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PART II: Digital control

▶ Chapter 1: Continuous-Time Averaged Modeling of DC-DC
Converters

▶ Chapter 2: The Digital Control Loop

▶ Hands-on: The complete design process

▶ Current Mode Control

PART II is based on the reference book [1] with same chapter
numbering.
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Chapter 1: Continuous-Time Averaged Modeling of
DC-DC Converters

▶ Digitally controlled switched-mode converters
▶ Converters transfer function

▶ Solving the time variance problem: averaging
▶ Solving the non-linearity problem: converter linearization
▶ Transfer function: buck converter example
▶ Another example: buck-boost converter
▶ Averaged small-signal models of basic converters
▶ Boost transfer function and right half-plane zero (RHPZ)
▶ State-space averaging

▶ The pulse width modulator
▶ Closed loop system

▶ Definition of the loop gain
▶ Loop including external perturbation
▶ Closed loop gain
▶ Relation between phase margin and stability

▶ Analog control loop design procedure
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Digitally controlled switched-mode converters

Excerpt of [1]:
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Pulse width modulated converter

Excerpt of [1]:

▶ We have tools to study LTI (Linear Time Invariant) systems
but,

▶ pulse width modulated converter are non-linear (M(D) is often
not linear) and time variant (switching).
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Solving the time variance problem: averaging
Excerpt of [1]:

To solve the time variance, we
apply the moving average
operator with period T :

⟨x(t)⟩T ≜
1

T

∫ t+T/2

t−T/2
x(τ)dτ.

The goal is to obtain a model of
averaged variables over a
switching period, this yields for
vo(t):

v̄o(t) ≜ ⟨vo(t)⟩Ts .
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Converter averaging: buck converter example

Excerpt of [1]:

All variables that are ”switched”
have to be averaged. For the

buck converter of figure (a), 2
variables have to be considered:

v̄x(t) ≈d(t)v̄g (t),

īg (t) ≈d(t)īL(t).

The resulting averaged model is
shown on figure (b).

Note: d(t) is not ”switched” and must not be averaged.
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Solving the non-linearity problem: converter linearization

Let us first define circuit variables as follows:

x̄(t) = X + ˆ̄x(t)

x̄(t): averaged value of variable x

X : dc component of variable x (= operating point)

ˆ̄x(t): small-signal value of variable x around X

Products of variables (source of non linearities) can be linearized:

x̄(t)ȳ(t) =(X + ˆ̄x(t))(Y + ˆ̄y(t))

=XY + X ˆ̄y(t) + ˆ̄x(t)Y + ˆ̄x(t)ˆ̄y(t)

≈XY + X ˆ̄y(t) + ˆ̄x(t)Y .
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Converter linearization: buck converter example

Excerpt of [1]:
The buck converter of figure (b)
can then be linearized:

v̄x(t) =Vx + ˆ̄vx(t)

=(D + d̂(t))(Vg + ˆ̄vg (t))

≈DVg + D ˆ̄vg (t) + d̂(t)Vg .

Therefore,

ˆ̄vx(t) ≈ D ˆ̄vg (t) + d̂(t)Vg .

In the same way,

ˆ̄ig (t) ≈ Dˆ̄iL(t) + d̂(t)IL.

The result of the linearization is shown on figure (c).
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Transfer function: buck converter example

Excerpt of [1]:

The small-signal transfer function of the buck converter is:

Gvd(s) ≜
ˆ̄vo(s)

d̂(s)

∣∣∣∣
ˆ̄vg=0,̂̄io=0

=Vg
1 + srCC

1 + s(rC + rL)C + s2LC

=Gvd0

1 + s
ωESR

1 + s
Qω0

+ s2

ω2
0

.
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Transfer function: buck converter example

In the previous equation, the constants are defined as follows:

Gvd0 ≜Vg ,

ωESR ≜
1

rCC
,

ω0 ≜
1√
LC

,

Q ≜
1

rC + rL

√
L

C
.
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Another example: buck-boost converter

To obtain the small-signal model of the buck-boost:

▶ write averaged values of v̄x(t), īx(t) and īg (t),

▶ linearize the averaged values to get ˆ̄vx(t),
ˆ̄ix(t) and

ˆ̄ig (t),

▶ draw the circuit that matches these linearized relationship.

Write the equations and draw the model
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Summary: averaged small-signal models of basic converters

Excerpt of [1]:

(a) Buck

(b) Boost

(c) Buck-Boost
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Boost transfer function and right half-plane zero (RHPZ)

The small-signal transfer function of the boost converter is also
obtained by solving the above circuit, but two controlled sources
are involved in this case (using superposition is a fast way to find
the solution):

Gvd(s) ≜
ˆ̄vo(s)

d̂(s)

∣∣∣∣
ˆ̄vg=0,̂̄io=0

=
(Vo
D′ − r ′LIL)− sL′IL
1 + sr ′LC + s2L′C

r ′L = rL
D′2 , L

′ = L
D′2 .

