Transforming a grammar for LL(1) parsing

m Ambiguous grammars are not LL(1) but unambiguous grammars are
not necessarily LL(1)

m Having a non-LL(1) unambiguous grammar for a language does not
mean that this language is not LL(1).

m But there are languages for which there exist unambiguous
context-free grammars but no LL(1) grammar.

m We will see two grammar transformations that improve the chance
to get a LL(1) grammar:
» Elimination of left-recursion
> Left-factorization



Left-recursion

m The following expression grammar is unambiguous but it is not

LL(1):

Exp — Exp+ Exp2
Exp — Exp— Exp2
Exp — Exp2

Exp2 — Exp2x Exp3

Exp2 — Exp2/Exp3

Exp2 — Exp3

Exp3 — num

Exp3 — (Exp)

m Indeed, First(«) is the same for all RHS « of the productions for
Exp et Exp2

m This is a consequence of left-recursion.



Left-recursion

m Recursive productions are productions defined in terms of
themselves. Examples: A — Ab ou A — bA.

m When the recursive nonterminal is at the left (resp. right), the
production is said to be left-recursive (resp. right-recursive).

m Left-recursive productions can be rewritten with right-recursive
productions

m Example:
N N
N — Nog - A
- N N
N = N, ’ — ﬁn,\//
— (651
N —
b1 N
: N N
N — B, am

N/

l



Right-recursive expression grammar

Exp
Exp
Exp
Exp2
Exp2
Exp2
Exp3
Exp3

oLl

Exp + Exp2
Exp — Exp2
Exp2

Exp2 x Exp3
Exp2/Exp3

Exp3

num

(Exp)

Exp
Exp
Exp
Exp
Exp?2

Exp?2’
Exp2’
Exp2’
Exp3
Exp3

e bbbl

Exp2Exp’
+Exp2Exp’
—Exp2Exp’
€

Exp3Exp2’
*Exp3 Exp2’
/ Exp3Exp2’
€

num
(Exp)



Left-factorisation
m The RHS of these two productions have the same First set.

Stat — if Exp then Stat else Stat
Stat —  if Exp then Stat

m The problem can be solved by left factorising the grammar:

Stat —  if Exp then Stat ElseStat
ElseStat —  else Stat
ElseStat — ¢

m Note
» The resulting grammar is ambiguous and the parsing table will
contain two rules for M[ElseStat, else]
(because else € Follow(ElseStat) and else € First(else Stat))
» Ambiguity can be solved in this case by letting
M|ElseStat, else] = { ElseStat — else Stat}.



Hidden left-factors and hidden left recursion

m Sometimes, left-factors or left recursion are hidden
m Examples:
» The following grammar:

A — dalacB
B — abB|daA|Af

has two overlapping productions: B — daA and B = daf .
» The following grammar:

S — Tulwx
T — Sq|ws

has left recursion on T (T = Tuq)

m Solution: expand the production rules by substitution to make
left-recursion or left factors visible and then eliminate them



Summary

Construction of a LL(1) parser from a CFG grammar

Eliminate ambiguity

Eliminate left recursion

left factorization

Add an extra start production S’ — S$ to the grammar

Calculate First for every production and Follow for every
nonterminal

Calculate the parsing table
Check that the grammar is LL(1)



Recursive implementation

m From the parsing table, it is easy to implement a
recursively (with one function per nonterminal)

T — TS function parseT’() =

T — R if next = ’a’ or next =

T — aTc parseT() ; match(’$’)

R — e else reportError()

R — bR

function parseT() =
if next = ’b’ or next =
N b c $ parseR()

T = 7% T = T% TS T% else if next = ’a’ then
T|T—alc TR T—R T—R match(’a’) ; parseT()
R R—bR R—e€ R— e

else reportError()

function parseR() =
if next = ’c’ or next =

(x do nothing *)
else if next = ’b’ then
match(’b’) ; parseR()

else reportError()

predictive parser

’b’ or next = ’$’ then

’c’ or next = ’$’ then

; match(’c?)

