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PART III: Topologies and applications

▶ Chapter 6: Converter Circuits

▶ Applications
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Chapter 6: Converter Circuits

▶ What is a topology? Why different topologies?
▶ The choice of a topology depends on the application:

1. voltage/current range/direction,
2. power direction,
3. number of inputs/outputs,
4. isolated vs. non-isolated,
5. input and output current ripple,
6. switches/transformer/inductor utilization,
7. soft switching vs. hard switching,
8. compactness (see Google interest

https://en.wikipedia.org/wiki/Little Box Challenge),
9. reliability (see European interest

http://www.inrel-npower.eu/),
10. EMC considerations...

▶ Today’s optimum topologies are not tomorrow’s better
topologies because of semiconductors evolution (storageless
example).

▶ Topology selection is an important decision.
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Fundamentals of Power Electronics Chapter 1: Introduction1

Fundamentals of Power Electronics
Second edition

Robert W. Erickson
Dragan Maksimovic

University of Colorado, Boulder
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Fundamentals of Power Electronics Chapter 6: Converter circuits1

Chapter 6.  Converter Circuits

6.1. Circuit manipulations

6.2. A short list of
converters

6.3. Transformer isolation

6.4. Converter evaluation
and design

6.5. Summary of key
points

• Where do the boost,
buck-boost, and other
converters originate?

• How can we obtain a
converter having given
desired properties?

• What converters are
possible?

• How can we obtain
transformer isolation in a
converter?

• For a given application,
which converter is best?
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Fundamentals of Power Electronics Chapter 6: Converter circuits2

6.1.  Circuit Manipulations

Begin with buck converter: derived in Chapter 1 from first principles

• Switch changes dc component, low-pass filter removes
switching harmonics

• Conversion ratio is   M = D
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2
Vg
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6.1.1.  Inversion of source and load

Interchange power input and output ports of a converter

Buck converter example
V2 = DV1

Port 1 Port 2

+
–

L
1

2
+

V1

–

+

V2

–

Power flow
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Inversion of source and load

Interchange power source and load:

Port 1 Port 2

+
–

L
1

2
+

V1

–

+

V2

–

Power flow

V2 = DV1 V1 = 1
D V2
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Fundamentals of Power Electronics Chapter 6: Converter circuits5

Realization of switches
as in Chapter 4

• Reversal of power
flow requires new
realization of
switches

• Transistor conducts
when switch is in
position 2

• Interchange of D
and D’

Inversion of buck converter yields boost converterV1 = 1
D' V2

Port 1  Port 2

+
–

L

+

V1

–

+

V2

–

Power flow
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6.1.2.  Cascade connection of converters

+
–

Converter 2Converter 1

Vg

+

V1

–

+

V

–

D

V1

Vg
= M 1(D)

V
V1

= M 2(D)

V1 = M 1(D)Vg

V = M 2(D)V1

V
Vg

= M(D) = M 1(D)M 2(D)
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Example:  buck cascaded by boost

+
–

1

2

L1

C1

+

V1

–

R

+

V

–

1

2L2

C2{ {
Buck converter Boost converter

Vg

V1
Vg

= D

V
V1

= 1
1 – D

V
Vg

= D
1 – D
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Buck cascaded by boost:
simplification of internal filter

Remove capacitor C1

Combine inductors L1  and L2

Noninverting
buck-boost
converter
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Noninverting buck-boost converter

subinterval 1 subinterval 2
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2L
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Vg
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iL
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Reversal of output voltage polarity

subinterval 1 subinterval 2

noninverting
buck-boost

inverting
buck-boost
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Vg

iL
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Reduction of number of switches:
inverting buck-boost

Subinterval 1 Subinterval 2

One side of inductor always connected to ground
— hence, only one SPDT switch needed:

+
–

+

V

–

Vg

iL

+
–

+

V

–

Vg

iL

+
–

+

V

–

1 2

Vg

iL
V
Vg

= – D
1 – D
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Discussion: cascade connections

• Properties of buck-boost converter follow from its derivation
as buck cascaded by boost

Equivalent circuit model: buck 1:D transformer cascaded by boost
D’:1 transformer

Pulsating input current of buck converter

Pulsating output current of boost converter

• Other cascade connections are possible

Cuk converter: boost cascaded by buck
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6.1.3. Rotation of three-terminal cell

Treat inductor and
SPDT switch as three-
terminal cell:

Three-terminal cell can be connected between source and load in three
nontrivial distinct ways:

a-A b-B c-C buck converter

a-C b-A c-B boost converter

a-A b-C c-B buck-boost converter

+
–

+

v

–

1

2
Vg

Three-terminal cell
aA b B

c

C
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Rotation of a dual three-terminal network

A capacitor and SPDT
switch as a three-
terminal cell:

Three-terminal cell can be connected between source and load in three
nontrivial distinct ways:

a-A b-B c-C buck converter with L-C input filter

a-C b-A c-B boost converter with L-C output filter

a-A b-C c-B Cuk converter

+
–

+

v

–

1

2

Th

ree-terminal cell

A a b B

c

C

Vg
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6.1.4.  Differential connection of load
to obtain bipolar output voltage

Differential load
voltage is

The outputs V1 and V2
may both be positive,
but the differential
output voltage V can be
positive or negative.

