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Lexical analysis or scanning

m Goals of the lexical analysis
» Divide the character stream into meaningful sequences called lexemes.
» Label each lexeme with a token that is passed to the parser (syntax
analysis)
Update the symbol tables with all identifiers (and numbers)
Remove non-significant blanks and comments

m Provide the interface between the source program and the parser

token
source Lexical to semantic
— Parser o .
program Analyzer analysis
getNextToken
Symbol
Table

(Dragonbook)



Example

T While

f

T Ident

T_Ident

]

++

T Ident

ip

z

ip

(win[i[1]e] [(]ifp[ [<[ [z]) Nop\e[+[+]i]p]:]

while (ip < z)

++ip;

(Keith Schwarz)



Example

T While D T Ident T Ident D ++ T Ident

ip z ip

winlifife] [(ilp| [<] [z[)\ap\t[+][+]i]p[;]

while (ip < z)
++ip;

(Keith Schwarz)



Lexical versus syntax analysis

Why separate lexical analysis from parsing?

m Simplicity of design: simplify both the lexical analysis and the syntax
analysis.

m Efficiency: specialized techniques can be applied to improve lexical
analysis.

m Portability: only the scanner needs to communicate with the outside



Tokens, patterns, and lexemes

m A token is a (name, attribute) pair. Attribute might be
multi-valued.

» Example: (/dent, ip), (Operator, <), (*)", NIL)

m A pattern describes the character strings for the lexemes of the
token.

» Example: a string of letters and digits starting with a letter, {<, >,
< > ==} )

m A lexeme for a token is a sequence of characters that matches the
pattern for the token

» Example: ip, “<”, “)" in the following program
while (ip < z)
++ip



Defining a lexical analysis

1. Define the set of tokens

2. Define a pattern for each token (ie., the set of lexemes associated
with each token)

3. Define an algorithm for cutting the source program into lexemes and
outputs the tokens



Choosing the tokens

m Very much dependent on the source language

m Typical token classes for programming languages:

>

>

>

| 4

>

One token for each keyword

One token for each “punctuation” symbol (left and right parentheses,
comma, semicolon...)

One token for identifiers

Several tokens for the operators

One or more tokens for the constants (numbers or literal strings)

m Attributes

>

>

Allows to encode the lexeme corresponding to the token when
necessary. Example: pointer to the symbol table for identifiers,
constant value for constants.

Not always necessary. Example: keyword, punctuation...



Describing the patterns

m A pattern defines the set of lexemes corresponding to a token.

m A lexeme being a string, a pattern is actually a language.

m Patterns are typically defined through regular expressions (that
define regular languages).
» Sufficient for most tokens
> Lead to efficient scanner



Reminder: languages

m An alphabet ¥ is a set of characters
Example: ¥ = {a, b}
m A string over X is a finite sequence of elements from X
Example: aabba

m A language is a set of strings
Example: L = {a, b, abab, babbba}

m Regular languages: a subset of all languages that can be defined by
regular expressions



Reminder: regular expressions

m Any character a € ¥ is a regular expression L={a}

m € is a regular expression L={e}
m If Ry and Ry are regular expressions, then

» Ry R is a regular expression
L(R1Ry) is the concatenation of L(R1) and L(R2)
» Ri|R> (= RiUR») is a regular expression
L(Ri|Rz) = L(R1) U L(R2)
» Ry is a regular expression
L(Ry) is the Kleene closure of L(Ry)
» (Ry) is a regular expression
L((R1)) = L(R)

m Example: a regular expression for even numbers:

(++] = [€)(0[1[2134]5]6]7[8[9)"(0[2[4[6]8)



Notational conveniences

m Regular definitions:
letter — A|B|...|Z]a|b]...|z
digit — 0]1]...]9
id — letter(letter|digit)*
m One or more instances: rt = rr*
m Zero or one instance: r? = r|e
m Character classes:

[abc]=alblc
[a-z]=a|b|...|z
[0-9]=0]1]...]9



Examples

m Keywords:

if, while, for, ...
m Identifiers:
[a-zA-Z_][a-zA-Z_0-9]*
m Integers:
[+-]?[0-9]*
m Floats:

[+=17(([0-9]" (-[0-9]")7[.[0-9] ) ([eE][+—]?[0-9]*)?)
m String constants:
“([a-zA-Z0-9]|\ [a-zA-Z])*"



Algorithms for lexical analysis

How to perform lexical analysis from token definitions through
regular expressions?

