Transforming a grammar for LL(1) parsing

- Ambiguous grammars are not LL(1) but unambiguous grammars are not necessarily LL(1)
- Having a non-LL(1) unambiguous grammar for a language does not mean that this language is not LL(1).
- But there are languages for which there exist unambiguous context-free grammars but no LL(1) grammar.
- We will see two grammar transformations that improve the chance to get a LL(1) grammar:
 - Elimination of left-recursion
 - Left-factorization

Left-recursion

■ The following expression grammar is unambiguous but it is not *LL*(1):

$$Exp \rightarrow Exp + Exp2$$

$$Exp \rightarrow Exp - Exp2$$

$$Exp \rightarrow Exp2$$

$$Exp2 \rightarrow Exp2 * Exp3$$

$$Exp2 \rightarrow Exp2/Exp3$$

$$Exp2 \rightarrow Exp3$$

$$Exp3 \rightarrow num$$

$$Exp3 \rightarrow (Exp)$$

- Indeed, $First(\alpha)$ is the same for all RHS α of the productions for Exp et Exp2
- This is a consequence of *left-recursion*.

Left-recursion

- Recursive productions are productions defined in terms of themselves. Examples: $A \rightarrow Ab$ ou $A \rightarrow bA$.
- When the recursive nonterminal is at the left (resp. right), the production is said to be left-recursive (resp. right-recursive).
- Left-recursive productions can be rewritten with right-recursive productions
- Example:

Right-recursive expression grammar

				Exp	\longrightarrow	Exp2Exp'
Ехр	\rightarrow	Exp + Exp2		Exp'	\longrightarrow	+Exp2Exp'
Ехр	\rightarrow	Exp - Exp2		Exp'	\rightarrow	-Exp2Exp'
Ехр	\rightarrow	Exp2		Exp'	\longrightarrow	ϵ
Exp2	\rightarrow	Exp2 * Exp3		Exp2	\longrightarrow	Exp3Exp2'
Exp2	\rightarrow	Exp2/Exp3	\leftarrow	Exp2'	\rightarrow	*Exp3Exp2'
Exp2	\longrightarrow	Exp3	\Leftrightarrow	Exp2'	\rightarrow	/Exp3Exp2'
Ехр3	\rightarrow	num		Exp2'	\rightarrow	ϵ
Ехр3	\longrightarrow	(Exp)		Ехр3	\rightarrow	num
				Evn3	\rightarrow	(Eyn)

Left-factorisation

■ The RHS of these two productions have the same *First* set.

```
Stat \rightarrow  if Exp then Stat else Stat Stat \rightarrow  if Exp then Stat
```

■ The problem can be solved by left factorising the grammar:

```
Stat \rightarrow  if Exp then Stat ElseStat \to else Stat
```

- Note
 - The resulting grammar is ambiguous and the parsing table will contain two rules for M[ElseStat, else] (because else ∈ Follow(ElseStat) and else ∈ First(else Stat))
 - ▶ Ambiguity can be solved in this case by letting M[ElseStat, else] = {ElseStat → else Stat}.

Hidden left-factors and hidden left recursion

- Sometimes, left-factors or left recursion are hidden
- Examples:
 - ▶ The following grammar:

$$A \rightarrow da|acB$$

 $B \rightarrow abB|daA|Af$

has two overlapping productions: $B \rightarrow daA$ and $B \stackrel{*}{\Rightarrow} daf$.

► The following grammar:

$$S \rightarrow Tu|wx$$

 $T \rightarrow Sq|vvS$

has left recursion on T ($T \stackrel{*}{\Rightarrow} Tuq$)

 Solution: expand the production rules by substitution to make left-recursion or left factors visible and then eliminate them

Summary

Construction of a LL(1) parser from a CFG grammar

- Eliminate ambiguity
- Eliminate left recursion
- left factorization
- Add an extra start production $S' \rightarrow S$ \$ to the grammar
- Calculate First for every production and Follow for every nonterminal
- Calculate the parsing table
- Check that the grammar is LL(1)

Recursive implementation

 From the parsing table, it is easy to implement a predictive parser recursively (with one function per nonterminal)

```
T \rightarrow aTc \qquad parseT() ; match('\$')
R \rightarrow \epsilon \qquad else reportError()
R \rightarrow bR \qquad function parseT() = if next = 'b' or next = parseR()
T \rightarrow aTc \qquad T \rightarrow R \qquad T \rightarrow R \qquad T \rightarrow R \qquad match('a') ; parseT()
R \rightarrow bR \qquad R \rightarrow \epsilon \qquad R \rightarrow \epsilon \qquad else reportError()
match('a') ; parseT()
else reportError()
```