Converter 1 +

V1

–
+

V

–
D

Converter 2

+
–Vg

+

V2

–

D'

loaddc source

V1 = M(D) Vg

V2 = M(D') Vg

V = V1 – V2
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Differential connection using two buck converters

Converter #1 transistor
driven with duty cycle D

Converter #2 transistor
driven with duty cycle
complement D’

Differential load voltage
is

Simplify:

+

V1

–
+

V

–+
–Vg

+

V2

–

1

2

1

2

Buck converter 1}
Buck converter 2

{ V = DVg – D'V g

V = (2D – 1)Vg
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Conversion ratio M(D),
differentially-connected buck converters

V = (2D – 1)Vg

D

M(D)

10.5

1

0

– 1
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Simplification of filter circuit,
differentially-connected buck converters

Original circuit Bypass load directly with capacitor

+
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V

–+
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Buck converter 1}

Buck converter 2
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2
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V

–
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Fundamentals of Power Electronics Chapter 6: Converter circuits19

Simplification of filter circuit,
differentially-connected buck converters

Combine series-connected
inductors

Re-draw for clarity

H-bridge, or bridge inverter

Commonly used in single-phase
inverter applications and in servo
amplifier applications

+
–Vg
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Fundamentals of Power Electronics Chapter 6: Converter circuits20

Differential connection to obtain 3ø inverter

With balanced 3ø load,
neutral voltage is

Phase voltages are

Control converters such that
their output voltages contain
the same dc biases. This dc
bias will appear at the
neutral point Vn. It then
cancels out, so phase
voltages contain no dc bias.

+

V1

–

+
–Vg

+

V2

–

3øac loaddc source

+

V3

–

D2

D3

Vn
+  vbn  –

– 
 v an

  +

–  v
cn   +

V2 = M(D2) Vg

V3 = M(D3) Vg

Converter 1

D1

V1 = M(D1) Vg

Converter 2

Converter 3

Vn = 1
3

V1 + V2 + V3

Van = V1 – Vn

Vbn = V2 – Vn

Vcn = V3 – Vn
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3ø differential connection of three buck converters

+
–Vg

+

V2

–

3φac load
dc source

+

V3

–
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+  vbn  –
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  +
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cn   +

+

V1
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25/121 ELEC0055: Elements of Power Electronics - PART III - Fall 2024
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3ø differential connection of three buck converters

Re-draw for clarity:

“Voltage-source inverter” or buck-derived three-phase inverter

3φac loaddc source

Vn
+  vbn  –

– 
 v an

  +

–  v
cn   +

+
–Vg
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The 3ø current-source inverter

3φac loaddc source

Vn
+  vbn  –

– 
 v an

  +

–  v
cn   +

+
–Vg

• Exhibits a boost-type conversion characteristic
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6.2.  A short list of converters

An infinite number of converters are possible, which contain switches
embedded in a network of inductors and capacitors

Two simple classes of converters are listed here:

• Single-input single-output converters containing a single
inductor. The switching period is divided into two subintervals.
This class contains eight converters.

• Single-input single-output converters containing two inductors.
The switching period is divided into two subintervals. Several of
the more interesting members of this class are listed.
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Single-input single-output converters
containing one inductor

• Use switches to connect inductor between source and load, in one
manner during first subinterval and in another during second subinterval

• There are a limited number of ways to do this, so all possible
combinations can be found

• After elimination of degenerate and redundant cases, eight converters
are found:

dc-dc converters

buck boost buck-boost noninverting buck-boost

dc-ac converters

bridge Watkins-Johnson

ac-dc converters

current-fed bridge inverse of Watkins-Johnson
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Converters producing a unipolar output voltage

2.  Boost

+
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+

V

–

1

2

Vg

M(D) = 1
1 – D

1.  Buck

+
–

+

V

–

1

2
Vg

M(D) = D
M(D)

D

1

0

0.5

0 0.5 1

M(D)

D
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1

0 0.5 1

3

4
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Converters producing a unipolar output voltage