Regular expressions are equivalent to finite automata, deterministic
(DFA) or non-deterministic (NFA).

Finite automata are easily turned into computer programs

Two methods:
1. Convert the regular expressions to an NFA and simulate the NFA
2. Convert the regular expression to an NFA, convert the NFA to a DFA,
and simulate the DFA.



Reminder: non-deterministic automata (NFA)

A non-deterministic automata is a five-tuple M = (Q, X, A, so, F)
where:

m Q@ is a finite set of states,

m X is an alphabet,

B AC(Qx(XU{e}) x Q) is the transition relation,
m s € Q is the initial state,

m F C Q is the set of accepting states

Example:

a a Transition table

e . State a
1 1] {3}
2 (13}
(® N

(Mogensen)
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Reminder: from regular expression to NFA

A regular expression can be transformed into an equivalent NFA

(Dragonbook)



Reminder: from regular expression to NFA
Example: (a\b)*ac (Mogensen)

@
O O OO
The NFA N(r) for an expression r is such that:
m N(r) has at most twice as many states as there are operators and
operands in R.
m N(r) has one initial state and one accepting state (with no outgoing
transition from the accepting state and no incoming transition to
the initial state).

m Each (non accepting) state in N(r) has either one outgoing
transition or two outgoing transitions, both on e.



Simulating an NFA

Algorithm to check whether an input string is accepted by the NFA:
1) S = e-closure(sg);
2) ¢ = nextChar();
3) while (¢!=eof) {

4) S = e-closure(move(S,c));
5) ¢ = nextChar();
6)

7) if(SNF!=0)return "yes";
8) else return "no";
(Dragonbook)
m nextChar(): returns the next character on the input stream

m move(S, ¢): returns the set of states that can be reached from
states in S when observing c.

m c-closure(S): returns all states that can be reached with ¢
transitions from states in S.



Lexical analysis

m What we have so far:

» Regular expressions for each token
» NFAs for each token that can recognize the corresponding lexemes
» A way to simulate an NFA

m How to combine these to cut apart the input text and recognize
tokens?
m Two ways:

» Simulate all NFAs in turn (or in parallel) from the current position
and output the token of the first one to get to an accepting state

» Merge all NFAs into a single one with labels of the tokens on the
accepting states



[[lustration

[0-9]
e 09 @ NUM

[a-z0-9]
e [a-z] @)’ D

m Four tokens: IF=if, ID=[a-z][a-z0-9]*, EQ="=", NUM=[0-9]*

m Lexical analysis of x = 60 yields:

(ID, x), (EQ), (NUM, 60)



lllustration: ambiguities

e la-z] " D

m Lexical analysis of ifu26 = 60
m Many splits are possible:

(IF), (ID, u26), (EQ), (NUM, 60)

(ID, ifu26), (EQ), (NUM, 60)
(ID, ifu), (NUM, 26), (EQ), (NUM, 6, (NUM, 0)



Conflict resolutions

m Principle of the longest matching prefix: we choose the longest
prefix of the input that matches any token

m Following this principle, ifu26 = 60 will be split into:

(ID, ifu26), (EQ), (NUM, 60)

m How to implement?

» Run all NFAs in parallel, keeping track of the last accepting state
reached by any of the NFAs

» When all automata get stuck, report the last match and restart the
search at that point

m Requires to retain the characters read since the last match to
re-insert them on the input

> In our example, '=" would be read and then re-inserted in the buffer.