Interpretation with exponential response, step response and frequency domain
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State-space averaging: time variant model

State-space averaging is a generalization of the averaged
small-signal modeling. Let us consider a converter that evolves
between two structures S0 and S1. The structure depends on the
switches positions. The state-space equations are:

dx

dt
=Acx(t) + Bcv(t),

y(t) =Ccx(t) + Ecv(t).

x , v and y represent respectively the state, input and output
vectors. Ac , Bc , Cc , Ec are matrices that model the converter for
each switch position c ∈ {0, 1}. Let us now use define the PWM
signal c(t) and its complement c ′(t) = 1− c(t). We can now
rewrite the above equations.
Side note: in the LCS course E matrix is named D. We keep here
the E notation to avoid confusion with the duty-cycle.
Example: see [1] eq 1.39, 1.40, 1.41, 1.42, 1.43, 1.44
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State-space averaging: time invariant model

dx

dt
=c(t)[A1x(t) + B1v(t)] + c ′(t)[A0x(t) + B0v(t)],

y(t) =c(t)[C1x(t) + E1v(t)] + c ′(t)[C0x(t) + E0v(t)].

We can apply the averaging operator ⟨.⟩Ts on both sides of the
equation and with the small ripple approximation, we get the
averaged large-signal state-space equations:

d x̄

dt
=[d(t)A1 + d ′(t)A0]x̄(t) + [d(t)B1 + d ′(t)B0]v̄(t),

ȳ =[d(t)C1 + d ′(t)C0]x̄(t) + [d(t)E1 + d ′(t)E0]v̄(t).

Thanks to the averaging, the time varying nature of the system
has been removed but the equations are still non-linear.

16/85 ELEC0055: Elements of Power Electronics - PART II - Fall 2024



State-space averaging: operating point

The operating point can be found by solving the above equations
for d x̄

dt = 0:

0 =[DA1 + D ′A0]X + [DB1 + D ′B0]V ,

Y =[DC1 + D ′C0]X + [DE1 + D ′E0]V .

With the following definition,

A ≜DA1 + D ′A0, B ≜ DB1 + D ′B0,

C ≜DC1 + D ′C0, E ≜ DE1 + D ′E0,

we get:
X = −A−1BV , Y = [−CA−1B + E ]V .

The above solution is equivalent to apply the inductors volt-second
balance and the capacitors charge balance under the small-ripple
approximation. Example: see [1] eq 1.45, 1.46, 1.47
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State-space averaging: small signal model

The state equation can be linearized by defining small signals
around the operating point:

ˆ̄x(t) ≜ x̄(t)− X , d̂ ≜ d(t)− D, ˆ̄v(t) ≜ v̄(t)− V .

Introducing the above definitions in the averaged large-signal
state-space equations, we get the small-signal equations:

d ˆ̄x

dt
=Aˆ̄x(t) + F d̂(t) + B ˆ̄v(t),

ˆ̄y(t) =C ˆ̄x(t) + G d̂(t) + E ˆ̄v(t),

where,

F ≜(A1X + B1V )− (A0X + B0V ),

G ≜(C1X + E1V )− (C0X + E0V ).
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State-space averaging: solving the small signal model

We can solve the small-signal equations in the Laplace domain:

s ˆ̄x(s) =Aˆ̄x(s) + F d̂(s) + B ˆ̄v(s),

ˆ̄y(s) =C ˆ̄x(s) + G d̂(s) + E ˆ̄v(s),

⇒ ˆ̄y(s) =(C (sI − A)−1F + G )d̂(s) + (C (sI − A)−1B + E )ˆ̄v(s)

The control transfer matrix is:

W (s) ≜
ˆ̄y(s)

d̂(s)

∣∣∣∣
ˆ̄v(s)=0

= C (sI − A)−1F + G .

The disturbance transfer matrix is:

WD(s) ≜
ˆ̄y(s)
ˆ̄v(s)

∣∣∣∣
d̂(s)=0

= C (sI − A)−1B + E .

Example: see [1] eq 1.48, 1.49, the boost transfer function has a RHZ (Right Half-Plane Zero).
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State-space averaging: solving the small signal model

▶ Link with the LCS course: each term of W (s) and WD(s)
represents the transfer function that models the effect of
external inputs (duty-cycle, input voltage....) on outputs.
Because there are multiple outputs and multiple inputs the
system is called MIMO.
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The pulse width modulator

In order to transform the duty-cycle (continuous variable that has
a value between 0 and 1) into binary (”ON/OFF”) signals that
control power switches, we need a building block called
”modulator”.

There are two main families of PWM modulators:

NSPWM: naturally sampled pulse width modulator. They
process a continuous time modulating signal u(t).
They are typically used in analog controllers.