+
–

+

V

–

1 2

Vg

3.  Buck-boost M(D) = – D
1 – D

+

V

–

1

2

+
–

1

2
Vg

4.  Noninverting buck-boost M(D) = D
1 – D

M(D)

–3

0

–4

–2

–1

D0 0.5 1

M(D)

D

2

0

1

0 0.5 1

3

4
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Converters producing a bipolar output voltage
suitable as dc-ac inverters

6.  Watkins-Johnson

5.  Bridge M(D) = 2D – 1

M(D) = 2D – 1
D

1

2

+
– +    V    –Vg

2

1

M(D)

1

–1

0
D0.5 1

+
–

12

1 2

Vg

+

V

–

M(D)

D0.5 1
–1

–3

–2

0

1

+

V

–

+
–

1

2
Vg

or
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Converters producing a bipolar output voltage
suitable as ac-dc rectifiers

7.  Current-fed bridge

8.  Inverse of Watkins-Johnson

M(D) = 1
2D – 1

M(D) = D
2D – 1

M(D)

–1

2

–2

0

1
D0.5 1

M(D)
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2
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0
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D0.5 1

+
– +    V    –
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2
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Vg

+
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21

2 1

+

V

–
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–

+
–Vg
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2
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Several members of the class of two-inductor converters

2.  SEPIC

1.  Cuk M(D) = – D
1 – D

M(D) = D
1 – D

M(D)
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Several members of the class of two-inductor converters

3.  Inverse of SEPIC

4.  Buck 2 M(D) = D2

M(D) = D
1 – D

M(D)
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6.3.  Transformer isolation

Objectives:

• Isolation of input and output ground connections, to meet
safety requirements

• Reduction of transformer size by incorporating high
frequency isolation transformer inside converter

• Minimization of current and voltage stresses when a
large step-up or step-down conversion ratio is needed
—use transformer turns ratio

• Obtain multiple output voltages via multiple transformer
secondary windings and multiple converter secondary
circuits
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A simple transformer model

Multiple winding transformer Equivalent circuit model

n1 : n2

: n3

+

v1(t)

–

+

v2(t)

–

+

v3(t)

–

i1(t) i2(t)

i3(t)

n1 : n2

: n3

+

v1(t)

–

+

v2(t)

–

+

v3(t)

–

i1(t) i2(t)

i3(t)

Ideal
transformer

i1'(t)

LM

iM(t)

v1(t)
n1

=
v2(t)
n2

=
v3(t)
n3

= ...

0 = n1i1' (t) + n2i2(t) + n3i3(t) + ...
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The magnetizing inductance LM

Transformer core B-H characteristic• Models magnetization of
transformer core material

• Appears effectively in parallel with
windings

• If all secondary windings are
disconnected, then primary winding
behaves as an inductor, equal to the
magnetizing inductance

• At dc: magnetizing inductance tends
to short-circuit. Transformers cannot
pass dc voltages

• Transformer saturates when
magnetizing current iM is too large

B(t) ∝ v1(t) dt

H(t) ∝ iM(t)

slope ∝ LM

saturation
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Volt-second balance in LM

The magnetizing inductance is a real inductor,
obeying

integrate:

Magnetizing current is determined by integral of
the applied winding voltage. The magnetizing
current and the winding currents are independent
quantities. Volt-second balance applies: in
steady-state, iM(Ts) = iM(0), and hence

n1 : n2

: n3

+

v1(t)

–

+

v2(t)

–

+

v3(t)

–

i1(t) i2(t)

i3(t)

Ideal
transformer

i1'(t)

LM

iM(t)v1(t) = L M
diM(t)

dt

iM(t) – iM(0) = 1
L M

v1(τ)dτ
0

t

0 = 1
Ts

v1(t)dt
0

Ts
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Transformer reset

• “Transformer reset” is the mechanism by which magnetizing
inductance volt-second balance is obtained

• The need to reset the transformer volt-seconds to zero by the end of
each switching period adds considerable complexity to converters

• To understand operation of transformer-isolated converters:

• replace transformer by equivalent circuit model containing
magnetizing inductance

• analyze converter as usual, treating magnetizing inductance as
any other inductor

• apply volt-second balance to all converter inductors, including
magnetizing inductance
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6.3.1.  Full-bridge and half-bridge
isolated buck converters

Full-bridge isolated buck converter

C R

+

v

–

LD5

D6

1  :  n

:  n

i(t)

+

vs(t)

–

+

vT(t)

–

+
–Vg

D1
Q1

D2Q2

D3
Q3

D4Q4

i1(t) iD5(t)
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Full-bridge, with transformer equivalent circuit