’$’ then

(Mogensen)



Outline

4. Bottom-up parsing



Bottom-up parsing

m A bottom-up parser creates the parse tree starting from the leaves
towards the root

m It tries to convert the program into the start symbol

m Most common form of bottom-up parsing: shift-reduce parsing



Bottom-up parsing: example

Bottum-up parsing of
int + (int + int + int)

Grammar:
S —- E
E —- T
E —-— E+ T
T — int
r — (E)

+ i

(Keith Schwarz)



Bottom-up parsing: example

Bottum-up parsing of
int 4 (int + int + int):

Grammar: int + (int 4 int + int)$
+ (int + int 4 int)$
s — E + (int + int 4 int)$
E — T + (T + int + int)$
E - E+ T + (E + int + int)$
T & int +(E+ T +int)$
E t
T = (F) EEi I;))
E+ (E)$
E+T$
ES
S

Top-down parsing is often done as a rightmost derivation in reverse
(There is only one if the grammar is unambiguous).



Terminology

m A Rightmost (canonical) derivation is a derivation where the
rightmost nonterminal is replaced at each step. A rightmost
derivation from « to 8 is noted a =, 3.

m A reduction transforms uwv to uAv if A — w is a production

m « is a right sentential form if S =, o avec a = Ox where x is a
string of terminals.

m A handle of a right sentential form v (= afBw) is a production
A — (3 and a position in v where 3 may be found and replaced by A
to produce the previous right-sentential form in a rightmost
derivation of ~:
S, AW =, affw

» Informally, a handle is a production we can reverse without getting
stuck.
> If the handle is A — (3, we will also call 3 the handle.



Handle: example

Bottum-up parsing of
int + (int + int + int)

Grammar: int + (int 4 int 4 int)$
+ (int + int + int)$
S — E + (int + int + int)$
E — T + (T + int + int)$
E — E+ T + (E + int + int)$
T o int +(E+ T +int)$
+ (E + int)$
T = (F) +(E+T)$
E+( )$
E+TS$
E$
S

The handle is in red in each right sentential form



Finding the handles

m Bottom-up parsing = finding the handle in the right sentential form
obtained at each step

m This handle is unique as soon as the grammar is unambiguous
(because in this case, the rightmost derivation is unique)

m Suppose that our current form is uvw and the handle is A — v
(getting uAw after reduction). w can not contain any nonterminals
(otherwise we would have reduced a handle somewhere in w)



Shift/reduce parsing

Proposed model for a bottom-up parser:
m Split the input into two parts:
» Left substring is our work area
» Right substring is the input we have not yet processed
m All handles are reduced in the left substring

m Right substring consists only of terminals
m At each point, decide whether to:

» Move a terminal across the split (shift)
» Reduce a handle (reduce)



Shift/reduce parsing:

Grammar:
E —- E4+ T|T

T — T« F|F
F — (E)id

Bottum-up parsing of
id + id * id

example

Left substring  Right substring  Action

$ id + id x id$  Shift

$id +id * id$  Reduce by F — id
$F +id * id$ Reduceby T — F

$T +id * id$ Reduce by E — T

$SE +id = id$  Shift

$SE+ id x id$  Shift

$E + id xid$  Reduce by F — id
$SE+F xid$ Reduceby T — F
$SE+ T xid$  Shift

$E + Tx* id$  Shift

$SE+ T xid $ Reduceby F — id
$SE+ T xF $ Reduceby T — T xF
$SE+ T $ Reduceby E—-E+ T
$E $  Accept



Shift/reduce parsing

m In the previous example, all the handles were to the far right end of
the left area (not inside)

m This is convenient because we then never need to shift from the left
to the right and thus could process the input from left-to-right in
one pass.

m Is it the case for all grammars? Yes !
m Sketch of proof: by induction on the number of reduces
» After no reduce, the first reduction can be done at the right end of
the left area
> After at least one reduce, the very right of the left area is a
nonterminal (by induction hypothesis). This nonterminal must be

part of the next reduction, since we are tracing a rightmost derivation
backwards.



Shift/reduce parsing

m Consequence: the left area can be represented by a stack (as all
activities happen at its far right)

m Four possible actions of a shift-reduce parser:

. Shift: push the next terminal onto the stack

Reduce: Replace the handle on the stack by the nonterminal

. Accept: parsing is successfully completed

Error: discover a syntax error and call an error recovery routine

Ll A



Shift/reduce parsing

m There still remain two open questions: At each step:
» How to choose between shift and reduce?
» If the decision is to reduce, which rules to choose (i.e., what is the
handle)?
m ldeally, we would like this choice to be deterministic given the stack
and the next k input symbols (to avoid backtracking), with k
typically small (to make parsing efficient)

m Like for top-down parsing, this is not possible for all grammars

m Possible conflicts:

» shift/reduce conflict: it is not possible to decide between shifting or
reducing

» reduce/reduce conflict: the parser can not decide which of several
reductions to make