USPWM: uniformly sampled pulse width modulator. They
process a sampled signal u[k] and generate a PWM
signal updated every switching period. They are
typically used in digital controllers.
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Naturally sampled pulse width modulator

Excerpt of [1]:

d [k] =
u(tk)

Vr
⇒ GPWM(s) ≜

d̂

û
=

1

Vr
(1)
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Closed loop system

Excerpt of [1]:

The above figure shows a block diagram of a closed loop system.
GPWM(s) is the transfer function of the PWM modulator. Gvd(s)
models the converter behavior. Gc(s) is the compensator function
to be designed. H(s) is the output voltage (current) sensor
transfer function.
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Definition of the loop gain

Excerpt of [1]:

T (s) ≜ − ûy (s)

ûx(s)

∣∣∣∣
v̂ref =0

= Gc(s)GPWM(s)Gvd(s)H(s)

Tu(s) ≜ GPWM(s)Gvd(s)H(s) (2)

For the buck converter, we obtain:

Tu(s) =
1

Vr
Gvd0

1 + s
ωESR

1 + s
Qω0

+ s2

ω2
0

H(s).
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Link with LCS course

▶ In the LCS course, the system to be controlled is called the
plant and has a transfer function P(s). In a power converter,
the plant consists of the PWM modulator, the power
electronics circuit and the measurement circuit:

P(s) = GPWM(s)Gvd(s)H(s) (3)

▶ In the LCS course, the controller has a transfer function C (s)
that is named here Gc(s).

▶ In the LSC course, the loop gain is called L(s), here it is
called T (s).
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Loop including external perturbation

Excerpt of [1]:
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Closed loop gain

▶ The uncompensated loop phase margin (at the crossover
frequency) gives a stability criteria and allows to design the
compensator Gc(s).

▶ The reference setpoint to the output transfer function is given
by:

Gvvref ,cl(s) ≜
ˆ̄vo(s)
ˆ̄vref

∣∣∣∣
ˆ̄vg (s)=0,̂̄io=0

=
1

H(s)

T (s)

1 + T (s)
,
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Closed loop gain

▶ The sensitivity characteristics to external perturations is
reduced by increasing the loop gain. Refering to the figure on
the previous slide, the closed loop characteristics can be
derived from the open loop characteristics:

Gvg ,cl(s) ≜
ˆ̄vo(s)
ˆ̄vg (s)

∣∣∣∣
ˆ̄vref =0,̂̄io=0

=
Gvg (s)

1 + T (s)
,

Zo,cl(s) ≜ −
ˆ̄vo(s)
ˆ̄io(s)

∣∣∣∣
ˆ̄vref =0,ˆ̄vg=0

=
Zo(s)

1 + T (s)
.

From the above relations, the goal is to get T (s) as large as
possible on a large bandwidth while maintaining a good phase
margin.
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Relation between phase margin and stability

Excerpt of [2]:

For open loop characteristics with a loop gain that falls by -20
dB/decade when T (s) amplitude approaches 1, the phase margin
directly affects the quality factor of the closed loop (second order)
system response.
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Relation between phase margin and stability

Excerpt of [2]:

The step response of the closed loop (second order) system is
directy related to the quality factor. The choice of a phase margin
of 52◦ is now explained.
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Analog control loop design procedure

1. Determine GPWM(s) using equation 1.

2. Determine H(s) based on the specifications/design of your
sensor.

3. Detemine the transfer function of your converter with the
presented modeling techniques.

4. Trace the Bode Plots (MATALB) for Tu(s) (equation 2) for
different operating points (input voltage, load).

5. Choose the cross-over frequency fc typically 1/10 of the
switching frequency.

6. Choose the target phase margin ϕm typically > 52◦.

7. Choose your compensator:
▶ if DC error has to be canceled, use a PI or PID,
▶ if phase margin has to be increased, use a PD or PID,
▶ if phase margin is already 90◦, use a P or PI.

8. For the integrator term, choose a corner frequency that is
1/10 of the choosen cross-over frequency fc .
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Chapter 2: The Digital Control Loop

▶ Analog vs. digital control
▶ Example: digital voltage-mode control
▶ A/D conversion

▶ The digital compensator
▶ The digital PID controller (additive form)
▶ Bilinear mapping
▶ PID transformation with the bilinear mapping
▶ PID controller in multiplicative form

▶ The digital pulse width modulator

▶ Loop delays

▶ Digital control loop design procedure

▶ The integral windup problem

▶ Unit conversion
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Analog vs. digital control

Digital control of switched mode converters introduces two
differences in comparison to analog control:

Time quantization: the controller samples values of analog
variables, processes them to evaluate the modulation
(duty-cycle) and apply it for one sampling period.

Amplitude quantization: analog variables are sampled with finite
resolution analog-to-digital converters, they are
therefore quantized.

There are different approaches to model switching converters. The
approach presented here is based on the averaged model.
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Example: digital voltage-mode control

Excerpt of [1]:

The sampled signal is defined by:

vs [k] ≜ vs(tk).

The most common choice for the sampling period is :

T = Ts , where Ts is the switching period.
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A/D conversion

Excerpt of [1]:

▶ Sampling process

▶ Amplitude quantization

▶ Conversion delay tA/D

The sampling process moves the modeling problem from the
analog to the digital world. The amplitude quantization makes the
problem non linear. The delay modifies the dynamics.
Example: show captured data.
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Sampling rate different from fs
Excerpt of [1]:

▶ Alias of the high frequency
content of the analog signal
is present in the sampled
signal (for example at fs).