 $T' \rightarrow T$ \$

 $T \rightarrow R$

```
function parseT'() =
  if next = 'a' or next = 'b' or next = '$' then
   parseT() ; match('$')
 else reportError()
function parseT() =
  if next = 'b' or next = 'c' or next = '$' then
  parseR()
    match('a') ; parseT() ; match('c')
  else reportError()
function parseR() =
  if next = 'c' or next = '$' then
    (* do nothing *)
  else if next = 'b' then
    match('b'); parseR()
  else reportError()
```

(Mogensen)

Outline

1. Introduction

2. Context-free grammar

3. Top-down parsing

4. Bottom-up parsing

Bottom-up parsing

- A bottom-up parser creates the parse tree starting from the leaves towards the root
- It tries to convert the program into the start symbol
- Most common form of bottom-up parsing: shift-reduce parsing

Bottom-up parsing: example

Grammar:

Bottum-up parsing of int + (int + int + int)

Bottom-up parsing: example

Grammar:

$$S \rightarrow E$$

$$E \rightarrow T$$

$$E \rightarrow E + T$$

$$T \rightarrow \mathbf{int}$$

$$T \rightarrow (E)$$

Bottum-up parsing of int + (int + int + int):

$$int + (int + int + int)$$
\$
 $T + (int + int + int)$ \$
 $E + (int + int + int)$ \$
 $E + (T + int + int)$ \$
 $E + (E + int + int)$ \$
 $E + (E + T + int)$ \$
 $E + (E + int)$ \$
 $E + (E + T)$ \$
 $E + (E + T)$ \$
 $E + (E)$ \$
 $E + (E)$ \$
 $E + (E)$ \$

Top-down parsing is often done as a rightmost derivation in reverse (There is only one if the grammar is unambiguous).

Terminology

- A Rightmost (canonical) derivation is a derivation where the rightmost nonterminal is replaced at each step. A rightmost derivation from α to β is noted $\alpha \stackrel{*}{\Rightarrow}_{rm} \beta$.
- A reduction transforms uwv to uAv if $A \rightarrow w$ is a production
- α is a right sentential form if $S \stackrel{*}{\Rightarrow}_{rm} \alpha$ avec $\alpha = \beta x$ where x is a string of terminals.
- A handle of a right sentential form γ (= $\alpha\beta w$) is a production $A \rightarrow \beta$ and a position in γ where β may be found and replaced by A to produce the previous right-sentential form in a rightmost derivation of γ :

$$S \stackrel{*}{\Rightarrow}_{rm} \alpha Aw \Rightarrow_{rm} \alpha \beta w$$

- Informally, a handle is a production we can reverse without getting stuck.
- ▶ If the handle is $A \rightarrow \beta$, we will also call β the handle.

Handle: example

Grammar:

$$S \rightarrow E$$

$$E \rightarrow T$$

$$E \rightarrow E + T$$

$$T \rightarrow \mathbf{int}$$

$$T \rightarrow (E)$$

Bottum-up parsing of int + (int + int + int)

The handle is in red in each right sentential form

Finding the handles

- Bottom-up parsing = finding the handle in the right sentential form obtained at each step
- This handle is unique as soon as the grammar is unambiguous (because in this case, the rightmost derivation is unique)
- Suppose that our current form is uvw and the handle is $A \rightarrow v$ (getting uAw after reduction). w can not contain any nonterminals (otherwise we would have reduced a handle somewhere in w)

Proposed model for a bottom-up parser:

- Split the input into two parts:
 - Left substring is our work area
 - Right substring is the input we have not yet processed
- All handles are reduced in the left substring
- Right substring consists only of terminals
- At each point, decide whether to:
 - Move a terminal across the split (shift)
 - Reduce a handle (reduce)