C R

+

v

–

LD5

D6

1  :  n

:  n

i(t)

+

vs(t)

–

+

vT(t)

–

+
–Vg

i1(t) iD5(t)
D1

Q1

D2Q2

D3
Q3

D4Q4

LM

i1'(t)

iM(t)

iD6(t)
Ideal

Transformer model
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Full-bridge: waveforms

• During first switching period:
transistors Q1 and Q4 conduct
for time DTs , applying volt-
seconds Vg DTs to primary
winding

• During next switching period:
transistors Q2 and Q3 conduct
for time DTs , applying volt-
seconds –Vg DTs to primary
winding

• Transformer volt-second
balance is obtained over two
switching periods

• Effect of nonidealities?

iM(t)

vT(t)

vs(t)

iD5(t)

i(t)

Vg

0 0

–Vg

nVg

0

nVg

0

i
0.5 i 0.5 i

0

∆iI

Vg

LM

– Vg

LM

t
0 DTs Ts 2TsTs+DTs

Q1
Q4
D5

D6

D5
Q2
Q3
D6

D6

D5
conducting

devices:
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Effect of nonidealities
on transformer volt-second balance

Volt-seconds applied to primary winding during first switching period:

(Vg – (Q1 and Q4  forward voltage drops))( Q1 and Q4  conduction time)

Volt-seconds applied to primary winding during next switching period:

– (Vg – (Q2 and Q3  forward voltage drops))( Q2 and Q3  conduction time)

These volt-seconds never add to exactly zero.

Net volt-seconds are applied to primary winding

Magnetizing current slowly increases in magnitude

Saturation can be prevented by placing a capacitor in series with
primary, or by use of current programmed mode (Chapter 12)
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Operation of secondary-side diodes

• During second (D′)
subinterval, both
secondary-side diodes
conduct

• Output filter inductor
current divides
approximately equally
between diodes

• Secondary amp-turns add
to approximately zero

• Essentially no net
magnetization of
transformer core by
secondary winding currents

C R

+

v

–

LD5

D6

 :  n

:  n

i(t)

+

vs(t)

–

iD5(t)

vs(t)

iD5(t)

nVg

0

nVg

0

i
0.5 i 0.5 i

0 t
0 DTs Ts 2TsTs+DTs

Q1
Q4
D5

D6

D5
Q2
Q3
D6

D6

D5
conducting

devices:
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Volt-second balance on output filter inductor

M(D) = nD buck converter with turns ratio

C R

+

v

–

LD5

D6

 :  n

:  n

i(t)

+

vs(t)

–

iD5(t)

vs(t)

iD5(t)

i(t)

nVg

0

nVg

0

i
0.5 i 0.5 i

0

∆iI

t
0 DTs Ts 2TsTs+DTs

Q1
Q4
D5

D6

D5
Q2
Q3
D6

D6

D5
conducting

devices:V = vs

V = nDVg
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Half-bridge isolated buck converter

• Replace transistors Q3 and Q4 with large capacitors

• Voltage at capacitor centerpoint is 0.5Vg

•  vs(t) is reduced by a factor of two

•  M = 0.5 nD

C R

+

v

–

LD3

D4

1  :  n

:  n

i(t)

+

vs(t)

–

+

vT(t)

–

+
–Vg

D1
Q1

D2Q2

i1(t) iD3(t)Ca

Cb
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6.3.2.  Forward converter

• Buck-derived transformer-isolated converter

• Single-transistor and two-transistor versions

• Maximum duty cycle is limited

• Transformer is reset while transistor is off

+
–

D1

Q1

n1  :  n2  :  n3

C R

+

V

–

LD2

D3

Vg
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Forward converter
with transformer equivalent circuit

+
–

D1

Q1

n1  :  n2  :  n3

C R

+

V

–

LD2

D3

Vg

LM

iM i1'

i1 i2
i3

+

v1

–

+

vD3

–

+

v3

–

+

vQ1

–

–

v2

+
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Forward converter: waveforms

• Magnetizing current, in
conjunction with diode D1,
operates in discontinuous
conduction mode

• Output filter inductor, in
conjunction with diode D3,
may operate in either
CCM or DCM

v1

iM

vD3

t

Vg

–
n1
n2

Vg

0

Vg

LM
–

n1
n2

Vg

L M 0

0 0

n3
n1

Vg

DTs D2Ts D3Ts
Ts

Q1
D2

D1
D3

D3Conducting
devices:
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Subinterval 1: transistor conducts

+
–

D1 off
Q1 on

n1  :  n2  :  n3

C R

+

V

–

LD2 on

Vg

LM

iM i1'

i1 i2
i3

+

v1

–

+

vD3

–

+

v3

–

–

v2

+
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Subinterval 2: transformer reset