▶ Large digital filtering efforts
are therefore required.
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Sampling rate equal to fs
Excerpt of [1]:

▶ Alias of the high frequency
content of the analog signal
is present in the sampled
signal but only at DC.

▶ No filtering efforts is needed,
only DC compensation is
required.
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Sampling strategy to avoid DC alias

Excerpt of [1]:

For triangular waveforms, the most common solution is to sample
the analog signal in the middle of the ramp. This suppresses DC
aliasing effect.
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Amplitude quantization

Excerpt of [1]:

The A/D converter linear range
is divided into 2nA/D bins. Each
bin is q

(A/D)
vs volts wide:

q
(A/D)
vs =

VFS

2nA/D
(4)

where VFS is the full scale
voltage.

The figure shows the quantization characteristic QA/D [.]:

v⋄s [k] ≜ QA/D [vs [k]] = q
(A/D)
vs ṽs [k]

where v⋄s [k] is the quantized signal, vs [k] is the analog signal and
ṽs [k] is the binary coded signal.
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The controller
Excerpt of [1]:

The analog signal vs(t) is
sampled and quantized in v⋄s [k]
after the tA/D conversion delay .
The compensator uses this
sampled signal to generate the
new PWM command u[k] after
the calculation delay tcalc .

A linear and time-invariant compensation law is described by a
difference equation:

u[k] =− a1u[k − 1]− a2u[k − 2]− ...− aNu[k − N]

+ b0e[k] + b1e[k − 1] + b2e[k − 2] + ...+ bMe[k −M]

The PID compensation law is a praticular case of the above
equation and will be presented.
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The digital PID controller (additive form)

Excerpt of [1]:

The PID law is given by:

up[k] =Kpe[k],

ui [k] =ui [k − 1] + Kie[k],

ud [k] =Kd(e[k]− e[k − 1]),

u[k] =up[k] + ui [k] + ud [k].

The z-transform of the above laws gives the transfer function of
the PID compensator:

GPID(z) ≜
U(z)

E (z)
= Kp +

Ki

1− z−1
+ Kd(1− z−1)

How can we determine the digital coefficients Kp, Ki and Kd?
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Bilinear mapping

The coefficients can be determined by using the classical
compensation techniques in the s-domain. For that purpose the
GPID(z) function can be transformed using:

z = esT (5)

This transformation is not adequate because it transforms GPID(z)
in a transcendental function of s. A good approximation is:

z(s) = esT =
e+s T

2

e−s T
2

=
1 + s T2 + · · ·
1− s T2 + · · ·

≈
1 + s T2
1− s T2

(6)

It is called the bilinear transformation:

z(s) ≈
1 + s T2
1− s T2

⇔ s(z) ≈ 2

T

1− z−1

1 + z−1
(7)
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Bilinear mapping interpretation: trapezoidal approximation

In time domain:∫
v(τ)dτ = p(t)

In s-domain:

1

s
V (s) = P(s) ⇒ V (s) = s P(s)

We can write in discrete time:

p[k]− p[k − 1] = trapeze surface =
v [k − 1] + v [k]

2
T

In z-domain:

P(z)− z−1P(z) =
z−1V (z) + V (z)

2
T ⇒ V (z) =

2

T

1− z−1

1 + z−1
P(z)
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Bilinear mapping

The bilinear mapping has the following properties:
▶ It is a rational transformation.
▶ Stability limits are conserved: the unit circle (|z | = 1) in the

z-domain is mapped on the y axis in the s-domain.
▶ Some frequency wrapping is introduced (due to the

approximation) but it yields less than 10% error for
frequencies below 1

6
1
T .

Excerpt of [1]:
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PID transformation with the bilinear mapping

Application of the bilinear transformation allows us to work in the
s-domain and to use the classical analog design tools.

GPID(z) ≜
U(z)

E (z)
= Kp +

Ki

1− z−1
+ Kd(1− z−1)

is transformed to

G ′
PID(s) ≜

U(s)

E (s)
= Kp +

Ki

T

1 + s
ωp

s
+ KdT

s

1 + s
ωp

,

where ωp ≜ 2
T .

It should be noted that ωp appears when converting GPID(z) in the
s-domain and there is no freedom on the value of ωp.
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PID transformation with the bilinear mapping

▶ On the previous slide, Ki is the digital coefficient of the integrator.
In the s-domain, it is divided by T . This can be explained physically
as follows: if T is for example increased, the digital accumulation
(ui [k] = ui [k − 1] + Kie[k]) will be performed less often due to the
larger sampling period T . This is equivalent to a slower integral in
the s-domain that is represented by a lower analog integrator gain.