Shift/reduce parsing: example

Grammar:	Left substring	Right substring	Action
Grammar.	\$	id + id * id\$	Shift
$E \rightarrow E + T T$	\$ <i>id</i>	+id*id\$	Reduce by $F \rightarrow id$
	\$ <i>F</i>	+id*id\$	Reduce by $T \rightarrow F$
$T \rightarrow T * F F$	\$ <i>T</i>	+id*id\$	Reduce by $E \rightarrow T$
$F \rightarrow (E)$ id	\$ <i>E</i>	+id*id\$	Shift
/ (2) Id	\$ <i>E</i> +	id*id\$	Shift
	E + id	* <i>id</i> \$	Reduce by $F \rightarrow id$
	\$ <i>E</i> + <i>F</i>	* <i>id</i> \$	Reduce by $T \rightarrow F$
	E + T	* <i>id</i> \$	Shift
Bottum-up parsing of	E + T*	id\$	Shift
id + id * id	E + T * id	\$	Reduce by $F \rightarrow id$
74 74 74	E + T * F	\$	Reduce by $T \rightarrow T * F$
	E + T	\$	Reduce by $E \rightarrow E + T$
	\$ <i>E</i>	\$	Accept

- In the previous example, all the handles were to the far right end of the left area (not inside)
- This is convenient because we then never need to shift from the left to the right and thus could process the input from left-to-right in one pass.
- Is it the case for all grammars? Yes!
- Sketch of proof: by induction on the number of reduces
 - After no reduce, the first reduction can be done at the right end of the left area
 - After at least one reduce, the very right of the left area is a nonterminal (by induction hypothesis). This nonterminal must be part of the next reduction, since we are tracing a rightmost derivation backwards.

- Consequence: the left area can be represented by a stack (as all activities happen at its far right)
- Four possible actions of a shift-reduce parser:
 - 1. Shift: push the next terminal onto the stack
 - 2. Reduce: Replace the handle on the stack by the nonterminal
 - 3. Accept: parsing is successfully completed
 - 4. Error: discover a syntax error and call an error recovery routine

- There still remain two open questions: At each step:
 - ▶ How to choose between shift and reduce?
 - ▶ If the decision is to reduce, which rules to choose (i.e., what is the handle)?
- Ideally, we would like this choice to be deterministic given the stack and the next *k* input symbols (to avoid backtracking), with *k* typically small (to make parsing efficient)
- Like for top-down parsing, this is not possible for all grammars
- Possible conflicts:
 - shift/reduce conflict: it is not possible to decide between shifting or reducing
 - reduce/reduce conflict: the parser can not decide which of several reductions to make

We will see two main categories of shift-reduce parsers:

- LR-parsers
 - They cover a wide range of grammars
 - Different variants from the most specific to the most general: SLR, LALR, LR
- Weak precedence parsers
 - ▶ They work only for a small class of grammars
 - ► They are less efficient than LR-parsers
 - They are simpler to implement

LR-parsers

■ LR(k) parsing: Left-to-right, Rightmost derivation, k symbols lookahead.

Advantages:

- ► The most general non-backtracking shift-reduce parsing, yet as efficient as other less general techniques
- Can detect syntactic error as soon as possible (on a left-to-right scan of the input)
- Can recognize virtually all programming language constructs (that can be represented by context-free grammars)
- ▶ Grammars recognized by LR parsers is a proper subset of grammars recognized by predictive parsers $(LL(k) \subset LR(k))$

Drawbacks:

- ► More complex to implement than predictive (or operator precedence) parsers
- Like table-driven predictive parsing, LR parsing is based on a parsing table.

Structure of a LR parser

Structure of a LR parser

A configuration of a LR parser is described by the status of its stack and the part of the input not analysed (shifted) yet:

$$(s_0X_1s_1\ldots X_ms_m, a_ia_{i+1}\ldots a_n\$)$$

where X_i are (terminal or nonterminal) symbols, a_i are terminal symbols, and s_i are state numbers (of a DFA)

A configuration corresponds to the right sentential form

$$X_1 \dots X_m a_i \dots a_n$$

- Analysis is based on two tables:
 - an action table that associates an action ACTION[s, a] to each state s and nonterminal a.
 - a goto table that gives the next state GOTO[s, A] from state s after a reduction to a nonterminal A

Actions of a LR-parser

Let us assume the parser is in configuration

$$(s_0X_1s_1\ldots X_ms_m,a_ia_{i+1}\ldots a_n\$)$$

(initially, the state is $(s_0, a_1 a_2 ... a_n \$)$, where $a_1 ... a_n$ is the input word)