+
–

D1 on

Q1 off

n1  :  n2  :  n3

C R

+

V

–

L

D3 on

Vg

LM

iM i1'

i1
i2 = iM n1 /n2

i3

+

v1

–

+

vD3

–

+

v3

–

–

v2

+
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Subinterval 3

+
–

D1 offQ1 off

n1  :  n2  :  n3

C R

+

V

–

L

D3 on

Vg

LM

i1'

i1 i2
i3

+

v1

–

+

vD3

–

+

v3

–

–

v2

+

iM
= 0
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Magnetizing inductance volt-second balance

v1

iM

Vg

–
n1
n2

Vg

0

Vg

LM
–

n1
n2

Vg

L M 0

v1 = D Vg + D2 – Vgn1/n2 + D3 0 = 0
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Transformer reset

From magnetizing current volt-second balance:

Solve for D2:

D3 cannot be negative. But D3 = 1 – D – D2. Hence

Solve for D

for n1 = n2:

v1 = D Vg + D2 – Vgn1/n2 + D3 0 = 0

D2 =
n2
n1

D

D3 = 1 – D – D2 ≥ 0

D3 = 1 – D 1 +
n2

n1

≥ 0

D ≤ 1
1 +

n2

n1

D ≤ 1
2
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What happens when D > 0.5

magnetizing current
waveforms,
for n1 = n2

D < 0.5

D > 0.5

iM(t)

DTs D2Ts D3Ts t

iM(t)

DTs D2Ts t2Ts
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Conversion ratio M(D)

:  n3

C R

+

V

–

LD2

D3

vD3

t

0 0

n3
n1

Vg

DTs D2Ts D3Ts
Ts

Q1
D2

D1
D3

D3Conducting
devices:

vD3 = V =
n3
n1

DVg
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Maximum duty cycle vs. transistor voltage stress

Maximum duty cycle limited to

which can be increased by decreasing the turns ratio n
2
 / n

1
. But this

increases the peak transistor voltage:

For n
1
 = n

2

and

D ≤ 1
1 +

n2
n1

max vQ1 = Vg 1 +
n1
n2

D ≤ 1
2

max(vQ1) = 2Vg
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The two-transistor forward converter

+
–

D1

Q1

1 : n

C R

+

V

–

L

D2

D3

Vg

Q2

D4

D ≤ 1
2

max(vQ1) = max(vQ2) = VgV = nDVg
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6.3.3.  Push-pull isolated buck converter

0 ≤ D ≤ 1V = nDVg

C R

+

V

–

LD1

D2

1  :  n

+–

Vg

Q1

Q2

+

vs(t)

–

–
vT(t)

+

–
vT(t)

+

iD1(t)

i(t)
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Waveforms: push-pull

• Used with low-voltage inputs

• Secondary-side circuit identical
to full bridge

• As in full bridge, transformer
volt-second balance is obtained
over two switching periods

• Effect of nonidealities on
transformer volt-second
balance?

• Current programmed control
can be used to mitigate
transformer saturation
problems. Duty cycle control
not recommended.

iM(t)

vT(t)

vs(t)

iD1(t)

i(t)

Vg

0 0

–Vg

nVg

0

nVg

0

i
0.5 i 0.5 i

0

∆iI

Vg

LM

– Vg

LM

t
0 DTs Ts 2TsTs+DTs

Q1

D1 D2

D1
Q2

D2 D2

D1
Conducting

devices:
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6.3.4.  Flyback converter

buck-boost converter:

construct inductor
winding using two
parallel wires:

+
– L

–

V

+

Vg

Q1 D1

+
– L

–

V

+

Vg

Q1 D1

1:1
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Derivation of flyback converter, cont.

Isolate inductor
windings: the flyback
converter

Flyback converter
having a 1:n turns
ratio and positive
output:

+
– LM

–

V

+

Vg

Q1 D1

1:1

+
–

LM

+

V

–

Vg

Q1

D11:n

C
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The “flyback transformer”

� A two-winding inductor

� Symbol is same as
transformer, but function
differs significantly from
ideal transformer