▶ In a similar way, Kd is the digital coefficient for the derivative part.
When transformed in the s-domain, it is multiplied by T . This can
be explained physically as follows: if T is for example increased, the
digital derivative term (ud [k] = Kd(e[k]− e[k − 1])) will performed
on a larger sampling period T . Therefore, the estimation of the
error variation will be taken on sample e[k] and e[k − 1] that are
more spaced in time. This will amplify the value of e[k]− e[k − 1]
which is equivalent to a multiplication by T in the s-domain.

▶ The multiplicative form of the PID compensator is easier to use and
equivalence relation exists (see next slides).
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PID controller in multiplicative form

G ′
PID(s) = Kp +

Ki

T

1 + s
ωp

s
+ KdT

s

1 + s
ωp

(8)

is equivalent to

G ′
PID(s) = G ′

PI∞(1 +
ωPI

s
)G ′

PD0

1 + s
ωPD

1 + s
ωp

with,

Kp =G ′
PI∞G ′

PD0(1 +
ωPI

ωPD
− 2ωPI

ωp
), (9)

Ki =2G ′
PI∞G ′

PD0

ωPI

ωp
, (10)

Kd =
1

2
G ′
PI∞G ′

PD0(1−
ωPI

ωp
)(

ωp

ωPD
− 1). (11)
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PID bode plot

Excerpt of [1]:
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PI (lag) compensator in multiplicative form

G ′
PI (s) = Kp +

Ki

T

1 + s
ωp

s
(12)

is equivalent to

G ′
PI (s) = G ′

PI∞(1 +
ωPI

s
)

with,

Kp =G ′
PI∞(1− ωPI

ωp
), (13)

Ki =2G ′
PI∞

ωPI

ωp
. (14)

49/85 ELEC0055: Elements of Power Electronics - PART II - Fall 2024



PD (lead) compensator in multiplicative form

G ′
PD(s) = Kp + KdT

s

1 + s
ωp

(15)

is equivalent to

G ′
PD(s) = G ′

PD0

1 + s
ωPD

1 + s
ωp

with,

Kp =G ′
PD0, (16)

Kd =
1

2
G ′
PD0(

ωp

ωPD
− 1). (17)
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The digital pulse width modulator

Excerpt of [1]:

Digital modulator are based on a
digital counter. The higher the
counter clock (Tclk), the higher
the resolution.
The behavior of the digital PWM
is given by:

Ts =NrTclk , (18)

d [k] =
u[k]

Nr
, (19)

qD =
Tclk

Ts
=

1

Nr
. (20)
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Loop delays

Different delays exist between the sampling of the analog signal up
to the generation of the PWM:
▶ Control delay (tcntrl):

▶ FPGA based controller: all calculations are performed in //,
the processing delay is negligible and the only delay is the A/D
conversion delay occuring between the sampling of the analog
signal and the availability of the sampled version v⋄

s [k].
▶ DSP (CPU) based controller: several instructions are needed

and there is an extra delay to be taken into account.

▶ Modulation delay (tDPWM): the PWM modulator has an
intrinsic delay due to the PWM process itself.

The total delay induced by the control process is modeled:

td = tcntrl + tDPWM ⇒ e−std .
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Loop delays
Excerpt of [1]:

A typical software based
controller is shown.
The A/D sampling and the
controller calculations are
performed during one
switching period (= tcntrl).
The PWM delay (tDPWM)
occurs after the control delay.
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DPWM delay

Excerpt of [1]:
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Total loop delay

The total loop delay is defined by:

td ≜ tcntrl + tDPWM .

This total delay is modeled in the s-domain with e−std . Before
estimating compensation factors, the loop gain is corrected to take
this delay into account:

T †
u (s) ≜ Tu(s)e

−std .
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Digital control loop design procedure

1. Model the loop as in the analog control loop design but with
the delay corrected loop gain T †

u (s).

2. Design the compensation as in the analog control loop design
using the chosen compensator (equation 8, 12 or 15).

3. Once the controller coefficient are determined, transform
them to their digital version (equation 9 to 11, 13 to 14 or 16
to 17).

4. Implement the control law in the digital processor.

It should be noted that the above design procedure is valid if the
sampled signal is a good representation of the averaged signal.
This assumption is the small-aliasing approximation expressed
mathematically by:

vs [k] ≈ v̄s(tk).

If it is not the case, discrete-time modeling techniques have to be
used.
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The integral windup problem (example)
Excerpt of [1]:

For Vg = 4V , at 0µs, the
current rises to 10 A. The
controller reacts quickly to
the induced vo(t) change and
u[k] quickly reaches its
saturation point. However,
vo(t) is still under the set
point and the integrator
continues to integrate.
When vo(t) starts to rise
again, the integrator is well
above 1 and forces u[k] to
stay at 1 and creates an
unexpected lag in the reaction
of the crontroller finally
creating a vo(t) overshoot.
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Actuator saturation and integral anti-windup

The solution to the windup problem is to:
▶ Saturate all variables to avoid numeric issues. Especially

saturate u[k] between the min/max duty-cycle.
▶ Stop integration when u[k] reaches its saturation limits:

sat[k] =

{
0 if 0 ≤ uPID [k] ≤ 1,
1 otherwise.