Shift/reduce parsing

We will see two main categories of shift-reduce parsers:
m LR-parsers

» They cover a wide range of grammars
» Different variants from the most specific to the most general: SLR,
LALR, LR

m Weak precedence parsers

» They work only for a small class of grammars
» They are less efficient than LR-parsers
» They are simpler to implement



LR-parsers

m LR(k) parsing: Left-to-right, Rightmost derivation, k symbols
lookahead.
m Advantages:
» The most general non-backtracking shift-reduce parsing, yet as
efficient as other less general techniques
» Can detect syntactic error as soon as possible (on a left-to-right scan
of the input)
» Can recognize virtually all programming language constructs (that
can be represented by context-free grammars)
» Grammars recognized by LR parsers is a proper subset of grammars
recognized by predictive parsers (LL(k) C LR(k))
m Drawbacks:

» More complex to implement than predictive (or operator precedence)
parsers

m Like table-driven predictive parsing, LR parsing is based on a parsing
table.



Structure of a LR parser

input a, | .. |3 | .. |a, |$
stack
Sm
X \
= LR Parsing Algorithm |—————output
Sm—l
Xl /\
. Action Table Goto Table
Sl terminals and $ non-terminal
X1 S S
t four different t each item is
SO a actions a a state number
t t
e e
s s




Structure of a LR parser

m A configuration of a LR parser is described by the status of its stack
and the part of the input not analysed (shifted) yet:

(50X151 . Xmsm, didi+1--- a,,$)

where X; are (terminal or nonterminal) symbols, a; are terminal
symbols, and s; are state numbers (of a DFA)

m A configuration corresponds to the right sentential form
X1...Xmaj...an

m Analysis is based on two tables:
» an action table that associates an action ACTION(s, a] to each state
s and nonterminal a.
» a goto table that gives the next state GOTO[s, A] from state s after
a reduction to a nonterminal A



Actions of a LR-parser

m Let us assume the parser is in configuration
(50X151 . Xmsm, didi41--- a,,$)

(initially, the state is (so, a1az...an$), where a; ... a, is the input
word)
m ACTION]sp, a;] can take four values:

1. Shift s: shifts the next input symbol and then the state s on the
stack (soXis1... XmSm, @idit1-..an) — (s0X181 ... Xmais, ai+1 ... an)
2. Reduce A — 3 (denoted by rn where n is a production number)
> Pop 2|3] (= r) items from the stack
> Push A and s where s = GOTO[sm—,, A]
(soXisi...XmSm, @idiq1...an) —
(soXisi... Xm—rSm—rAs, aidi41 ... an)
> Output the prediction A — 3
3. Accept: parsing is successfully completed
4. Error: parser detected an error (typically an empty entry in the action
table).



LR-parsing algorithm

Create a stack with the start state sp
a = GETNEXTTOKEN()
while (True)
s = popP()
if (ACTION([s, a] = shift t)
Push a and t onto the stack
a = GETNEXTTOKEN()
elseif (ACTION[s, a] = reduce A — f3)
Pop 2|3| elements off the stack
Let state t now be the state on the top of the stack
Push GOTO[t, A] onto the stack
Output A — 38
elseif (ACTION[s, a] = accept)
break / Parsing is over
else call error-recovery routine



Example: parsing table for the expression grammar

o~ wh =

E—-E+T
E—T
T—T=xF
T—F
F — (E)
F— id

Action Table Goto Table

state | id + * ( ) $ E T F

0 s5 s4 1 2|3

1 s6 acc

2 12 | s7 2 | 2

3 4 | r4 4 | 4

4 s5 s4 8 2|3

5 16 | 16 16 | 16

6 s5 s4 9 |3

7 s5 s4 10

8 s6 sl

9 rl s7 rl rl

10 3 | 13 3| 3

11 5 | 15 5 5




Example: LR parsing with the expression grammar

stack

0

0id5

OF3

0T2
0T2*7
0T2*71d5
0T2*7F10
0T2

OE1
OE1+6
OE1+6id5
OE1+6F3
OE1+6T9
OE1

input
id*id+id$
*id+id$
*id+id$
*id+id$
id+id$
+id$
+id$
+id$
+id$
id$

$
$
$
$

action

shift 5

reduce by F—id
reduce by T—F
shift 7

shift 5

reduce by F—id
reduce by T—=T*F
reduce by E—=T
shift 6

shift 5

reduce by F—id
reduce by T—F
reduce by E=E+T

accept

output

F—id
T—F

F—id
T—T*F

F—id
T—F
E—E+T



Constructing the parsing tables

m There are several ways of building the parsing tables, among which:
» LR(0): no lookahead, works for only very few grammars
» SLR: the simplest one with one symbol lookahead. Works with less
grammars than the next ones
» LR(1): very powerful but generate potentially very large tables
» LALR(1): tradeoff between the other approaches in terms of power
and simplicity
» LR(k), k> 1: exploit more lookahead symbols
m LALR(1) is used in parser generators like Yacc

m We will only see SLR in this course

m Main idea of all methods: build a DFA whose states keep track of
where we are in a parse