� Energy is stored in
magnetizing inductance

� Magnetizing inductance is
relatively small

� Current does not simultaneously flow in primary and secondary windings

� Instantaneous winding voltages follow turns ratio

� Instantaneous (and rms) winding currents do not follow turns ratio

� Model as (small) magnetizing inductance in parallel with ideal transformer

+
–

LM

+

v

–
Vg

Q1

D11:n

C

Transformer model

iig

R

iC+

vL

–
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Subinterval 1

CCM: small ripple
approximation leads to

+
–

LM

+

v

–

Vg

1:n

C

Transformer model

iig

R

iC+

vL

–

vL = Vg

iC = – v
R

ig = i

vL = Vg

iC = – V
R

ig = I

Q1 on, D1 off
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Subinterval 2

CCM: small ripple
approximation leads to

vL = – v
n

iC = i
n – v

R
ig = 0

vL = – V
n

iC = I
n – V

R
ig = 0

+
–

+

v

–

Vg

1:n

C

Transformer model

i

R

iC

i/n

–
v/n

+

+

vL

–

ig
= 0

Q1 off, D1 on
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CCM Flyback waveforms and solution

Volt-second balance:

Conversion ratio is

Charge balance:

Dc component of magnetizing
current is

Dc component of source current is

vL

iC

ig

t

Vg

0

DTs D'Ts
Ts

Q1 D1

Conducting
devices:

–V/n

–V/R

I/n – V/R

I

vL = D Vg + D' – V
n = 0

M(D) = V
Vg

= n D
D'

iC = D – V
R + D' I

n – V
R = 0

I = nV
D'R

Ig = ig = D I + D' 0
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Equivalent circuit model: CCM Flyback

+
–

+
– R

+

V

–

Vg
D'I
n

D'V
n

+
–

DVgDI

IIg

+
– R

+

V

–

Vg

IIg

1 : D D' : n

vL = D Vg + D' – V
n = 0

iC = D – V
R + D' I

n – V
R = 0

Ig = ig = D I + D' 0
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Discussion: Flyback converter

� Widely used in low power and/or high voltage applications

� Low parts count

� Multiple outputs are easily obtained, with minimum additional parts

� Cross regulation is inferior to buck-derived isolated converters

� Often operated in discontinuous conduction mode

� DCM analysis: DCM buck-boost with turns ratio
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Obtaining isolation in the Cuk converter

Nonisolated Cuk
converter

Split capacitor C1
into series
capacitors C1a
and C1b

+
– D1

L1

C2 R

–

v

+

Q1

C1

L2

Vg

+
– D1

L1

C2 R

–

v

+

Q1

C1a

L2

Vg

C1b
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Isolated Cuk converter

Insert transformer
between capacitors
C1a and C1b

Discussion

• Capacitors C1a and C1b ensure that no dc voltage is applied to transformer
primary or secondary windings

• Transformer functions in conventional manner, with small magnetizing
current and negligible energy storage within the magnetizing inductance

+
– D1

L1

C2 R

+

v

–

Q1

C1a

L2

Vg

C1b

1 : n
M(D) = V

Vg

= nD
D'
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6.4.  Converter evaluation and design

For a given application, which converter topology is best?

There is no ultimate converter, perfectly suited for all possible
applications

Trade studies

• Rough designs of several converter topologies to meet the
given specifications

• An unbiased quantitative comparison of worst-case transistor
currents and voltages, transformer size, etc.

Comparison via switch stress, switch utilization, and semiconductor
cost

Spreadsheet design
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6.4.1.  Switch stress and switch utilization

• Largest single cost in a converter is usually the cost of the active
semiconductor devices

• Conduction and switching losses associated with the active
semiconductor devices often dominate the other sources of loss

This suggests evaluating candidate converter approaches by
comparing the voltage and current stresses imposed on the active
semiconductor devices.

Minimization of total switch stresses leads to reduced loss, and to
minimization of the total silicon area required to realize the power
devices of the converter.
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Total active switch stress S

In a converter having k active semiconductor devices, the total active
switch stress S is defined as

where

Vj is the peak voltage applied to switch j,

Ij is the rms current applied to switch j (peak current is also
sometimes used).

In a good design, the total active switch stress is minimized.

S = V jI jΣ
j = 1

k

74/121 ELEC0055: Elements of Power Electronics - PART III - Fall 2024



Fundamentals of Power Electronics Chapter 6: Converter circuits80

Active switch utilization U

It is desired to minimize the total active switch stress, while
maximizing the output power Pload.

The active switch utilization U is defined as

The active switch utilization is the converter output power obtained per
unit of active switch stress. It is a converter figure-of-merit, which
measures how well a converter utilizes its semiconductor devices.

Active switch utilization is less than 1 in transformer-isolated
converters, and is a quantity to be maximized.

Converters having low switch utilizations require extra active silicon
area, and operate with relatively low efficiency.

Active switch utilization is a function of converter operating point.

U =
Pload

S

75/121 ELEC0055: Elements of Power Electronics - PART III - Fall 2024



Fundamentals of Power Electronics Chapter 6: Converter circuits84

Comparison of switch utilizations
of some common converters

Table 6.1.  Active switch utilizations of some common dc-dc converters, single operating point.