Excerpt of [1]:
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Unit conversion

Excerpt of [1]:

▶ Kp, Ki and Kd on slide ”The PID compensator (additive
form)” have physical units: 1

V .

▶ In the processor, v⋄s [k] and u[k] are represented by integer
numbers related to the respective resolutions 2nA/D (equation
4) and Nr (equation 20).
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Unit conversion: from physical to digital representation

Design (physical unit) Digital representation

u[k] 0 → 1 0 → Nr

vs [k] 0 → VFS 0 → 2nA/D

Kp, Ki , Kd in 1
V multiply by VFS

2
nA/D Nr

Table: Conversion from physical to digital representation.

▶ The above table is also valid for current measurements
because the current is transformed in a voltage by the
measurement device. This is modeled by H(s).

▶ Ki is often lower than Kp yielding to quantification errors.
ui [k] = ui [k − 1] + Kie[k] can be performed in two steps:

accumulator [k] = accumulator [k − 1] + e[k],

ui [k] = Kiaccumulator [k]
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Unit conversion: example

▶ The PWM generator runs at 16MHz and generate a 20kHz
signal ⇒ Nr =

16MHz
20kHz = 800.

▶ ADC of 8 bits resolution over 5V ⇒ VFS = 5V and
2nA/D = 256.

▶ Kp = 0.32/V ⇒ digital value of Kp is Kp
VFS

2
nA/D Nr = 5.

▶ Clearly document the variables regarding their physical
meaning.

▶ Multiplication by Kp, Ki , Kd can often be replaced by shift.
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Hands-on: The complete design process

▶ Controller design (script) with some approximations:
▶ averaging,
▶ linearization.

▶ Controller verification (LTSpice) with a more accurate model:
▶ time variance,
▶ non linearities (including quantization).
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Current Mode Control

▶ Current mode control: general principle
▶ Hysteretic control

▶ Principle
▶ Operating frequency

▶ Current programmed control
▶ Principle
▶ Stability analysis
▶ Compensation

▶ External voltage loop
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Current mode control: general principle

▶ The plan to be controlled is a
variable structure circuit.

▶ Current mode control takes
advantage of the variable structure
nature of the circuit.

▶ The s(xs , ref ) function directly
changes the circuit structure by
acting on the switches state.

▶ Current mode control is a special case of a sliding mode
controller (see [3]).

▶ The PWM modulator is replaced here by a direct action on
the circuit structure based on a function of the state of the
system and the reference.
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Hysteretic control: principle

▶ iL(s) = state of the
system

▶ s function =
comparison with ich,
icl

▶ The hysteresis ich − icl is introduced to avoid infinite switching
frequency.

Example: see 1 HystereticControl.asc
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Hysteretic control: operating frequency

Ts =d [k]Ts + d ′[k]Ts = (ich − icl)
L

Vg − Vo
+ (ich − icl)

L

Vo

=(ich − icl)L(
1

Vg − Vo
+

1

Vo
) = (ich − icl)L

Vg

(Vg − Vo)Vo

=(ich − icl)
L

Vg

1

(
Vg

Vg
− Vo

Vg
) Vo
Vg

=(ich − icl)
L

Vg

1

(1− D)D
, D ≜

Vo

Vg
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Hysteretic control: discussion

▶ The inductor average current icl +
ich−icl

2 = ich+icl
2

⇒ The average current in the inductor is perfectly controlled.

▶ Bipolar operation is natural (current can be > 0 or < 0).

▶ The switching period is function of Vg and D
⇒ The switching frequency varies over a large range.

The variation of the switching frequency can be dangerous because
the switching frequency can be equal to the resonance frequency of
the input or output filter for some operating point. Dangerous
resonance can occur.

Therefore, fixed operating frequency is often preferred.
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Current programmed control: principle

Fixed switching frequency is
achieved:

▶ The switch gate is
controlled by a
set/reset flip-flop.

▶ A pulse generator
periodically activates
the gate at the
switching frequency
(set).

▶ The inductor current iL(t) is permanently compared to the setpoint
ic(t).

▶ Once inductor current iL(t) is higher than the setpoint ic(t), the
gate is deactivated (reset).
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Current programmed control: stability analysis procedure

Instead of using the average model to analyze the control loop, it is possible to
directly work in the z-domain. The procedure is as follows:

1. select all state variables (iL(t)),

2. select the sampling instant and name it using ”k” index (iL[k]),

3. express the state evolution (matrix form) from ”k” to ”k+1” (iL[k + 1] as
a function of iL[k], ic [k]),

4. apply linearization (ic [k] = Ic + îc [k], iL[k] = IL + îL[k]),

5. linearization gives steady-state and small-signal equations,

6. apply z-transform to small-signal equation by ”replacing” k + 1 by z ,
k + 2 by z2...

