
Partie 4

Semantic analysis

Semantic analysis 220

Structure of a compiler

(Dragonbook)

Today: semantic analysis and intermediate code generation

Semantic analysis 221

Outline

1. Syntax-directed translation

2. Abstract syntax tree

3. Type and scope checking

Semantic analysis 222

Syntax-directed definition

A general way to associate actions (i.e., programs) to production
rules of a context-free grammar

Used for carrying out most semantic analyses as well as code
translation

A syntax-directed definition associates:
I With each grammar symbol, a set of attributes, and
I With each production, a set of semantic rules for computing the

values of the attributes associated with the symbols appearing in the
production

A grammar with attributes and semantic rules is called an attributed
grammar

A parse tree augmented with the attribute values at each node is
called an annotated parse tree.

Semantic analysis 223

Example

Grammar:

S ! aSb|aS |cSacS |✏

Semantic rules:

Production Semantic rules
S ! aS1b S .nba := S1.nba + 1

S .nbc := S1.nbc
S ! aS1 S .nba := S1.nba + 1

S .nbc := S1.nbc
S ! cS1acS2 S .nba := S1.nba + S2.nba + 1

S .nbc := S1.nbc + S2.nbc + 2
S ! ✏ S .nba := 0

S .nbc := 0
S 0 ! S Final result is in S .nba and S .nbc

S

Sa b

c S a c S

a S a S b0 0

1 1

3

4

00

0 0

2

2

(subscripts allow to distinguish di↵erent instances of the same symbol in a rule)

Semantic analysis 224

Attributes

Two kinds of attributes
I Synthesized: Attribute value for the LHS nonterminal is computed

from the attribute values of the symbols at the RHS of the rule.
I Inherited: Attribute value of a RHS nonterminal is computed from

the attribute values of the LHS nonterminal and some other RHS
nonterminals.

Terminals can have synthesized attributes, computed by the lexer
(e.g., id .lexeme), but no inherited attributes.

Semantic analysis 225

Example: synthesized attributes to evaluate expressions

Left-recursive expression grammar

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val ⇥ F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! num F .val = num.lexval

3

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

4

5*

*

3

3

3 1

1

3

15

15

5

5

Semantic analysis 226

Example: inherited attributes to evaluate expressions

LL expression grammar

Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

Example: synthesized attribute to evaluate expressions

LL expression grammar
Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

T .val = 15 F .val = 3
num.lexval = 3 T 0.inh = 3
T 0.syn = 15 F .val = 5
num.lexval = 5 T 0

1.inh = 15
T 0

1.syn = 15

Semantic analysis 10

Example: synthesized attribute to evaluate expressions

LL expression grammar
Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

T .val = 15 F .val = 3
num.lexval = 3 T 0.inh = 3
T 0.syn = 15 F .val = 5
num.lexval = 5 T 0

1.inh = 15
T 0

1.syn = 15

Semantic analysis 10

Example: synthesized attribute to evaluate expressions

LL expression grammar
Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

T .val = 15 F .val = 3
num.lexval = 3 T 0.inh = 3
T 0.syn = 15 F .val = 5
num.lexval = 5 T 0

1.inh = 15
T 0

1.syn = 15

Semantic analysis 10

Example: synthesized attribute to evaluate expressions

LL expression grammar
Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

T .val = 15 F .val = 3
num.lexval = 3 T 0.inh = 3
T 0.syn = 15 F .val = 5
num.lexval = 5 T 0

1.inh = 15
T 0

1.syn = 15

Semantic analysis 10

Example: synthesized attribute to evaluate expressions

LL expression grammar
Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

T .val = 15 F .val = 3
num.lexval = 3 T 0.inh = 3
T 0.syn = 15 F .val = 5
num.lexval = 5 T 0

1.inh = 15
T 0

1.syn = 15

Semantic analysis 10

Example: synthesized attribute to evaluate expressions

LL expression grammar
Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

T .val = 15 F .val = 3
num.lexval = 3 T 0.inh = 3
T 0.syn = 15 F .val = 5
num.lexval = 5 T 0

1.inh = 15
T 0

1.syn = 15

Semantic analysis 10

Example: synthesized attribute to evaluate expressions

LL expression grammar
Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

T .val = 15 F .val = 3
num.lexval = 3 T 0.inh = 3
T 0.syn = 15 F .val = 5
num.lexval = 5 T 0

1.inh = 15
T 0

1.syn = 15

Semantic analysis 10

Example: synthesized attribute to evaluate expressions

LL expression grammar
Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

T .val = 15 F .val = 3
num.lexval = 3 T 0.inh = 3
T 0.syn = 15 F .val = 5
num.lexval = 5 T 0

1.inh = 15
T 0

1.syn = 15

Semantic analysis 10

Example: synthesized attribute to evaluate expressions

LL expression grammar
Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

T .val = 15 F .val = 3
num.lexval = 3 T 0.inh = 3
T 0.syn = 15 F .val = 5
num.lexval = 5 T 0

1.inh = 15
T 0

1.syn = 15

Semantic analysis 10

*

Example: synthesized attribute to evaluate expressions

LL expression grammar
Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

T .val = 15 F .val = 3
num.lexval = 3 T 0.inh = 3
T 0.syn = 15 F .val = 5
num.lexval = 5 T 0

1.inh = 15
T 0

1.syn = 15

Semantic analysis 10

Semantic analysis 227

Evaluation order of SDD’s
General case of synthesized and inherited attributes:

Draw a dependency graph between attributes on the parse tree
Find a topological order on the dependency graph (possible if and
only if there are no directed cycle)
If a topological order exists, it gives a working evaluation order. If
not, it is impossible to evaluate the attributes

In practice, it is di�cult to predict from a attributed grammar whether
no parse tree will have cycles

Example:

(Dragonbook)

Semantic analysis 228

Evaluation order of SDD’s

Some important particular cases:

A grammar with only synthesized attributes is called a S-attributed
grammar.