LR(0) item

m An LR(0) item (or item for short) of a grammar G is a production of
G with a dot at some position of the body.

m Example: A — XYZ yields four items:
A— XYZ
A— X.YZ
A— XY .Z
A— XYZ.
(A — € generates one item A — .)

m An item indicates how much of a production we have seen at a
given point in the parsing process.

» A — X.YZ means we have just seen on the input a string derivable
from X (and we hope to get next YZ).

m Each state of the SLR parser will correspond to a set of LR(0) items

m A particular collection of sets of LR(0) items (the canonical LR(0)
collection) is the basis for constructing SLR parsers



Construction of the canonical LR(0) collection

m The grammar G is first augmented into a grammar G’ with a new
start symbol S’ and a production S’ — S where S is the start
symbol of G

m We need to define two functions:

» CLOSURE(/): extends the set of items / when some of them have a
dot to the left of a nonterminal
» GoTo(/, X): moves the dot past the symbol X in all items in /
m These two functions will help define a DFA:

» whose states are (closed) sets of items
» whose transitions (on terminal and nonterminal symbols) are defined
by the GOTO function



CLOSURE

Example:

E' - E
E—E+T
E—T
T—TxF
T—F
F—>(E)
F— id

CLOSURE(/)

for any item A — a.Xg in /
for any production X —
I =1U{X — 4}
until / does not change

CLOSURE({E" — .E})

{E' — .E,
E— E+T
E—.T
T—.Tx*xF
T — .F
F — (E)
F—.id



GoTo

Example:

E' - E ho
E—E+T
E—T
T—TxF
T—F
F—(E)

F— id

Goto(l, X)
Set J to the empty set
for any item A — a. X3 in |
J = JU{A — aX.5}
return CLOSURE(J)

{E' — .E,

coto(lo, E)={E' - E,E—E. + T}
E=E+T Goro(l,T)={E —T.,T — T.%F}
E—.T Goro(l, F) ={T — F.}
T — .T«F Goro(h, (") = CLoSURE({F — (.E)})

T F ={F—=(E)}U(b\{E' — E})
GoTO(l,id) = {F — id.}
F — .(E)

F—.id



Construction of the canonical collection

C = {CLOSURE({S' — .5})
for each item set / in C
for each item A — a. X3 in |
C = CuGoro(l, X)
return C

m Collect all sets of items reachable from the initial state by one or
several applications of GOTO.

m ltem sets in C are the state of a DFA, GOTO is its transition function



Example

lo: E' — .E,
E— E+T
E—.T
T—.TxF
T —.F
F — .(E)
F—.id

L: E'—E. + lo: E—E+.T lo: E—-E+T.
E—-E+T T—.TxF F T—>T.%F
T—.F
s] + F—(E)  H— *
accept F—.id id
bh: E—T.
T—>T.xF L T—Tx.F
F— (E) F .
F—id F for T TR
| id =——
Is: F—id. id
T F=(E)
ly: F— (.E) E—-E.+F hi: F—(E).
E— E+T
E—.T
T— .T+F
T —.F (
F — (E)
F—.id (
F

L: T —F.
j —



Constructing the LR(0) parsing table

1. Construct ¢ = {lp, h,...,In}, the collection of sets of LR(0) items
for G’ (the augmented grammar)

2. State i of the parser is derived from [;. Actions for state / are as
follows:
2.1 f A— a.af isin l; and GoTO(l;, a) = I;, then ACTION[i, a] = Shift j
22 If A— a.isin [;, then set ACTION[i, a] = Reduce A — « for all

terminals a.
23 If " — S.isin I;, then set ACTION[i,$] = Accept

3. If coro(l;, X) = Ij, then GOTO[i, X] = j.
4. All entries not defined by rules (2) and (3) are made “error”

5. The initial state s is the set of items containing S’ — .S

= LR(0) because the chosen action (shift or reduce) only depends on
the current state