7. extract the poles of the z-domain transfer function to access stability,

8. trace the step function and the bode plot to evaluate the performances.
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Current programmed control: time domain equation

ic [k]− iL[k] =d [k]Ts
Vg − Vo

L
⇒ d [k] = (ic [k]− iL[k])

L

Ts(Vg − Vo)
, (21)

iL[k + 1]− ic [k] =d ′[k]Ts
−Vo

L
⇒ iL[k + 1] = ic [k]− (1− d [k])Ts

Vo

L
. (22)

Introducing (21) in (22) yields:

iL[k + 1] = ic [k](1 +
Vo

Vg − Vo
)− iL[k]

Vo

Vg − Vo
− Ts

Vo

L
. (23)
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Current programmed control: small signal and steady state

Let us define:

ic [k] =Ic + îc [k], (24)

iL[k] =IL + îL[k]. (25)

Equation (23) becomes:

îL[k + 1] =îc [k](1 +
Vo

Vg − Vo
)− îL[k]

Vo

Vg − Vo
,

IL =Ic(1 +
Vo

Vg − Vo
)− Ts

Vo

L
− IL

Vo

Vg − Vo
.

Introducing D = Vo
Vg

in the above equations yields:

îL[k + 1] =îc [k]
1

1− D
− îL[k]

D

1− D
, (26)

IL =Ic − Ts
Vo

L
(1− D). (27)
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Current programmed control: stability analysis

Taking the z-transform of equation (26):

zÎL(z) = Îc(z)
1

1− D
− ÎL(z)

D

1− D
, (28)

ÎL(z) = Îc(z)
1

z(1− D) + D
, pz = − D

1− D
. (29)

Example: see 2 CurrentProgrammedControl.asc
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Current programmed control: compensation

Cecil W. Deisch (Bell

Laboratories, see [4]) observed

that this instability was related

to the slope of the current.

▶ At high duty-cycle, the rising slope is ”too low” and leads to
instabilities.

▶ A small change in current, creates a large change in duty-cycle.

▶ Compensation is performed by adding an artificial ramp to the
current (or by adding the opposite ramp to the reference point, see
dotted box on the figure).
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Compensation: time domain equation

IR ≜ δTs
Vg

L

iL[k] + d [k]Ts
Vg − Vo

L
= ic [k]− d [k]δTs

Vg

L
(30)

⇒ d [k] = (ic [k]− iL[k])
1

Ts
Vg−Vo

L
+ δTs

Vg

L

, (31)

iL[k + 1] = ic [k]− d [k]δTs
Vg

L
− (1− d [k])Ts

Vo

L
. (32)
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Compensation: small signal and steady state

Eliminating d [k] by inserting (31) in (32) yields:

iL[k + 1] = ic [k](1 +
Vo−δVg

Vg − Vo+δVg
)− iL[k](

Vo−δVg

Vg − Vo+δVg
)− Ts

Vo

L

Using Equation (24) and (25), the previous equation becomes:

îL[k + 1] =îc [k](1 +
Vo−δVg

Vg − Vo+δVg
)− îL[k]

Vo−δVg

Vg − Vo+δVg
,

IL =Ic(1 +
Vo−δVg

Vg − Vo+δVg
)− Ts

Vo

L
− IL

Vo−δVg

Vg − Vo+δVg
.

Introducing D = Vo
Vg

in the above equations yields:

îL[k + 1] =îc [k]
1

1− (D−δ)
− îL[k]

D−δ

1− (D−δ)
, (33)

IL =Ic − Ts
Vo

L
(1− (D−δ)). (34)
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Compensation: stability analysis

Taking the z-transform of equation (33):

zÎL(z) = Îc(z)
1

1− (D−δ)
− ÎL(z)

D−δ

1− (D−δ)
, (35)

ÎL(z) = Îc(z)
1

z(1− (D−δ)) + (D−δ)
, pz = − D−δ

1− (D−δ)
. (36)

76/85 ELEC0055: Elements of Power Electronics - PART II - Fall 2024



Compensation: discussion

▶ δ shifts the poles position, δ > 0.5 guarantees stability ∀D.

▶ Poles show the speed of convergence of the remaining error at each
switching cycle.

▶ Therefore, a real negative pole in the z-domain corresponds to
sub-harmonic oscillation.

▶ In practice, when the system is unstable, chaotic behavior appears
because large signal operation is non-linear.

▶ Typically, δ ∈ [0.5, 1.0] is enough to achieve stability, too large δ
decreases the bandwidth of current mode control.

Example: see 3 CurrentProgrammedControlWithCompensation.asc
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External voltage loop: principle

Excerpt of [2]

▶ The internal loop is built with the current programmed controller, its
setpoint is ic(t).

▶ The external control loop computes the voltage error between the set
point voltage vref and the output voltage v(t).

▶ The voltage error is used by the compensator to drive ic(t).
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External voltage loop: simple approximation

Excerpt of [2]

Over one switching period, the
averaged values are related by d(t) in
CCM:

v̄2(t) =d(t)v̄1(t),

ī1(t) =d(t)ī2(t).