Attributes can be evaluated by a bottom-up (postorder) traversal of
the parse tree

1 1

2 2

Semantic analysis 229

Evaluation order of SDD’s
Some important particular cases:

A syntax-directed definition is L-attributed if each attribute is either
1. Synthesized
2. Inherited “from the left”: if the production is A ! X1X2 . . . Xn, then

the inherited attributes for Xj can depend only on
2.1 Inherited attributes of A
2.2 Any attribute among X1,. . . ,Xj�1 (symbols at the left of Xi

2.3 Attributes of Xj (provided they are not causing cycles)

To evaluate the attributes: do a depth first traversal evaluating
inherited attributes on the way down and synthesized attributes on
the way up (i.e., an Euler-tour traversal)

1

2

3 4

5

6 7

8

Semantic analysis 230

Translation of code

Syntax-directed definitions can be used to translate code

Example: translating expressions to post-fix notation

Production Semantic rules
L ! E L.t = E .t
E ! E1 + T E .t = E1.t||T .t||0+0

E ! E1 � T E .t = E1.t||T .t||0�0
E ! T E .t = T .t
T ! T1 ⇤ F T .t = T1.t||F .t||0⇤0
T ! F T .t = F .t
F ! (E) F .t = E .t
F ! num F .t = num.lexval

Semantic analysis 231

Syntax-directed translation scheme

The previous solution requires to manipulate strings (concatenate,
create, store)

An alternative is to use syntax-directed translation schemes.

A syntax-directed translation scheme (SDT) is a context-free
grammar with program fragments (called semantic actions)
embedded within production bodies:

A ! {R0}X1{R1}X2 . . . Xk{Rk}

Actions are performed from left-to-right when the rules is used for a
reduction

Interesting for example to generate code incrementally

Semantic analysis 232

Example for code translation

Production
L ! E
E ! E1 + T {print(0+0)}
E ! T
T ! T1 ⇤ F {print(0⇤0)}
T ! F
F ! (E)
F ! num {print(num.lexval)}

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

+

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

9

Example for code translation

Production
L ! E
E ! E1 + T {print(0+0)}
E ! T
T ! T1 ⇤ F {print(0⇤0)}
T ! F
F ! (E)
F ! num {print(num.lexval)}

{print(090)} {print(050)} {print(020)}

Put grammar and Figure 2.14 of dragonbook (and postfix notations
to evaluate expressions)

(see the handout about syntax-directed for a treatment of a more
complex grammars with int)

Post-fix SDT as all actions are performed at the end

Semantic analysis 16

Example for code translation

Production
L ! E
E ! E1 + T {print(0+0)}
E ! T
T ! T1 ⇤ F {print(0⇤0)}
T ! F
F ! (E)
F ! num {print(num.lexval)}

{print(090)} {print(050)} {print(020)}

Put grammar and Figure 2.14 of dragonbook (and postfix notations
to evaluate expressions)

(see the handout about syntax-directed for a treatment of a more
complex grammars with int)

Post-fix SDT as all actions are performed at the end

Semantic analysis 16

Example for code translation

Production
L ! E
E ! E1 + T {print(0+0)}
E ! T
T ! T1 ⇤ F {print(0⇤0)}
T ! F
F ! (E)
F ! num {print(num.lexval)}

{print(090)} {print(050)} {print(020)}

Put grammar and Figure 2.14 of dragonbook (and postfix notations
to evaluate expressions)

(see the handout about syntax-directed for a treatment of a more
complex grammars with int)

Post-fix SDT as all actions are performed at the end

Semantic analysis 16

Example for code translation

Production
L ! E
E ! E1 + T {print(0+0)}
E ! T
T ! T1 ⇤ F {print(0⇤0)}
T ! F
F ! (E)
F ! num {print(num.lexval)}

{print(090)} {print(050)} {print(020)}

Put grammar and Figure 2.14 of dragonbook (and postfix notations
to evaluate expressions)

(see the handout about syntax-directed for a treatment of a more
complex grammars with int)

Post-fix SDT as all actions are performed at the end

Semantic analysis 16

5

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

+

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val � F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)

Semantic analysis 9

Example for code translation

Production
L ! E
E ! E1 + T {print(0+0)}
E ! T
T ! T1 ⇤ F {print(0⇤0)}
T ! F
F ! (E)
F ! num {print(num.lexval)}

{print(090)} {print(050)} {print(020)}

Put grammar and Figure 2.14 of dragonbook (and postfix notations
to evaluate expressions)

(see the handout about syntax-directed for a treatment of a more
complex grammars with int)

Post-fix SDT as all actions are performed at the end

Semantic analysis 16

2

(Post-fix SDT as all actions are performed at the end of the productions)

Semantic analysis 233

Side-e↵ects

Semantic rules and actions in SDD and SDT’s can have side-e↵ects.
E.g., for printing values or adding information into a table

Needs to ensure that the evaluation order is compatible with
side-e↵ects

Example: variable declaration in C

Production Semantic rules
D ! TL L.type = T .type (inherited)
T ! int T .type =int (synthesized)
T ! float T .type =float (synthesized)
L ! L1, id L1.type = L.type (inherited)

AddType(id.entry , L.type) (synthesized, side e↵ect)
L ! id AddType(id.entry , L.type) (synthesized, side e↵ect)

id.entry is an entry in the symbol table. AddType add type
information about entry in the symbol table

Semantic analysis 234

Implementation of SDD’s

Attributes can be computed after parsing:

By explicitely traversing the parse or syntax tree in any order
permitting the evaluation of the attributes

Depth-first for S-attributed grammars or Euler tour for L-attributed
grammar

Advantage: does not depend on the order imposed by the syntax
analysis

Drawback: requires to build (and store in memory) the syntax tree

Semantic analysis 235

Evaluation after parsing of L-attributed grammar

For L-attribute grammars, the following recursive function will do the
computation for inherited and synthesized attributes

