Partie 5

Intermediate code generation

Structure of a compiler

Symbol Table

character stream

Lexical Analyzer

T
token stream

Syntax Analyzer

T
syntax tree

EREEE

[Semantic Analyzer

T
syntax tree

Ftermediate Code Generator

T .
intermediate representation

Machine-Independent
Code Optimizer

intermediate representation

i

Code Generator

target-maéhine code

Machine-Dependent
Code Optimizer

T
target-machine code

Outline

1. Intermediate representations

2. lllustration

3. Optimization

Intermediate code generation

The final phase of the compiler front-end

m Goal: translate the program into a format expected by the compiler
back-end

In typical compilers: followed by intermediate code optimization and
machine code generation

Techniques for intermediate code generation can be used for final
code generation (cf. your project)

Intermediate representations

Why use an intermediate representation?

m It's easy to change the source or the target language by adapting
only the front-end or back-end (portability)

m |t makes optimization easier: one needs to write optimization
methods only for the intermediate representation

m The intermediate representation can be directly interpreted

Java Sparc

ML& / MIPS
IR/

Pascal — \
/ Pentium
C
Cot Itanium

(Appel)

Intermediate representations

Intermediate
representation

Source ? Target
language | } 1 language
(high-level) D (low-level)

m How to choose the intermediate representation?
> It should be easy to translate the source language to the intermediate

representation
> It should be easy to translate the intermediate representation to the

machine code
» The intermediate representation should be suitable for optimization

m It should be neither too high level nor too low level

m One can have more than one intermediate representation in a single
compiler

Some common intermediate representations

m Graphical representations: parse tree, abstract syntax trees, DAG. ..
m Java bytecode (executed on the Java Virtual Machine)

m LLVM (Low Level Virtual Machine), a general compiler infrastructure
m Three Address Code (TAC, of the form “result=opl operator op2")

m Cis used in several compilers as an intermediate representation (Lisp,
Haskell, Cython...)

m Continuation-passing style (CPS): general form of IR for functional
languages

m Microsoft's Common Intermediate Language (CIL)

m GNU Compiler Collection (GCC) uses several intermediate representations:

Abstract syntax trees

GENERIC (tree-based)

GIMPLE (SSA-based, static single assignment form)
Register Transfer Language (RTL, inspired by lisp lists)

vV vy vVvYy

(Google them)

Outline

2. lllustration

The intermediate language

We will illustrate the translation of typical high-level language
constructions using the following low-level intermediate language:

Program

Instructions
Instructions

Instruction
Instruction
Instruction
Instruction
Instruction

1

Ll

[Instructions |

Instruction
Instruction , Instructions

id := Arom

id := unop Atom

id := id binop Atom
id := M[Atom]
M|Atom] :=id

Instruction
Instruction

Instruction
Instruction

Atom
Atom
Args
Args

Lol

!

U

LABEL labelid

GOTO labelid

IF id relop Atom THEN labelid ELSE labelid
id := CALL functionid(Args)

id

num

id

id , Args

Simplified three-address code, very close to machine code

See chapter 5 and 7 of (Mogensen, 2010) for full details

The intermediate language

Program

Instructions
Instructions

Instruction
Instruction
Instruction
Instruction
Instruction

Atom
Atom

!

Lelblod

Ll

[Instructions |

Instruction
Instruction , Instructions

id := Arom
id := unop Atom
id := id binop Arom

id := M[Arom)]
M[Atom] :=id
id

num

All values are assumed to be
integer

Unary and binary operators
include normal arithmetic and
logical operations

An atomic expression is either a
variable or a constant

M[Atom] :=id is a tranfer from
a variable to memory

id := M[Atom] is a tranfer from
memory to a variable

The intermediate language

Instruction — LABEL labelid

Instruction — GOTO labelid

Instruction — IF id relop Atom THEN labelid ELSE labelid
Instruction — id := CALL functionid(Args)

Atom — id

Atom — num

Args — id

Args — id, Args

m LABEL only marks a position in the program
m relop includes relational operators {=,#,<,>,< or >}
m Arguments of a function call are variables and the result is assigned

to a variable

Principle of translation

m Syntax-directed translation using several attributes:

» Code returned as a synthesized attribute

» Symbol tables passed as inherited attributes

> Places to store intermediate values as synthesized or inherited
attributes

m Implemented as recursive functions defined on syntax tree nodes (as
for type checking)

m Since translation follows the syntax, it is done mostly independently
of the context, which leads to suboptimal code

m Code is supposed to be optimized globally afterwards

Expressions

Exp
Exp
Exp
Exp
Exp

Exps
Exps

Principle of translation:

Ll

1

num

id

unop Exp

Exp binop Exp
id(Exps)

Exp
Exp , Exps

m Every operations is stored in a new variable in the intermediate
language, generated by a function newvar

m The new variables for sub-expressions are created by parent
expression and passed to sub-expression as inherited attributes
(synthesized attributes are also possible)

Expressions

Transgx,(Exp,vtable, ftable, place) = case Exp of
num v = getvalue(num)

[place :=v)

id x = lookup(vtable,getname(id)) where to place the
[place := x] i > translation of Expi
unop Exp; place; = newvar() : (inherited attribute)
codey = TransEXp(Expl,vtable,ftable,pla'cel)
op = transop(getopname(unop))
codey++[place := op place)

T INEEE » String concatenation

m getopname retrieves the operator associated to the token unop.
transop translates this operator into the equivalent operator in the
intermediate language

m [place := v] is a string where place and v have been replaced by
their values (in the compiler)

» Exemple: if place = t14 and v = 42, [place := v] is the instruction
[t14:=42].