Other source of ambiguity

m A lexeme can be accepted by two NFAs
» Example: keywords are often also identifiers (if in the example)

m Two solutions:
» Report an error (such conflict is not allowed in the language)
» Let the user decide on a priority order on the tokens (eg., keywords
have priority over identifiers)



What if nothing matches

m What if we can not reach any accepting states given the current
input?

m Add a “catch-all” rule that matches any character and reports an

~O—0—0
@

[0-9]
O

[a-z0-9]

ID

oS

(®
@ by

®




Merging all automata into a single NFA

m In practice, all NFAs are merged and simulated as a single NFA

m Accepting states are labeled with the token name




Lexical analysis with an NFA: summary

Construct NFAs for all regular expression

Merge them into one automaton by adding a new start state

| |
| |
m Scan the input, keeping track of the last known match
m Break ties by choosing higher-precedence matches

[

Have a catch-all rule to handle errors



Computational efficiency

1)
2)
3)
4)
5)
6)
7)
8)

S = e-closure(sg);

¢ = nextChar();

while (¢ != eof ) {
S = e-closure(move(S,c));
¢ = nextChar();

if (SN F!=0) return "yes";
else return "no";

(Dragonbook)

m In the worst case, an NFA with |Q| states takes O(|S||Q|?) time to
match a string of length |S]

m Complexity thus depends on the number of states

m It is possible to reduce complexity of matching to O(|S]) by
transforming the NFA into an equivalent deterministic finite

automaton (DFA)



Reminder: deterministic finite automaton

m Like an NFA but the transition relation A C (Q x (XJ{e}) x Q) is
such that:

» Transitions based on € are not allowed
» Every state have exactly one transition defined for every letter

m Transition relation is replaced by a transition function
0:Q@xX—Q

m Example of a DFA

a
‘e b

(Mogensen)



Reminder: from NFA to DFA

m DFA and NFA (and regular expressions) have the same expressive
power
m An NFA can be converted into a DFA by the subset construction
method
m Main idea: mimic the simulation of the NFA with a DFA
» Every state of the resulting DFA corresponds to a set of states of the
NFA. First state is e-closure(sp).
» Transition between states of DFA correspond to transitions between
set of states in the NFA:

4(S, ¢) = e-closure(move(S, c))

» A set of the DFA is accepting if any of the NFA states that it
contains is accepting

m See INFOO0016 or the reference book for more details



Reminder: from NFA to DFA

NFA
(alb)*ac

DFA
sh {1,2,5,6,7}

) {3,8,1,2,5,6,7}
s, {8,1,2,5,6,7}
s3 {4}

(Mogensen)



Simulating a DFA

s = 8o,
¢ = nextChar();
while ( ¢ != eof ) {
s = move(s,c);
¢ = nextChar();

if ( sisin F ) return "yes";
else return "no";

m Time complexity is O(|S|) for a string of length |S|

m Now independent of the number of states



Lexical analysis with a DFA: summary

Construct NFAs for all regular expressions

Mark the accepting states of the NFAs by the name of the tokens
they accept

Merge them into one automaton by adding a new start state
Convert the combined NFA to a DFA

Convey the accepting state labeling of the NFAs to the DFA (by
taking into account precedence rules)

Scanning is similar as with an NFA



Example: combined NFA for several tokens

[a-zA-Z 0-9]

- 0-9
/7\ [+-1] @E 1 @
NUM

€ €

[0-9]
- 0-9 /&
SV RN

FLOAT
. [eE]
[0-9] [eE]

(Mogensen)



Example: combined DFA for several tokens

@ [a-zA-Z 0-9]
[a-zA-Z_0-9]
Try lexing on the strings:
m if17
[0-9] m 3e-y
FLOAT

/ w] [0-9]
af e /

FLOAT



Speed versus memory

m The number of states of a DFA can grow exponentially with respect
to the size of the corresponding regular expression (or NFA)

m We have to choose between low-memory and slow NFAs and
high-memory and fast DFAs.