Analyse(N, InheritedAttributes)

if leaf(N)
return SynthesizedAttributes

Attributes = InheritedAttributes
for each child C of N, from left to right

ChildAttributes = Analyse(C ,Attributes)
Attributes = Attributes [ChildAttributes

Execute semantic rules for the production at node N
return SynthesizedAttributes

Inherited attributes are passed as arguments and synthesized
attributes are returned by recursive calls

In practice, this is implemented as a big two-levels switch on
nonterminals and then rules with this nonterminal at its LHS

Semantic analysis 236

Variations

Instead of a giant switch, one could have separate routines for each
nonterminal (as with recursive top-down parsing) and a switch on
productions having this nonterminal as LHS (see examples later)

Global variables can be used instead of parameters to pass inherited
attributes by side-e↵ects (with care)

Can be easily adapted to use syntax-directed translation schemes
(by interleaving child analysis and semantic actions)

Semantic analysis 237

Implementation of SDD’s

Attributes can be computed directly during parsing:

Attributes of a S-attributed grammar are easily computed during
bottom-up parsing

Attributes of a L-attributed grammar are easily computed during
top-down parsing

Attribute values can be stored on a stack (the same as the one for
parsing or a di↵erent one)

Advantage: one pass, does not require to store (or build) the syntax
tree

Drawback: the order of evaluation is constrained by the parser

Semantic analysis 238

Bottom-up parsing and S-attributed grammar

Synthesized attributes are easily handled during bottom-up parsing.
Handling inherited attributes is possible (for a LL-grammar) but
more di�cult.

Example with only synthesized attributes (stored on a stack):

Production Semantic rules Stack actions

E ! E1 + T E .val = E1.val + T .val tmpT = pop()
tmpE = pop()
push(tmpE + tempT)

E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val ⇥ F .val tmpT = pop()

tmpF = pop()
push(tmpT ⇤ tempF)

T ! F T .val = F .val
F ! (E) F .val = E .val
F ! num F .val = num.lexval push(num.lexval)

(Parsing tables on slide 188)

Semantic analysis 239

Bottom-up parsing and S-attributed grammar
Stack Input Action Attribute stack

$ 0 2 ⇤ (10 + 3)$ s5

$ 0 2 5 ⇤(10 + 3)$ r6: F ! num 2

$ 0 F 3 ⇤(10 + 3)$ r4: T ! F 2

$ 0 T 2 ⇤(10 + 3)$ s7 2

$ 0 T 2 ⇤ 7 (10 + 3)$ s4 2

$ 0 T 2 ⇤ 7 (4 10 + 3)$ s5 2

$ 0 T 2 ⇤ 7 (4 10 5 +3)$ r6: F ! num 2 10

$ 0 T 2 ⇤ 7 (4 F 3 +3)$ r4: T ! F 2 10

$ 0 T 2 ⇤ 7 (4 T 2 +3)$ r2: E ! T 2 10

$ 0 T 2 ⇤ 7 (4 E 8 +3)$ s6 2 10

$ 0 T 2 ⇤ 7 (4 E 8 + 6 3)$ s5 2 10

$ 0 T 2 ⇤ 7 (4 E 8 + 6 3 5)$ r6: F ! num 2 10 3

$ 0 T 2 ⇤ 7 (4 E 8 + 6 F 3)$ r4: T ! F 2 10 3

$ 0 T 2 ⇤ 7 (4 E 8 + 6 T 9)$ r1: E ! E + T 2 13

$ 0 T 2 ⇤ 7 (4 E 8)$ s11 2 13

$ 0 T 2 ⇤ 7 (4 E 8) 11 $ r5: F ! (E) 2 13

$ 0 T 2 ⇤ 7 F 10 $ r3: T ! T ⇤ F 26

$ 0 T 2 $ r2: E ! T 26

$ 0 E 1 $ Accept 26

Semantic analysis 240

Top-down parsing of L-attributed grammar

Recursive parser: the analysis scheme of slide 236 can be
incorporated within the recursive functions of nonterminals

Table-driven parser: this is also possible but less obvious.

Example with only inherited attributes (stored on a stack):

Production Semantic rules Stack actions

S 0 ! S S .nb = 0 push(0)
S ! (S1)S2 S1.nb = S .nb + 1 push(top() + 1)

S2.nb = S .nb

S ! ✏ print(S .nb) print(pop())

(print the depth of nested parentheses)

Parsing table:

() $
S 0 S 0 ! S S 0 ! S
S S ! (S)S S ! ✏ S ! ✏

Semantic analysis 241

Top-down parsing of L-attributed grammar
Stack Input Attribute stack Output

S 0$ (()(()))() 0
S$ (()(()))() 0 1

(S)S$ (()(()))() 0 1 2
S)S$ ()(()))() 0 1 2

(S)S)S$ ()(()))() 0 1 2
S)S)S$)(()))() 0 1
)S)S$)(()))() 0 1 2
S)S$ (()))() 0 1 2

(S)S)S$ (()))() 0 1 2 3
S)S)S$ ()))() 0 1 2 3

(S)S)S)S$ ()))() 0 1 2 3
S)S)S)S$)))() 0 1 2
)S)S)S$)))() 0 1 2
S)S)S$))() 0 1
)S)S$))() 0 1
S)S$)() 0
)S$)() 0 1
S$ () 0 1

(S)S$ () 0 1
S)S$) 0
)S$) 0
S$
$

Semantic analysis 242

Comments

It is possible to transform a grammar with synthesized and inherited
attributes into a grammar with only synthesized attributes

It is usually easier to define semantic rules/actions on the original
(ambiguous) grammar, rather than the transformed one

There are techniques to transform a grammar with semantic actions
(see reference books for details)

Semantic analysis 243

Applications of SDD’s

SDD can be used at several places during compilation:

Building the syntax tree from the parse tree

Various static semantic checking (type, scope, etc.)

Code generation

Building an intepreter

. . .