- ACTION[s_m , a_i] can take four values:
 - 1. Shift s: shifts the next input symbol and then the state s on the stack $(s_0X_1s_1...X_ms_m, a_ia_{i+1}...a_n) \rightarrow (s_0X_1s_1...X_ma_is, a_{i+1}...a_n)$
 - 2. Reduce $A \rightarrow \beta$ (denoted by *rn* where *n* is a production number)
 - ▶ Pop $2|\beta|$ (= r) items from the stack
 - Push A and s where $s = GOTO[s_{m-r}, A]$ $(s_0X_1s_1...X_ms_m, a_ia_{i+1}...a_n) \rightarrow$ $(s_0X_1s_1...X_{m-r}s_{m-r}As, a_ia_{i+1}...a_n)$
 - ▶ Output the prediction $A \rightarrow \beta$
 - 3. Accept: parsing is successfully completed
 - 4. Error: parser detected an error (typically an empty entry in the action table).

LR-parsing algorithm

```
Create a stack with the start state so
a = GETNEXTTOKEN()
while (True)
     s = POP()
    if (ACTION[s, a] = shift t)
          Push a and t onto the stack
          a = GETNEXTTOKEN()
     elseif (ACTION[s, a] = reduce A \rightarrow \beta)
          Pop 2|\beta| elements off the stack
          Let state t now be the state on the top of the stack
          Push GOTO[t, A] onto the stack
          Output A \rightarrow \beta
     elseif (ACTION[s, a] = accept)
         break // Parsing is over
     else call error-recovery routine
```

Example: parsing table for the expression grammar

1		- 1	7
	\rightarrow	+	•

2.
$$E \rightarrow T$$

3.
$$T \rightarrow T * F$$

4.
$$T \rightarrow F$$

5.
$$F \rightarrow (E)$$

6.
$$F \rightarrow id$$

		Action Table						Goto	o Tal	ole
state	id	+	*	()	\$		E	T	F
0	s5			s4				1	2	3
1		s6				acc				
2		r2	s7		r2	r2				
3		r4	r4		r4	r4				
4	s5			s4				8	2	3
5		r6	r6		r6	r6				
6	s5			s4					9	3
7	s5			s4						10
8		s6			s11					
9		r1	s7		rl	r1				
10		r3	r3		r3	r3				
11		r5	r5		r5	r5				

Example: LR parsing with the expression grammar

<u>stack</u>	<u>input</u>	<u>action</u>	<u>output</u>
0	id*id+id\$	shift 5	
0id5	*id+id\$	reduce by F→id	F→id
0F3	*id+id\$	reduce by $T \rightarrow F$	T→F
0T2	*id+id\$	shift 7	
0T2*7	id+id\$	shift 5	
0T2*7id5	+id\$	reduce by F→id	F→id
0T2*7F10	+id\$	reduce by T→T*F	T→T*F
0T2	+id\$	reduce by $E \rightarrow T$	E→T
0E1	+id\$	shift 6	
0E1+6	id\$	shift 5	
0E1+6id5	\$	reduce by F→id	F→id
0E1+6F3	\$	reduce by $T \rightarrow F$	T→F
0E1+6T9	\$	reduce by E→E+T	E→E+T
0E1	\$	accept	

Constructing the parsing tables

- There are several ways of building the parsing tables, among which:
 - ▶ LR(0): no lookahead, works for only very few grammars
 - ► SLR: the simplest one with one symbol lookahead. Works with less grammars than the next ones
 - ightharpoonup LR(1): very powerful but generate potentially very large tables
 - ► LALR(1): tradeoff between the other approaches in terms of power and simplicity
 - ▶ LR(k), k> 1: exploit more lookahead symbols
- LALR(1) is used in parser generators like Yacc
- We will only see SLR in this course
- Main idea of all methods: build a DFA whose states keep track of where we are in a parse

LR(0) item

- An LR(0) item (or item for short) of a grammar G is a production of G with a dot at some position of the body.
- **Example**: $A \rightarrow XYZ$ yields four items:

$$A \rightarrow .XYZ$$

 $A \rightarrow X.YZ$
 $A \rightarrow XY.Z$
 $A \rightarrow XYZ$.