Converter U(D) max U(D) max U(D)
occurs at D =

Buck  D 1 1
Boost   D '

D
∞ 0

Buck-boost, flyback, nonisolated SEPIC, isolated
SEPIC, nonisolated Cuk, isolated Cuk

  D' D  2
3 3

= 0.385  1
3

Forward, n1 = n2   1
2 D  1

2 2
= 0.353  1

2
Other isolated buck-derived converters (full-

bridge, half-bridge, push-pull)
  D

2 2
 1

2 2
= 0.353 1

Isolated boost-derived converters (full bridge,
push-pull)

  D'
2 1 + D

 1
2

0
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Switch utilization : Discussion

� Increasing the range of operating points leads to reduced switch utilization
� Buck converter

can operate with high switch utilization (U approaching 1) when D is
close to 1

� Boost converter
can operate with high switch utilization (U approaching ∞) when D is

close to 1
� Transformer isolation leads to reduced switch utilization
� Buck-derived transformer-isolated converters

U ≤ 0.353
should be designed to operate with D as large as other considerations

allow
transformer turns ratio can be chosen to optimize design
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Switch utilization: Discussion

� Nonisolated and isolated versions of buck-boost, SEPIC, and Cuk
converters

U ≤ 0.385

Single-operating-point optimum occurs at D = 1/3

Nonisolated converters have lower switch utilizations than buck or
boost

Isolation can be obtained without penalizing switch utilization
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Active semiconductor cost vs. switch utilization

(semiconductor device cost per rated kVA) = cost of device, divided by
product of rated blocking voltage and rms current, in $/kVA. Typical
values are less than $1/kVA

(voltage derating factor) and (current derating factor) are required to obtain
reliable operation. Typical derating factors are 0.5 - 0.75

Typical cost of active semiconductor devices in an isolated dc-dc
converter: $1 - $10 per kW of output power.

semiconductor cost
per kW output power

=

semiconductor device cost
per rated kVA

voltage
derating
factor

current
derating
factor

converter
switch

utilization
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Summary of key points

1.  The boost converter can be viewed as an inverse buck converter, while
the buck-boost and Cuk converters arise from cascade connections of
buck and boost converters. The properties of these converters are
consistent with their origins. Ac outputs can be obtained by differential
connection of the load. An infinite number of converters are possible,
and several are listed in this chapter.

2.  For understanding the operation of most converters containing
transformers, the transformer can be modeled as a magnetizing
inductance in parallel with an ideal transformer. The magnetizing
inductance must obey all of the usual rules for inductors, including the
principle of volt-second balance.

80/121 ELEC0055: Elements of Power Electronics - PART III - Fall 2024



Fundamentals of Power Electronics Chapter 6: Converter circuits100

Summary of key points

3.  The steady-state behavior of transformer-isolated converters
may be understood by first replacing the transformer with the
magnetizing-inductance-plus-ideal-transformer equivalent
circuit. The techniques developed in the previous chapters can
then be applied, including use of inductor volt-second balance
and capacitor charge balance to find dc currents and voltages,
use of equivalent circuits to model losses and efficiency, and
analysis of the discontinuous conduction mode.

4.  In the full-bridge, half-bridge, and push-pull isolated versions of
the buck and/or boost converters, the transformer frequency is
twice the output ripple frequency. The transformer is reset while
it transfers energy: the applied voltage polarity alternates on
successive switching periods.
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Summary of key points

5.  In the conventional forward converter, the transformer is reset while the
transistor is off. The transformer magnetizing inductance operates in the
discontinuous conduction mode, and the maximum duty cycle is limited.

6.  The flyback converter is based on the buck-boost converter. The flyback
transformer is actually a two-winding inductor, which stores and transfers
energy.

7.  The transformer turns ratio is an extra degree-of-freedom which the
designer can choose to optimize the converter design. Use of a computer
spreadsheet is an effective way to determine how the choice of turns ratio
affects the component voltage and current stresses.

8.  Total active switch stress, and active switch utilization, are two simplified
figures-of-merit which can be used to compare the various converter
circuits.
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Applications

▶ Isolation

▶ Uninteruptible power supplies (UPS)

▶ Motor drive

▶ Heating, Welding

▶ Wireless power transfer

▶ Energy generation (solar, wind)

▶ Active filtering, power factor correction (PFC)

▶ Vehicles

▶ HVDC (1 GW and more)
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Utility grid adapter

Excerpt of [1] (fig 10-2), typical wall adapter with isolation,
including feedback for proper DC regulated voltage.