The current control loop is assumed to
be perfect (simple approximation):

ī2(t) = īc(t).

⇒ v̄1(t)ī1(t) = v̄2(t)ī2(t) = v̄2(t)īc(t) = p̄(t)

The output port is a current source, the input port is a dependent current sink.
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Current programmed control: averaged model

C
R

ī2(t)

v̄1(t)

ī1(t) īL(t)
+

-

v̄(t)

+

-

v̄2(t)

+

-

v̄g (t)

L

īc(t)

p̄(t)

+

-

The switch is replaced by its averaged model:

▶ the output port is a controlled current source: īc(t),

▶ the input port reflects this current with power preservation:
ī1(t)v̄1(t) = īc(t)v̄2(t) = p̄(t).

⇒ linearization has to be applied.
Note: similar reasoning can be applied to other topologies yielding
similar models.
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Current programmed control: linearized averaged model

v̄1(t) =V1 + ˆ̄v1(t),

ī1(t) =I1 +
ˆ̄i1(t),

v̄2(t) =V2 + ˆ̄v2(t),

ī2(t) =I2 +
ˆ̄i2(t),

īc(t) =Ic +
ˆ̄ic(t).

Power conservation can be rewritten:

(V1 + ˆ̄v1(t))(I1 +
ˆ̄i1(t)) = (V2 + ˆ̄v2(t))(Ic +

ˆ̄ic(t))

The input port current is given by:

ˆ̄i1(t) =
ˆ̄ic(t)

V2

V1
+ ˆ̄v2(t)

Ic
V1

− ˆ̄v1(t)
I1
V1

The output port current is: ˆ̄i2(t) =
ˆ̄ic(t)

C
R

ˆ̄i2

ˆ̄ic
V2
V1

ˆ̄iL
+

-

ˆ̄v

+

-

ˆ̄v2

+

-

ˆ̄vg = ˆ̄v1

L

ˆ̄ic

−V 1
I1

ˆ̄ig = ˆ̄i1

ˆ̄v2
Ic
V1
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Controlled sources function of input and output voltages

C
R

ˆ̄i2

ˆ̄ic
V2
V1

ˆ̄iL
+

-

ˆ̄v

+

-

ˆ̄v2

+

-

ˆ̄vg = ˆ̄v1

L

ˆ̄ic

−V 1
I1

ˆ̄ig = ˆ̄i1

ˆ̄v2
Ic
V1

V2

V1
=D,

I1
I2

= D,
V2

I2
= R,

−V1

I1
=−

V2
D

I2D
= − R

D2
,

Ic
V1

=
Ic
V2
D

=
D

R
,

ˆ̄v2
Ic
V1

=(ˆ̄v + sL ˆ̄ic)
D

R
= ˆ̄v

D

R
+ ˆ̄icD

sL

R
.

C
Rˆ̄icD(1 + sL

R )

ˆ̄iL

+

-

ˆ̄v

+

-

ˆ̄vg

L

ˆ̄ic

− R
D2

ˆ̄ig

ˆ̄v D
R
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Current programmed control: transfer functions

C
Rˆ̄icD(1 + sL

R )

ˆ̄iL

+

-

ˆ̄v

+

-

ˆ̄vg

L

ˆ̄ic

− R
D2

ˆ̄ig

ˆ̄v D
R

Gvc,cpc(s) ≜
ˆ̄v(s)
ˆ̄ic(s)

∣∣∣∣
ˆ̄vg=0

= (R|| 1
sC

) =
R

1 + sRC
→1st order, easy compensator design,

Gvg,cpc(s) ≜
ˆ̄v(s)
ˆ̄vg (s)

∣∣∣∣
ˆ̄ic=0

= 0 →no sensitivity to input voltage,

Zg,cpc(s) ≜
ˆ̄vg (s)
ˆ̄ig (s)

∣∣∣∣
ˆ̄ic=0,ˆ̄v=0

= − R

D2
→stability concern.

Note: the negative resistance − R
D2 is a small-signal negative resistance

affecting stability of the source that supplies the converter.
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Current programmed control: summary of key points

▶ Output voltage can be controlled by implementing a control loop.

▶ Theory of chapter 1 and 2 can be applied by replacing:

Tu(s) ≜ GPWM(s)Gvd(s)H(s) → Tu(s) ≜ Gvc,cpc(s)H(s)

▶ Instead of controlling d , the new controller controls īc , this is easier
because the phase of Gvc,cpc(s) is 90

◦ higher compared to GPWM(s)Gvd(s).

▶ Current programmed control is a particular case of sliding mode control,
this kind of control reduces by one the order of the controlled system, this
explains the ”gain” of 90◦ when comparing to Gvd(s).

▶ The above procedure can be applied to other topologies: boost,
buck-boost...

▶ The small-signal negative resistance appears in all high efficiency
converters where output power/current is controlled (nearly always the
case).

▶ The small-signal negative resistance affects the stability of the sources
powering the converter.

▶ Bandwidth of current programmed control is excellent yielding to
unsurpassed over-current protection.
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