 $(A \rightarrow \epsilon \text{ generates one item } A \rightarrow .)$

- An item indicates how much of a production we have seen at a given point in the parsing process.
 - ▶ $A \rightarrow X.YZ$ means we have just seen on the input a string derivable from X (and we hope to get next YZ).
- Each state of the SLR parser will correspond to a set of LR(0) items
- A particular collection of sets of LR(0) items (the canonical LR(0) collection) is the basis for constructing SLR parsers

Construction of the canonical LR(0) collection

- The grammar G is first augmented into a grammar G' with a new start symbol S' and a production $S' \rightarrow S$ where S is the start symbol of G
- We need to define two functions:
 - CLOSURE(I): extends the set of items I when some of them have a
 dot to the left of a nonterminal
 - ▶ Goto(I, X): moves the dot past the symbol X in all items in I
- These two functions will help define a DFA:
 - whose states are (closed) sets of items
 - \blacktriangleright whose transitions (on terminal and nonterminal symbols) are defined by the GOTO function

CLOSURE

```
CLOSURE(I)

repeat

for any item A \to \alpha.X\beta in I

for any production X \to \gamma

I = I \cup \{X \to .\gamma\}

until I does not change
return I
```

Example:

$$E' \rightarrow E \qquad \qquad \text{CLOSURE}(\{E' \rightarrow .E\}) = \{E' \rightarrow .E, \\ E \rightarrow E + T \qquad \qquad E \rightarrow .E + T \\ E \rightarrow T \qquad \qquad E \rightarrow .T \\ T \rightarrow T * F \qquad \qquad T \rightarrow .T * F \\ F \rightarrow (E) \qquad \qquad T \rightarrow .F \\ F \rightarrow .(E)$$

Syntax analysis 18

 $F \rightarrow . id$

Gото

GOTO(
$$I, X$$
)
Set J to the empty set
for any item $A \to \alpha.X\beta$ in I

$$J = J \bigcup \{A \to \alpha X.\beta\}$$
return CLOSURE(J)

Example:

$$E' \rightarrow E \qquad l_0 \qquad = \qquad \{E' \rightarrow .E, \\ E \rightarrow E + T \qquad E \rightarrow .E + T \qquad GOTO(l_0, E) = \{E' \rightarrow E., E \rightarrow E. + T\} \\ E \rightarrow .T \qquad GOTO(l_0, T) = \{E \rightarrow T., T \rightarrow T. * F\} \\ T \rightarrow .F \qquad E \rightarrow .T \qquad GOTO(l_0, F) = \{T \rightarrow F.\} \\ T \rightarrow .T * F \qquad GOTO(l_0, F) = \{T \rightarrow F.\} \\ T \rightarrow .T * F \qquad GOTO(l_0, F) = \{F \rightarrow (.E)\} \cup (l_0 \setminus \{E' \rightarrow E\}) \\ F \rightarrow . \text{id} \qquad F \rightarrow . \text{id}$$

Construction of the canonical collection

```
C = \{ \text{CLOSURE}(\{S' \rightarrow .S\}) \} for each item set I in C for each item A \rightarrow \alpha.X\beta in I C = C \cup \text{GOTO}(I,X) return C
```

- Collect all sets of items reachable from the initial state by one or several applications of GOTO.
- Item sets in C are the state of a DFA, GOTO is its transition function

Example

Constructing the LR(0) parsing table

- 1. Construct $c = \{I_0, I_1, \dots, I_n\}$, the collection of sets of LR(0) items for G' (the augmented grammar)
- 2. State i of the parser is derived from I_i . Actions for state i are as follows:
 - 2.1 If $A \to \alpha.a\beta$ is in I_i and $GOTO(I_i, a) = I_j$, then ACTION[i, a] = Shift j
 - 2.2 If $A \to \alpha$. is in I_i , then set $ACTION[i, a] = \text{Reduce } A \to \alpha$ for all terminals a.
 - 2.3 If $S' \rightarrow S$. is in I_i , then set ACTION[i, \$] = Accept
- 3. If $GOTO(I_i, X) = I_j$, then GOTO[i, X] = j.
- 4. All entries not defined by rules (2) and (3) are made "error"
- 5. The initial state s_0 is the set of items containing $S' \rightarrow .S$

 \Rightarrow LR(0) because the chosen action (shift or reduce) only depends on the current state

Example of a LR(0) grammar

$$\begin{array}{ll} _{0} & S^{\prime}\rightarrow S\$ \\ _{1} & S\rightarrow \left(\ L \ \right) \\ _{2} & S\rightarrow x \\ _{3} & L\rightarrow S \\ _{4} & L\rightarrow L \ , \ S \end{array}$$