84/121 ELEC0055: Elements of Power Electronics - PART III - Fall 2024



Multiple outputs power supply

Excerpt of [1] (fig 10-3), multiple outputs isolated power supply
with cross-regulated outputs.
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Isolating feedback (solution 1)

Excerpt of [1] (fig 10-34a), PWM controller on the output side.
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Isolating feedback (solution 2)

Excerpt of [1] (fig 10-34b), PWM controller on the input side.
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Uninterruptible power supply (classical solution)

Excerpt of [1] (fig 11-4), classical UPS for powering critical load.
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Uninterruptible power supply (optimized solution)

Excerpt of the CE+T web site, high efficiency UPS solution.

89/121 ELEC0055: Elements of Power Electronics - PART III - Fall 2024



Motor drive application

Excerpt of [1] (fig 12-3), air conditioner that takes benefit of a
converter (inverter) to control the temperature.
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Servo drive control and current limiting

Excerpt of [1] (fig 12-8a), speed control block diagram (method a).
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Servo drive control and current limiting

Excerpt of [1] (fig 12-8b), speed control block diagram (method b).
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DC servo drive

Excerpt of [1] (fig 13-6), closed loop position/speed DC servo
drive.
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DC servo drive

Excerpt of [1] (fig 13-10), drive with four-quadrant operation.
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Induction motor drive

Excerpt of [1] (fig 14-19), PWM-VSI inverter.
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Synchronous motor servo drive

Excerpt of [1] (fig 15-5), synchronous motor servo drive.
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Induction heating

Excerpt of [1] (fig 16-7), voltage source resonant induction heating.
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Electric welding

Excerpt of [1] (fig 16-9), switch-mode welder.
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Wireless power transfer

Excerpt of the Qi standard, basic system overview.
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Wireless power transfer

Excerpt of the Qi standard, example of power TX and RX devices.
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Solar inverter

Excerpt of [2], H5 topology from SMA (implemented in their
commercial inverters).
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Wind inverter

Excerpt of [3], example of wind energy converter implementing
MPPT with optimal torque control of wind turbines.
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Active filters

Excerpt of [1], utility grid parallel active filter.
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Power factor corrector

Excerpt of [1], power factor correction problem.
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Power factor corrector

Excerpt of [1], the typical solution.
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Power converters find more and more applications...
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HVDC example: ALEGrO

▶ 1GW converter required (see flyer).

▶ https://www.elia.be/fr/infrastructure-et-projets/projets-
infrastructure/alegro

Figure reproduced from the elia website.
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HVDC principle

▶ HVDC can interconnect asynchronous systems.

▶ HVDC transmission can be controlled faster ⇒ AC system
stability can be improved.

Figure reproduced from the elia website.
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HVDC cost benefit

▶ HVDC vs HVAC

Figure reproduced from [4].
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HVDC converter solution: MMC

▶ The modular multilevel converter (MMC) is the most
advanced power converter topology for HVDC.

▶ IGBT example: high power IGBT

Figure reproduced from the elia website.
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MMC: half bridge principle

Excerpt of [4]:

▶ Cascaded connection cells
(half or full-bridge)

▶ 2N cells in series to create
the half bridge

▶ L are prevent excessive
circulating currents
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MMC: cell principle

Excerpt of [4]:

S1 S1 Ix Vx C

ON OFF > 0 Vc discharging

ON OFF < 0 Vc charging

OFF ON > 0 0V -

OFF ON < 0 0V -

Table: Cell states

With a correct selection of the four
states during a 50Hz sinewave, charge
balance can be guaranteed over all the
cells.
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MMC: half bridge principle

Excerpt of [4]:

▶ Cell voltage: Vc = Vdc
N

▶ N cells have S1 = ON and
N cells have S1 = OFF

▶ The number of cells n with
S1 = ON in the low part of
the bridge give the voltage
generated at node a :
Va = nVC

▶ There is however a degree of
freedom when selecting cells
state.
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MMC: operation

Figure reproduced [4].
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MMC: operation

Figure reproduced [4].
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Figure reproduced [4].
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MMC: operation

Figure reproduced [4].
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MMC: operation

Figure reproduced [4].
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MMC: capacitor charge balance

▶ During the operation of the MMC, the output current flows
though the cells capacitors, which charge and discharge the
capacitors.

▶ An active capacitor charge balance method is required for the
operation of the MMC.

▶ The voltage balancing algorithm uses measurements from the
cells capacitor voltages and half bridge currents to select the
next cell to be connected or bypassed.

▶ Capacitor charge balance is possible because there is a degree
of freedom on the selection of the cells.
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