Semantic analysis 244

Abstract syntax tree

would be grouped into the lexemes x3, =, y, +, 3, and ;.

A token is a <token-name,attribute-value> pair. For example

1. The lexeme x3 would be mapped to a token such as <id,1>. The name id is short for identifier. The value 1 is
the index of the entry for x3 in the symbol table produced by the compiler. This table is used to pass
information to subsequent phases.

2. The lexeme = would be mapped to the token <=>. In reality it is probably mapped to a pair, whose second
component is ignored. The point is that there are many different identifiers so we need the second component,
but there is only one assignment symbol =.

3. The lexeme y is mapped to the token <id,2>
4. The lexeme + is mapped to the token <+>.
5. The lexeme 3 is somewhat interesting and is discussed further in subsequent chapters. It is mapped to

<number,something>, but what is the something. On the one hand there is only one 3 so we could just use the
token <number,3>. However, there can be a difference between how this should be printed (e.g., in an error
message produced by subsequent phases) and how it should be stored (fixed vs. float vs double). Perhaps the
token should point to the symbol table where an entry for "this kind of 3" is stored. Another possibility is to
have a separate "numbers table".

6. The lexeme ; is mapped to the token <;>.

Note that non-significant blanks are normally removed during scanning. In C, most blanks are non-significant.
Blanks inside strings are an exception.

Note that we can define identifiers, numbers, and the various symbols and punctuation without using recursion
(compare with parsing below).

1.2.2: Syntax Analysis (or Parsing)

Parsing involves a further grouping in which tokens are grouped
into grammatical phrases, which are often represented in a parse
tree. For example

 x3 = y + 3;

would be parsed into the tree on the right.

This parsing would result from a grammar containing rules such as

 asst-stmt ! id = expr ;
 expr ! number
 | id
 | expr + expr

Note the recursive definition of expression (expr). Note also the hierarchical decomposition in the figure on the right.

The division between scanning and parsing is somewhat arbitrary, but invariably if a recursive definition is involved,
it is considered parsing not scanning.

Often we utilize a simpler tree called the syntax tree with operators as interior nodes and
operands as the children of the operator. The syntax tree on the right corresponds to the parse
tree above it.

(Technical point.) The syntax tree represents an assignment expression not an assignment statement. In C an
assignment statement includes the trailing semicolon. That is, in C (unlike in Algol) the semicolon is a statement
terminator not a statement separator.

1.2.3: Semantic Analysis

There is more to a front end than simply syntax. The compiler needs semantic information, e.g., the types (integer,
real, pointer to array of integers, etc) of the objects involved. This enables checking for semantic errors and inserting

would be grouped into the lexemes x3, =, y, +, 3, and ;.

A token is a <token-name,attribute-value> pair. For example

1. The lexeme x3 would be mapped to a token such as <id,1>. The name id is short for identifier. The value 1 is
the index of the entry for x3 in the symbol table produced by the compiler. This table is used to pass
information to subsequent phases.

2. The lexeme = would be mapped to the token <=>. In reality it is probably mapped to a pair, whose second
component is ignored. The point is that there are many different identifiers so we need the second component,
but there is only one assignment symbol =.

3. The lexeme y is mapped to the token <id,2>
4. The lexeme + is mapped to the token <+>.
5. The lexeme 3 is somewhat interesting and is discussed further in subsequent chapters. It is mapped to

<number,something>, but what is the something. On the one hand there is only one 3 so we could just use the
token <number,3>. However, there can be a difference between how this should be printed (e.g., in an error
message produced by subsequent phases) and how it should be stored (fixed vs. float vs double). Perhaps the
token should point to the symbol table where an entry for "this kind of 3" is stored. Another possibility is to
have a separate "numbers table".

6. The lexeme ; is mapped to the token <;>.

Note that non-significant blanks are normally removed during scanning. In C, most blanks are non-significant.
Blanks inside strings are an exception.

Note that we can define identifiers, numbers, and the various symbols and punctuation without using recursion
(compare with parsing below).

1.2.2: Syntax Analysis (or Parsing)

Parsing involves a further grouping in which tokens are grouped
into grammatical phrases, which are often represented in a parse
tree. For example

 x3 = y + 3;

would be parsed into the tree on the right.

This parsing would result from a grammar containing rules such as

 asst-stmt ! id = expr ;
 expr ! number
 | id
 | expr + expr

Note the recursive definition of expression (expr). Note also the hierarchical decomposition in the figure on the right.

The division between scanning and parsing is somewhat arbitrary, but invariably if a recursive definition is involved,
it is considered parsing not scanning.

Often we utilize a simpler tree called the syntax tree with operators as interior nodes and
operands as the children of the operator. The syntax tree on the right corresponds to the parse
tree above it.

(Technical point.) The syntax tree represents an assignment expression not an assignment statement. In C an
assignment statement includes the trailing semicolon. That is, in C (unlike in Algol) the semicolon is a statement
terminator not a statement separator.

1.2.3: Semantic Analysis

There is more to a front end than simply syntax. The compiler needs semantic information, e.g., the types (integer,
real, pointer to array of integers, etc) of the objects involved. This enables checking for semantic errors and inserting

The abstract syntax tree is often used as a basis for other semantic
analysis or as an intermediate representation

When the grammar has been modified for parsing, the syntax tree is
a more natural representation than the parse tree

The abstract syntax tree can be constructed using SDD (see next
slides)

Another SDD can then be defined on the syntax tree to perform
semantic checking or generate another intermediate code (directed
by the syntax tree and not the parse tree)

Semantic analysis 245

Generating an abstract syntax tree
For the left-recursive expression grammar:

Production Semantic rules
E ! E1 + T E .node = newNode(0+0, E1.node, T .node)
E ! E1 � T E .node = newNode(0�0, E1.node, T .node)
E ! T E .node = T .node
T ! (E) T .node = E .node
T ! id T .node = newLeaf (id, id.entry)
T ! num T .node = newLeaf (num, num.entry)