Note:
m It is possible to minimise the number of states of a DFA in
O(nlog n) (Hopcroft's algorithm?)
» Theory says that any regular language has a unique minimal DFA
» However, the number of states may remain exponential in the size of
the regular expression after minimization

"http://en.wikipedia.org/wiki/DFA_minimization


http://en.wikipedia.org/wiki/DFA_minimization

Summary

Kleene
construction

Token
patterns Analyzer
v minimization
Regular

expressions EETETPRN W > DFA

Thompson’s NFA
construction determinization



Some langage specificities
Language specificities that make lexical analysis hard:
m Whitespaces are irrelevant in Fortran.
DO5TI=1,25
DO5I = 1.25

m PL/1: keywords can be used as identifiers:
IF THEN THEN THEN = ELSE; ELSE ELSE = IF

m Python block defined by indentation:

if w == z:
a=>b

else:
e = f

g=nh

(the lexical analyser needs to record current identation and output a
token for each increase/decrease in indentation)

(Keith Schwarz)



Implementing a lexical analyzer

m In practice (and for your project), two ways:

» Write an ad-hoc analyser
» Use automatic tools like (F)LEX.

m First approach usually gives a more efficient solution but is more
tedious

m Second approach is less efficient but is more portable



Example of an ad-hoc lexical analyser

(source: http://dragonbook.stanford.edu/lecture-notes.html)

Definition of the token classes (through constants)

#define T SEMICOLON ';' // use ASCII values for single char tokens
#define T LPAREN ' (
#define T RPAREN '
#define T_ASSIGN '
#define T_DIVIDE '

#define T_WHILE 257 // reserved words
#define T_IF 258
#define T_RETURN 259

#define T IDENTIFIER 268 // identifiers, constants, etc.
#define T INTEGER 269
#define T DOUBLE 270
#define T STRING 271

#define T END 349 // code used when at end of file
#define T UNKNOWN 350 // token was unrecognized by scanner


http://dragonbook.stanford.edu/lecture-notes.html

Example of an ad-hoc lexical analyser

Structure for tokens

struct token_ t {

int type;

union {
char stringValue[256];
int intValue;
double doubleValue;

} val;

}:
Main function

int main(int argc,

{

//

//
//
//

one of the token codes from above

holds lexeme value if string/identifier
holds lexeme value if integer
holds lexeme value if double

char *argv([])

struct token_t token;

InitScanner () ;

while (ScanOneToken (stdin, &token) != T _END)
; // this is where you would process each token

return 0;



Example of an ad-hoc lexical analyser

Initialization

static void InitScanner ()
{
create_reserved table(); // table maps reserved words to token type
insert reserved("WHILE", T WHILE)
insert reserved("IF", T_IF)
insert_reserved ("RETURN", T RETURN)



Example of an ad-hoc lexical analyser

Scanning (single-char tokens)

static int ScanOneToken (FILE *fp, struct token t *token)
{

int i, ch, nextch;

ch = getc(fp); // read next char from input stream
while (isspace(ch)) // if necessary, keep reading til non-space char
ch = getc(fp); // (discard any white space)

switch (ch) {

case '/': // could either begin comment or T DIVIDE op
nextch = getc (fp);
if (nextch == '/' || nextch == '*")

; // here you would skip over the comment
else
ungetc (nextch, fp); // fall-through to single-char token case
case ';': case ',': case '=': // ... and other single char tokens
token->type = ch; // ASCII value is used as token type
return ch; // ASCII value used as token type



Example of an ad-hoc lexical analyser

Scanning: keywords

case 'A': case 'B': case 'C': // ... and other upper letters
token->val.stringValue[0] = ch;
for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase
token->val.stringValue[i] = ch;
ungetc(ch, fp);
token->val.stringValue[i] = '\0'; // lookup reserved word

token->type = lookup reserved(token->val.stringValue);
return token->type;

Scanning: identifier

case 'a': case 'b': case 'c': // ... and other lower letters
token->type = T IDENTIFIER;
token->val.stringValue[0] = ch;
for (i = 1; islower (ch = getc(fp)); i++)

token->val.stringValue[i] = ch; // gather lowercase

ungetc (ch, fp);
token->val.stringValue[i] = '\0';
if (lookup symtab (token->val.stringValue) == NULL)

add_symtab (token->val.stringValue); // get symbol for ident
return T IDENTIFIER;