	()	X	,	\$	S	L
1	s3		s2			g4	
2	r2	r2	r2	r2	r2		
3	s3		s2			g7	g5
4					a		
2 3 4 5 6 7		s6		s8			
6	r1	r1	r1	r1	r1		
7	r3	r3	r3	r3	r3		
8	s3		s2			g9	
9	r4	r4	r4	r4	r4		

(Appel)

Example of a non LR(0) grammar

Constructing the SLR parsing tables

- 1. Construct $c = \{I_0, I_1, \dots, I_n\}$, the collection of sets of LR(0) items for G' (the augmented grammar)
- State i of the parser is derived from I_i. Actions for state i are as follows:
 - 2.1 If $A \to \alpha.a\beta$ is in I_i and $GOTO(I_i, a) = I_j$, then ACTION[i, a] = Shift j
 - 2.2 If $A \to \alpha$. is in I_i , then $ACTION[i, a] = \text{Reduce } A \to \alpha$ for all terminals a in Follow(A) where $A \neq S'$
 - 2.3 If $S' \to S$. is in I_i , then set ACTION[i, \$] = Accept
- 3. If $GOTO(I_i, A) = I_i$ for a nonterminal A, then GOTO[i, A] = i
- 4. All entries not defined by rules (2) and (3) are made "error"
- 5. The initial state s_0 is the set of items containing $S' \rightarrow .S$

⇒ the simplest form of one symbol lookahead, SLR (Simple LR)

Example

	Action Table						Goto	o Tal	ole
state	id	+	*	()	\$	E	Т	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			
		•							

	First	Follow
Ε	id (\$ +)
Τ	id (\$ + *)
F	id (\$ + *)

SLR(1) grammars

- A grammar for which there is no (shift/reduce or reduce/reduce) conflict during the construction of the SLR table is called SLR(1) (or SLR in short).
- All SLR grammars are unambiguous but many unambiguous grammars are not SLR
- There are more SLR grammars than LL(1) grammars but there are LL(1) grammars that are not SLR.

Conflict example for SLR parsing

$$\begin{array}{cccc} S & \rightarrow & L = R \ | \ R \\ L & \rightarrow & *R \ | \ \mathbf{id} \\ R & \rightarrow & L \end{array}$$

$$\begin{split} I_0 \colon & S' \to \cdot S \\ & S \to \cdot L = R \\ & S \to \cdot R \\ & L \to \cdot * R \\ & L \to \cdot \mathbf{id} \\ & R \to \cdot L \end{split}$$

$$S \rightarrow \cdot L = R$$

$$S \rightarrow \cdot R$$

$$L \rightarrow \cdot * R$$

$$L \rightarrow \cdot id$$

$$R \rightarrow \cdot L$$

$$I_1: S' \to S$$

$$I_2: \quad S \to L \cdot = R$$
$$R \to L \cdot$$

$$I_3 \colon S \to R \cdot$$

$$\begin{array}{ccc} I_4 \colon & L \to * \cdot R \\ & R \to \cdot L \\ & L \to \cdot * R \\ & L \to \cdot \mathbf{id} \end{array}$$

$$I_5: L \to id$$

$$\begin{split} I_6\colon & S \to L = \cdot R \\ & R \to \cdot L \\ & L \to \cdot *R \\ & L \to \cdot \mathbf{id} \end{split}$$

$$I_7: L \to *R$$

$$I_8: R \to L$$

$$I_9$$
: $S \to L = R$

(Dragonbook)

Follow(R) contains '='. In I_2 , when seeing '=' on the input, we don't know whether to shift or to reduce with $R \rightarrow L$.

Summary of SLR parsing

Construction of a SLR parser from a CFG grammar

- Eliminate ambiguity (or not, see later)
- Add the production $S' \rightarrow S$, where S is the start symbol of the grammar
- Compute the LR(0) canonical collection of LR(0) item sets and the GOTO function (transition function)
- Add a shift action in the action table for transitions on terminals and goto actions in the goto table for transitions on nonterminals
- Compute Follow for each nonterminals (which implies first adding $S'' \rightarrow S'$ \$ to the grammar and computing First and Nullable)
- Add the reduce actions in the action table according to Follow
- Check that the grammar is SLR (and if not, try to resolve conflicts, see later)

Hierarchy of grammar classes

(Appel)

Next week

End of syntax analysis

- Operator precedence parsing
- Error detection and recovery
- Building the parse tree