(Dragonbook)

Semantic analysis 246

Generating an abstract syntax tree

For the LL transformed expression grammar:
Production Semantic rules
E ! TE 0 E .node = E 0.syn; E 0.inh = T .node
E ! +TE 0

1 E 0
1.inh = newNode(0+0, E 0.inh, T .node); E 0.syn = E 0

1.syn
E ! �TE 0

1 E 0
1.inh = newNode(0�0, E 0.inh, T .node); E 0.syn = E 0

1.syn
E 0 ! ✏ E 0.syn = E 0.inh
E ! T E .node = T .node
T ! (E) T .node = E .node
T ! id T .node = newLeaf (id, id.entry)
T ! num T .node = newLeaf (num, num.entry)

(Dragonbook)

Semantic analysis 247

Type and scope checking

Static checkings:
I All checkings done at compilation time (versus dynamic checkings

done at run time)
I Allow to catch errors as soon as possible and ensure that the program

can be compiled

Two important checkings:
I Scope checking: checks that all variables and functions used within a

given scope have been correctly declared
I Type checking: ensures that an operator or function is applied to the

correct number of arguments of the correct types

These two checks are based on information stored in a symbol table

Semantic analysis 248

Scope
{

int x = 1;

int y = 2;

{

double x = 3.1416;

y += (int)x;

}

y += x;

}

Most languages o↵er some sort of control for scopes, constraining
the visibility of an identifier to some subsection of the program

A scope is typically a section of program text enclosed by basic
program delimiters, e.g., {} in C, begin-end in Pascal.

Many languages allow nested scopes, i.e., scopes within scopes. The
current scope (at some program position) is the innermost scope.

Global variables and functions are available everywhere

Determining if an identifier encountered in a program is accessible at
that point is called Scope checking.

Semantic analysis 249

Symbol table

{ int x; int y;

{ int w; bool y;

..w..; ..x..; ..y..; ..z..;

}

..w..; ..x..; ..y..;

}

x int
y int

w int
y bool
z int

w
.........

The compiler keeps track of names and their binding using a symbol
table (also called an environment)

A symbol table must implement the following operations:
I Create an empty table
I Add a binding between a name and some information
I Look up a name and retrieve its information
I Enter a new scope
I Exit a scope (and reestablish the symbol table in its state before

entering the scope)

Semantic analysis 250

Symbol table

To manage scopes, one can use a persistent or an imperative data
structure

A persistent data structure is a data structure which always
preserves the previous version of itself when it is modified

Example: lists in functional languages such as Scheme
I Binding: insert the binding at the front of the list, lookup: search the

list from head to tail
I Entering a scope: save the current list, exiting: recalling the old list

A non persistent implementation: with a stack
I Binding: push the binding on top of the stack, lookup: search the

stack from top to bottom
I Entering a scope: push a marker on the top of the stack, exiting: pop

all bindings from the stack until a marker is found, which is also
popped

I This approach destroys the symbol table when exiting the scope
(problematic in some cases)

Semantic analysis 251

More e�cient data structures

Search in list or stack is O(n) for n symbols in the table

One can used more e�cient data structures like hash-tables or
binary search trees

Scopes can then be handled in several ways:
I Create a new symbol table for each scope and use a stack or a linked

list to link them
I Use one big symbol table for all scopes:

I Each scope receives a number
I All variables defined within a scope are stored with their scope number
I Exiting a scope: removing all variables with the current scope number

I There exist persistent hash-tables

Semantic analysis 252

Types

Type checking is verifying that each operation executed in a
program respects the type system of the language, i.e., that all
operands in any expression are of appropriate types and number

Static typing if checking is done at compilation-time (e.g., C, Java,
C++)

Dynamic typing if checking is done at run-time (e.g., Scheme,
Javascript).

Implicit type conversion, or coercion, is when a compiler finds a type
error and change the type of the variable into the appropriate one
(e.g., integer!float)

Semantic analysis 253

Principle of type checking

Identify the types of the language and the language constructs that
have types associated with them

Associate a type attribute to these constructs and semantic rules to
compute them and to check that the typing system is respected

Needs to store identifier types in the symbol table

One can use two separate tables, one for the variable names and one
for the function names

Function types is determined by the types (and number) of
arguments and return type. E.g., (int, int) ! int

Type checking can not be dissociated from scope and other
semantic checking

Semantic analysis 254

Illustration

We will use the following source grammar to illustrate type checking
(and code generation next week)

5.3. A SMALL EXAMPLE LANGUAGE 123

Program ! Funs

Funs ! Fun
Funs ! Fun Funs

Fun ! TypeId (TypeIds) = Exp

TypeId ! int id
TypeId ! bool id

TypeIds ! TypeId
TypeIds ! TypeId , TypeIds

Exp ! num
Exp ! id
Exp ! Exp + Exp
Exp ! Exp = Exp
Exp ! if Exp then Exp else Exp
Exp ! id (Exps)
Exp ! let id = Exp in Exp

Exps ! Exp
Exps ! Exp , Exps

Grammar 5.1: Example language for interpretation

5.3. A SMALL EXAMPLE LANGUAGE 123

Program ! Funs

Funs ! Fun
Funs ! Fun Funs

Fun ! TypeId (TypeIds) = Exp

TypeId ! int id
TypeId ! bool id

TypeIds ! TypeId
TypeIds ! TypeId , TypeIds

Exp ! num
Exp ! id
Exp ! Exp + Exp
Exp ! Exp = Exp
Exp ! if Exp then Exp else Exp
Exp ! id (Exps)
Exp ! let id = Exp in Exp

Exps ! Exp
Exps ! Exp , Exps

Grammar 5.1: Example language for interpretation

(see chapter 5 and 6 of (Mogensen, 2010) for full details)

Semantic analysis 255

Implementation on the syntax tree: expressions

Type checking of expressions:

6.5. TYPE CHECKING EXPRESSIONS 137

CheckExp(Exp,vtable, f table) = case Exp of
num int
id t = lookup(vtable,getname(id))

if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = int and t2 = int
then int
else error(); int

Exp1 = Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = t2
then bool
else error(); bool

if Exp1 t1 = CheckExp(Exp1,vtable, f table)
then Exp2 t2 = CheckExp(Exp2,vtable, f table)
else Exp3 t3 = CheckExp(Exp3,vtable, f table)

if t1 = bool and t2 = t3
then t2
else error(); t2

id (Exps) t = lookup(f table,getname(id))
if t = unbound
then error(); int
else

((t1, . . . , tn)! t0) = t
[t �1, . . . , t

�
m] = CheckExps(Exps,vtable, f table)

if m = n and t1 = t �1, . . . , tn = t �n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1,vtable, f table)
in Exp2 vtable� = bind(vtable,getname(id), t1)

CheckExp(Exp2,vtable�, f table)

CheckExps(Exps,vtable, f table) = case Exps of
Exp [CheckExp(Exp,vtable, f table)]
Exp , Exps CheckExp(Exp,vtable, f table)

:: CheckExps(Exps,vtable, f table)

Figure 6.2: Type checking of expressions

scope checking

error recovery

inherited attributes

synthesized attribute

type checking

filled in by lexer

Follows the implementation of slide 237 with one function per
nonterminal, with a switch on production rules

Semantic analysis 256

Implementation on the syntax tree: function calls
6.5. TYPE CHECKING EXPRESSIONS 137

CheckExp(Exp,vtable, f table) = case Exp of
num int
id t = lookup(vtable,getname(id))

if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = int and t2 = int
then int
else error(); int

Exp1 = Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = t2
then bool
else error(); bool

if Exp1 t1 = CheckExp(Exp1,vtable, f table)
then Exp2 t2 = CheckExp(Exp2,vtable, f table)
else Exp3 t3 = CheckExp(Exp3,vtable, f table)

if t1 = bool and t2 = t3
then t2
else error(); t2

id (Exps) t = lookup(f table,getname(id))
if t = unbound
then error(); int
else

((t1, . . . , tn)! t0) = t
[t �1, . . . , t

�
m] = CheckExps(Exps,vtable, f table)

if m = n and t1 = t �1, . . . , tn = t �n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1,vtable, f table)
in Exp2 vtable� = bind(vtable,getname(id), t1)

CheckExp(Exp2,vtable�, f table)

CheckExps(Exps,vtable, f table) = case Exps of
Exp [CheckExp(Exp,vtable, f table)]
Exp , Exps CheckExp(Exp,vtable, f table)

:: CheckExps(Exps,vtable, f table)

Figure 6.2: Type checking of expressions

6.5. TYPE CHECKING EXPRESSIONS 137

CheckExp(Exp,vtable, f table) = case Exp of
num int
id t = lookup(vtable,getname(id))

if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = int and t2 = int
then int
else error(); int

Exp1 = Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = t2
then bool
else error(); bool

if Exp1 t1 = CheckExp(Exp1,vtable, f table)
then Exp2 t2 = CheckExp(Exp2,vtable, f table)
else Exp3 t3 = CheckExp(Exp3,vtable, f table)

if t1 = bool and t2 = t3
then t2
else error(); t2

id (Exps) t = lookup(f table,getname(id))
if t = unbound
then error(); int
else

((t1, . . . , tn)! t0) = t
[t �1, . . . , t

�
m] = CheckExps(Exps,vtable, f table)

if m = n and t1 = t �1, . . . , tn = t �n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1,vtable, f table)
in Exp2 vtable� = bind(vtable,getname(id), t1)

CheckExp(Exp2,vtable�, f table)

CheckExps(Exps,vtable, f table) = case Exps of
Exp [CheckExp(Exp,vtable, f table)]
Exp , Exps CheckExp(Exp,vtable, f table)

:: CheckExps(Exps,vtable, f table)

Figure 6.2: Type checking of expressions

6.5. TYPE CHECKING EXPRESSIONS 137

CheckExp(Exp,vtable, f table) = case Exp of
num int
id t = lookup(vtable,getname(id))

if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = int and t2 = int
then int
else error(); int

Exp1 = Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = t2
then bool
else error(); bool

if Exp1 t1 = CheckExp(Exp1,vtable, f table)
then Exp2 t2 = CheckExp(Exp2,vtable, f table)
else Exp3 t3 = CheckExp(Exp3,vtable, f table)

if t1 = bool and t2 = t3
then t2
else error(); t2

id (Exps) t = lookup(f table,getname(id))
if t = unbound
then error(); int
else

((t1, . . . , tn)! t0) = t
[t �1, . . . , t

�
m] = CheckExps(Exps,vtable, f table)

if m = n and t1 = t �1, . . . , tn = t �n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1,vtable, f table)
in Exp2 vtable� = bind(vtable,getname(id), t1)

CheckExp(Exp2,vtable�, f table)

CheckExps(Exps,vtable, f table) = case Exps of
Exp [CheckExp(Exp,vtable, f table)]
Exp , Exps CheckExp(Exp,vtable, f table)

:: CheckExps(Exps,vtable, f table)

Figure 6.2: Type checking of expressions≈cons

scope checking

checking function
arguments

filled in by lexer

Semantic analysis 257

Implementation on the syntax tree: variable declaration

6.5. TYPE CHECKING EXPRESSIONS 137

CheckExp(Exp,vtable, f table) = case Exp of
num int
id t = lookup(vtable,getname(id))

if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = int and t2 = int
then int
else error(); int

