symmetry reduction using the structure of Q ...

... namely Q is a block matrix with 2m × 2m circulant blocks (after
reordering rows/columns).

The reduced problem has 2m linear matrix inequalities involving
(2m−1)× (2m−1) matrices.
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Results for Km,n

Computational results and implications

We could compute the SDP bound for m = 7 to obtain

ν2(K7,n) ≥ (9/4)n2 − (21/2)n = Z (7, n)− O(n).

Since ν2(K8,n) ≥ 8ν2(K7,n)/6, we also get ν2(K8,n) ≥ 3n2− 14n = Z (8, n)−O(n).

Corollary

lim
n→∞

ν2(Km,n)/Z (m, n) = 1 for m = 7 and 8.

In words, the 2-page Zarankiewicz conjecture is true asymptotically for m = 7 and
8.
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Conclusion

Conclusion and summary

We demonstrated improved asymptotic lower bounds on ν2(Kn), ν2(K7,n),
and ν2(K8,n).

The proofs were computer-assisted, and the main tools were semidefinite
programming (SDP) relaxations and symmetry reduction.

The SDP relaxation was too large to solve for ν2(K9,n) — challenge for SDP
community.

Preprint available at Optimization Online and arXiv.
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Conclusion

And finally ...

Congratulations to Yurii!

Francqui Chair 2012.
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