Example of a LR(0) grammar

S — S$
S —> (L)
S —x
L—S
L—L,S

O 0NN B W =

1

S'—>.S$ L’S%x, <«<—L —>1L,.S
S —.(L) L S —.(L)
S => .x S = (.L) S => .x
L >.S T
L - .L,S 5
(Cs —.(L) S > (L.)
. S = .x L >L..S
[s>s.s ] ) I
L—>s. | [s =) |
( ) X $ S L
s3 s2 o4
2 2 2 2 r2
s3 s2 g7 a5
a
s6 s8
rl rl rl rl rl
3 r3 r3 3 3
s3 s2 29
4 r4 4 4 r4

s 9
T

(Appel)



Example of a non LR(0) grammar

Io:

E' — .E,
E— E+T
E—.T
T—.TxF
T—.F
F — (E)
F—.id

E h: E'—E. + lo: E—~E+.T ly: E—-E+T.
E—E+T T—.TxF F T—T.xF
T F £
$] + F—(6) H— ¥
accept F—.id d
T h: E=T.
- *
T—TxF i T—Tx.F
E:(Iﬁ) HF .illgz T—TxF.
id
'diillg: F—id. I‘* i
+
lg: F—(E.)
TT Iy: F— (.E) E E—E4+F hi: F—(E)
E— E+T
( E—.T
T .TxF
T .F (
F — .(E)
F—.id (
F

Conflict: in state 2, we don't know whether to shift or reduce.




Constructing the SLR parsing tables

1. Construct ¢ = {lp, h,...,In}, the collection of sets of LR(0) items
for G’ (the augmented grammar)

2. State i of the parser is derived from [;. Actions for state / are as
follows:
2.1 If A— a.af isin l; and GoTO(l;, a) = I;, then ACTION[i, a] = Shift j
22 If A— a.isin I;, then ACTION[i, a] = Reduce A — « for all
terminals a in Follow(A) where A # S’
23 If 8" — S.isin I;, then set ACTION[i,$] = Accept

3. If GoTo(l;, A) = I; for a nonterminal A, then GOTO[i, A] =
4. All entries not defined by rules (2) and (3) are made “error”

5. The initial state sy is the set of items containing S’ — .S

= the simplest form of one symbol lookahead, SLR (Simple LR)



Example

Action Table Goto Table
state | id | + * ( ) $ E | T |F
0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 2
3 4 | r4 4 | r4
4 s5 s4 8 213
5 6 | 16 6 | 16
6 s5 s4 9|3
7 s5 s4 10
8 s6 sll
9 rl s7 rl | rl
‘ First ‘ Follow 10 B3| 3 3| 3
E | id ( $ + ) 11 5 | 15 5 | 15
Tlid( [$+*)
Flid( |$+%*)




SLR(1) grammars

m A grammar for which there is no (shift/reduce or reduce/reduce)
conflict during the construction of the SLR table is called SLR(1)
(or SLR in short).

m All SLR grammars are unambiguous but many unambiguous
grammars are not SLR

m There are more SLR grammars than LL(1) grammars but there are
LL(1) grammars that are not SLR.



Conflict example for SLR parsing

S 5> L=R|R Iy §'=-S L: L—id
L - xR |id §—+L=R
R = L S—-R I S—L='R
L—-xR R—-L
L—id L— xR
R L L—-id
Li: §—=8S I;: L — =R
Iy S—»L-=R Iy: R— L-
R— L
Iy: S—»L=R
I3Z S — R
[4f L~ *R
R— L
L—-xR
L — -id
(Dragonbook)
Follow(R) contains '=". In k, when seeing '=" on the input, we don't

know whether to shift or to reduce with R — L.



Summary of SLR parsing

Construction of a SLR parser from a CFG grammar

Eliminate ambiguity (or not, see later)
Add the production S’ — S, where S is the start symbol of the
grammar

Compute the LR(0) canonical collection of LR(0) item sets and the
GoToO function (transition function)

Add a shift action in the action table for transitions on terminals
and goto actions in the goto table for transitions on nonterminals

Compute Follow for each nonterminals (which implies first adding
S§"” — §’$ to the grammar and computing First and Nullable)

Add the reduce actions in the action table according to Follow

Check that the grammar is SLR (and if not, try to resolve conflicts,
see later)



Hierarchy of grammar classes

Unambiguous Grammars Ambiguous
Grammars

(Appel)



Next week

End of syntax analysis
m Operator precedence parsing
m Error detection and recovery

m Building the parse tree