Exp1 = Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = t2
then bool
else error(); bool

if Exp1 t1 = CheckExp(Exp1,vtable, f table)
then Exp2 t2 = CheckExp(Exp2,vtable, f table)
else Exp3 t3 = CheckExp(Exp3,vtable, f table)

if t1 = bool and t2 = t3
then t2
else error(); t2

id (Exps) t = lookup(f table,getname(id))
if t = unbound
then error(); int
else

((t1, . . . , tn)! t0) = t
[t �1, . . . , t

�
m] = CheckExps(Exps,vtable, f table)

if m = n and t1 = t �1, . . . , tn = t �n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1,vtable, f table)
in Exp2 vtable� = bind(vtable,getname(id), t1)

CheckExp(Exp2,vtable�, f table)

CheckExps(Exps,vtable, f table) = case Exps of
Exp [CheckExp(Exp,vtable, f table)]
Exp , Exps CheckExp(Exp,vtable, f table)

:: CheckExps(Exps,vtable, f table)

Figure 6.2: Type checking of expressions

6.5. TYPE CHECKING EXPRESSIONS 137

CheckExp(Exp,vtable, f table) = case Exp of
num int
id t = lookup(vtable,getname(id))

if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = int and t2 = int
then int
else error(); int

Exp1 = Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = t2
then bool
else error(); bool

if Exp1 t1 = CheckExp(Exp1,vtable, f table)
then Exp2 t2 = CheckExp(Exp2,vtable, f table)
else Exp3 t3 = CheckExp(Exp3,vtable, f table)

if t1 = bool and t2 = t3
then t2
else error(); t2

id (Exps) t = lookup(f table,getname(id))
if t = unbound
then error(); int
else

((t1, . . . , tn)! t0) = t
[t �1, . . . , t

�
m] = CheckExps(Exps,vtable, f table)

if m = n and t1 = t �1, . . . , tn = t �n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1,vtable, f table)
in Exp2 vtable� = bind(vtable,getname(id), t1)

CheckExp(Exp2,vtable�, f table)

CheckExps(Exps,vtable, f table) = case Exps of
Exp [CheckExp(Exp,vtable, f table)]
Exp , Exps CheckExp(Exp,vtable, f table)

:: CheckExps(Exps,vtable, f table)

Figure 6.2: Type checking of expressions

create a new
 scope

Create a new symbol table vtable 0 with the new binding

Pass it as an argument for the evaluation of Exp2 (right child)

Semantic analysis 258

Implementation on the syntax tree: function declaration

6.7. TYPE CHECKING A PROGRAM 139

CheckFun(Fun, f table) = case Fun of
TypeId (TypeIds) = Exp (f , t0) = GetTypeId(TypeId)

vtable = CheckTypeIds(TypeIds)
t1 = CheckExp(Exp,vtable, f table)
if t0 6= t1
then error()

GetTypeId(TypeId) = case TypeId of
int id (getname(id), int)
bool id (getname(id), bool)

CheckTypeIds(TypeIds) = case TypeIds of
TypeId (x, t) = GetTypeId(TypeId)

bind(emptytable,x, t)
TypeId , TypeIds (x, t) = GetTypeId(TypeId)

vtable = CheckTypeIds(TypeIds)
if lookup(vtable,x) = unbound
then bind(vtable,x, t)
else error(); vtable

Figure 6.3: Type checking a function declaration

the body of the function. The type of the body must match the declared result
type of the function. The type check function for functions, CheckFun, has as in-
herited attribute the symbol table for functions, which is passed down to the type
check function for expressions. CheckFun returns no information, it just checks
for internal errors. CheckFun is shown in figure 6.3, along with the functions for
TypeId and TypeIds, which it uses. The function GetTypeId just returns a pair
of the declared name and type, and CheckTypeIds builds a symbol table from such
pairs. CheckTypeIds also checks if all parameters have different names. emptytable
is an empty symbol table. Looking any name up in the empty symbol table returns
unbound.

6.7 Type checking a program

A program is a list of functions and is deemed type correct if all the functions are
type correct, and there are no two function definitions defining the same function
name. Additionally, there must be a function called main with one integer argument
and integer result.

Since all functions are mutually recursive, each of these must be type checked
using a symbol table where all functions are bound to their type. This requires two

synthesized attribute

inherited attributes
6.7. TYPE CHECKING A PROGRAM 139

CheckFun(Fun, f table) = case Fun of
TypeId (TypeIds) = Exp (f , t0) = GetTypeId(TypeId)

vtable = CheckTypeIds(TypeIds)
t1 = CheckExp(Exp,vtable, f table)
if t0 6= t1
then error()

GetTypeId(TypeId) = case TypeId of
int id (getname(id), int)
bool id (getname(id), bool)

CheckTypeIds(TypeIds) = case TypeIds of
TypeId (x, t) = GetTypeId(TypeId)

bind(emptytable,x, t)
TypeId , TypeIds (x, t) = GetTypeId(TypeId)

vtable = CheckTypeIds(TypeIds)
if lookup(vtable,x) = unbound
then bind(vtable,x, t)
else error(); vtable

Figure 6.3: Type checking a function declaration

the body of the function. The type of the body must match the declared result
type of the function. The type check function for functions, CheckFun, has as in-
herited attribute the symbol table for functions, which is passed down to the type
check function for expressions. CheckFun returns no information, it just checks
for internal errors. CheckFun is shown in figure 6.3, along with the functions for
TypeId and TypeIds, which it uses. The function GetTypeId just returns a pair
of the declared name and type, and CheckTypeIds builds a symbol table from such
pairs. CheckTypeIds also checks if all parameters have different names. emptytable
is an empty symbol table. Looking any name up in the empty symbol table returns
unbound.

6.7 Type checking a program

A program is a list of functions and is deemed type correct if all the functions are
type correct, and there are no two function definitions defining the same function
name. Additionally, there must be a function called main with one integer argument
and integer result.