Example of an ad-hoc lexical analyser

Scanning: number

case '0': case 'l': case '2': case '3': //.... and other digits
token->type = T_ INTEGER;
token->val.intValue = ch - '0';
while (isdigit(ch = getc(fp))) // convert digit char to number
token->val.intValue = token->val.intValue * 10 + ch - '0';

ungetc (ch, fp);
return T INTEGER;

Scanning: EOF and default

case EOF:
return T END;

default: // anything else is not recognized
token->val.intValue = ch;
token->type = T UNKNOWN;
return T UNKNOWN;



Flex

m flex is a free implementation of the Unix lex program
m flex implements what we have seen:
> |t takes regular expressions as input
It generates a combined NFA
It converts it to an equivalent DFA
It minimizes the automaton as much as possible
It generates C code that implements it
It handles conflict with the longest matching prefix principles and an
preference order on the tokens.

vV vy vy VvYy

m More information
» http://flex.sourceforge.net/manual/


http://flex.sourceforge.net/manual/

Input file

m Input files are structured as follows:
3

Declarations
W
Definitions
W

Rules

W

User subroutines
m Declarations and User subroutines are copied without modification
to the generated C file.
m Definitions specify options and name definition (to simplify the rules)

m Rules: specify the patterns for the tokens to be recognized



Rules

m In the form:
patternl actionl
pattern2 action2

m Patterns are defined as regular expressions. Actions are blocks of ¢
code.

m When a sequence is read that matches the pattern, the c code of
the action is executed

m Examples:

[0-9]+ {printf("This is a number");}
[a-z]+ {printf("This is symbol");}



Regular expressions

m Many shortcut notations are permitted in regular expressions:

» [1, -, +, *, 7. as defined previously

» .: a dot matches any character (except newline)

» [~x]: matches the complement of the set of characters in x (ex: all
non-digit characters [~0-9]).

» x{n,m}: x repeated between n and m times

» "x": matches x even if x contains special characters (ex: "x*"
matches x followed by a star).

» {name}: replace with the pattern defined earlier in the definition
section of the input file



Interacting with the scanner

m User subroutines and action may interact with the generated scanner
through global variables:

» yylex: scan tokens from the global input file yyin (defaults to
stdin). Continues until it reaches the end of the file or one of its
actions executes a return statement.

» yytext: a null-terminated string (of length yyleng) containing the
text of the lexeme just recognized.

» yylval: store the attributes of the token

» yylloc: location of the tokens in the input file (line and column)



Example 1: hiding numbers

m hide-digits.I:
hh
[0-9]+ printf("?");
. ECHO;

m To build and run the program:
% flex hide-digits.l
% gcc -o hide-digits lex.yy.c 11
% ./hide-digits



Example 2: wc

m count.l:
W
int numChars = 0, numWords = 0, numLines = 0;
W
Wt
\n {numLines++; numChars++;}

[* \t\nl+ {numWords++; numChars += yyleng;}
{numChars++;}

hh

int main() {

yylex();
printf ("%d\t%d\t%d\n", numChars, numWords, numLines);

}

m To build and run the program:

% flex count.l
% gcc -o count lex.yy.c 11
% ./count < count.l



Example 3: typical compiler
3t

/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */

delim [ \t\n]

ws {delim}+

letter [A-Za-z]

digit [0-91

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+) 7(E[+-]?{digit}+)?

Wh

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN) ; }

else {return(ELSE) ; }

{id} {yylval = (int) installID(); return(ID);}
{number} {yylval = (int) installNum(); return(NUMBER);}
e {yylval = LT; return(RELOP);}

ng=n {yylval = LE; return(RELOP);}

"=t {yylval = EQ; return(RELOP);}

e {yylval = NE; return(RELOP);}

" {yylval = GT; return(RELOP);}

"= {vvlval = GE: return(RFL.NP):}



Example 3: typical compiler

User defined subroutines
%h

int installID() {/# function to install the lexeme, whose
first character is pointed to by yytext,
and whose length is yyleng, into the
symbol table and return a pointer
thereto */

}

int installNum() {/* similar to installID, but puts numer-
ical constants into a separate table */

}
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