Since all functions are mutually recursive, each of these must be type checked
using a symbol table where all functions are bound to their type. This requires two

6.7. TYPE CHECKING A PROGRAM 139

CheckFun(Fun, f table) = case Fun of
TypeId (TypeIds) = Exp (f , t0) = GetTypeId(TypeId)

vtable = CheckTypeIds(TypeIds)
t1 = CheckExp(Exp,vtable, f table)
if t0 6= t1
then error()

GetTypeId(TypeId) = case TypeId of
int id (getname(id), int)
bool id (getname(id), bool)

CheckTypeIds(TypeIds) = case TypeIds of
TypeId (x, t) = GetTypeId(TypeId)

bind(emptytable,x, t)
TypeId , TypeIds (x, t) = GetTypeId(TypeId)

vtable = CheckTypeIds(TypeIds)
if lookup(vtable,x) = unbound
then bind(vtable,x, t)
else error(); vtable

Figure 6.3: Type checking a function declaration

the body of the function. The type of the body must match the declared result
type of the function. The type check function for functions, CheckFun, has as in-
herited attribute the symbol table for functions, which is passed down to the type
check function for expressions. CheckFun returns no information, it just checks
for internal errors. CheckFun is shown in figure 6.3, along with the functions for
TypeId and TypeIds, which it uses. The function GetTypeId just returns a pair
of the declared name and type, and CheckTypeIds builds a symbol table from such
pairs. CheckTypeIds also checks if all parameters have different names. emptytable
is an empty symbol table. Looking any name up in the empty symbol table returns
unbound.

6.7 Type checking a program

A program is a list of functions and is deemed type correct if all the functions are
type correct, and there are no two function definitions defining the same function
name. Additionally, there must be a function called main with one integer argument
and integer result.

Since all functions are mutually recursive, each of these must be type checked
using a symbol table where all functions are bound to their type. This requires two

Create a symbol table
with arguments

Semantic analysis 259

Implementation on the syntax tree: program
6.8. ADVANCED TYPE CHECKING 141

CheckProgram(Program) = case Program of
Funs f table = GetFuns(Funs)

CheckFuns(Funs, f table)
if lookup(f table, main) 6= (int)! int
then error()

GetFuns(Funs) = case Funs of
Fun (f , t) = GetFun(Fun)

bind(emptytable, f , t)
Fun Funs (f , t) = GetFun(Fun)

f table = GetFuns(Funs)
if lookup(f table, f) = unbound
then bind(f table, f , t)
else error(); f table

GetFun(Fun) = case Fun of
TypeId (TypeIds) = Exp (f , t0) = GetTypeId(TypeId)

[t1, . . . , tn] = GetTypes(TypeIds)
(f ,(t1, . . . , tn)! t0)

GetTypes(TypeIds) = case TypeIds of
TypeId (x, t) = GetTypeId(TypeId)

[t]
TypeId TypeIds (x1, t1) = GetTypeId(TypeId)

[t2, . . . , tn] = GetTypes(TypeIds)
[t1, t2, . . . , tn]

CheckFuns(Funs, f table) = case Funs of
Fun CheckFun(Fun, f table)
Fun Funs CheckFun(Fun, f table)

CheckFuns(Funs, f table)

Figure 6.4: Type checking a program

6.8. ADVANCED TYPE CHECKING 141

CheckProgram(Program) = case Program of
Funs f table = GetFuns(Funs)

CheckFuns(Funs, f table)
if lookup(f table, main) 6= (int)! int
then error()

GetFuns(Funs) = case Funs of
Fun (f , t) = GetFun(Fun)

bind(emptytable, f , t)
Fun Funs (f , t) = GetFun(Fun)

f table = GetFuns(Funs)
if lookup(f table, f) = unbound
then bind(f table, f , t)
else error(); f table

GetFun(Fun) = case Fun of
TypeId (TypeIds) = Exp (f , t0) = GetTypeId(TypeId)

[t1, . . . , tn] = GetTypes(TypeIds)
(f ,(t1, . . . , tn)! t0)

GetTypes(TypeIds) = case TypeIds of
TypeId (x, t) = GetTypeId(TypeId)

[t]
TypeId TypeIds (x1, t1) = GetTypeId(TypeId)

[t2, . . . , tn] = GetTypes(TypeIds)
[t1, t2, . . . , tn]

CheckFuns(Funs, f table) = case Funs of
Fun CheckFun(Fun, f table)
Fun Funs CheckFun(Fun, f table)

CheckFuns(Funs, f table)

Figure 6.4: Type checking a program

Collect all function definitions in a
symbol table (to allow mutual recursion)

Language semantic requires a main function

Needs two passes over the function definitions to allow mutual
recursion

See (Mogensen, 2010) for GetFuns (similar as CheckFuns)

Semantic analysis 260

More on types

Compound types are represented by trees (constructed by a SDD)

Example: array declarations in C

Production Semantic rules
T ! BC T .t = C .t; C .b = B.t
B ! int B.t =int
B ! float B.t =float
C ! [NUM]C1 C .t = array(NUM.val , C1.t)
C ! ✏ C .t = C .b

int [3][4]

array

array

int

3

4

Compound types are compared by comparing their trees

Semantic analysis 261

More on types

Type coercion:
I The compiler supply implicit conversions of types
I Define a hierarchy of types and find for two operands the least upper

bound (LUB) in the hierarchy
I Convert both operands to the LUB type

Overloading:
I An operator accepting di↵erent types (e.g., = in our source language)
I Type must be defined at translation

Polymorphism: functions defined over a large class of similar types

Implicit types: some languages (like ML or Haskell) do not require
to explicit declare type of functions or variables. Types are
automatically inferred at compile time.

Semantic analysis 262

	Introduction
	What is a compiler
	Compiler structure
	Course project

	Lexical analysis
	Principle
	Regular expressions
	Analysis with non-deterministic finite automata
	Analysis with deterministic finite automata
	Implementing a lexical analyzer

	Syntax analysis
	Introduction
	Context-free grammar
	Top-down parsing
	Bottom-up parsing

	Semantic analysis
	Syntax-directed translation
	Abstract syntax tree
	Type and scope checking

	Intermediate code generation
	Principle

	Code generation
	Principle