Expressions: binary operators and function call

Transgy,(Exp,vtable, ftable, place) = case Exp of

Expi binop Exp;

place; = newvar()

place; = newvar()

code; = Transgy,(Expi,vtable, ftable, place)
codey = Transgy,(Expa,vtable, ftable, place)
op = transop(getopname(binop))
codey+codey++|place := place; op place,)

id(Exps)

(codey,[ay,. .., ay))

= Transgyps(Exps,vtable, ftable)
fname = lookup(ftable,getname(id))
codej+|place :== CALL fname(ay,...,ay)]

Expressions: function arguments

Transgyps(Exps,vtable, ftable) = case Exps of

Exp place = newvar()
code; = Transgy,(Exp,vtable, ftable, place)
(codey,|place])

Exp , Exps | place = newvar()

code; = Transgy,(Exp,vtable, ftable, place)
(codey,args) = Transgy,s(Exps,vtable, ftable)
codes = codej++code;

args| = place :: args

(codes,argsy)

Expressions: example of translation

Translation of 3+f(x-y,z):

tl1:=3
t4 :=v0
th :=vl
t3:=t4-1t5
t6 1= v2
t2 := CALL _f(t3,t6)
t0 ;= t1+t2

Assuming that:
® X, Y, and z are bound to variables v0, v1, and v2

m Expression is stored in t0
m New variables are generated as t1, t2, t3...

m Indentation indicates depth of call to Transg,,

Statements

Stat
Stat
Stat
Stat
Stat
Stat

Cond

Principle of translation:

e Ll

!

Stat ; Stat

id:=Exp

if Cond then Stat

if Cond then Stat else Stat
while Cond do Stat

repeat Stat until Cond

Exp relop Exp

m New unused labels are generated by the function newlabel (similar

to newvar)

m These labels are created by parents and passed as inherited

attributes

Statements: sequence of statements and assignment

Transg, (Stat,vtable, frable) = case Stat of

Staty ; Staty codey = Transg;, (Staty,vtable, ftable)
codey = Transg, (Staty, vtable, ftable)
codej++codes

id:=Exp place = lookup(vtable, getname(id))
Transgyx,(Exp,vtable, ftable, place)

Statements: conditions

Transs;q (Stat,vtable, ftable) = case Stat of

if Cond
then Stat;
else Star,

label, = newlabel ()
label, = newlabel ()
labels = newlabel()
codey = Transcnqa(Cond, labely,label,,viable, ftable)
codey = Transs,, (Staty,vtable, ftable)
codes = Transg;y (Staty, vtable, ftable)
code+[LABEL label;]+code;
++[GOTO labels, LABEL label,]
+rcode3++[LABEL labels)

Transconqd(Cond, label,,labely,vtable, ftable) = case Cond of

Expj relop Expy | t; = newvar()

tr = newvar()

code| = TransExp(Expl,vtable,ftable,tl)

codey = TransExp(Expz,vtable,ftable,tz)

op = transop(getopname(relop))
codey+rcodey+[IF ty opty THEN label, ELSE labely)

Statements: while loop

Transs,, (Stat,vtable, ftable) = case Stat of

while Cond | label; = newlabel()
do Stat; label, = newlabel ()
labels = newlabel()
codey = Transcy,q(Cond, labely,labels, vtable, ftable)
codey = Transg;, (Staty,vtable, ftable)
[LABEL label,|++code;
+[LABEL labely|++code,
++[GOTO label;, LABEL labels)

Logical operators

m Logical conjunction, disjunction, and negation are often available to
define conditions

m Two ways to implement them:
» Usual arithmetic operators: arguments are evaluated and then the
operators is applied. Example in C: bitwise operators: ‘&’ and '|'.
» Sequential logical operators: the second operand is not evaluated if
the first determines the result (lazy or short-circuit evaluation).
Example in C: logical operators '&&" and '||'.
m First type is simple to implement:
» by allowing any expression as condition

Cond — Exp

» by including ‘&', '|', and 'I" among binary and unary operators

m Second one requires more modifications

Sequential logical operators

Cond
Cond
Cond
Cond
Cond
Cond

Exp relop Exp
true

false

! Cond

Cond && Cond
Cond || Cond

A

Transcona(Cond, label,,labels,vtable, ftable) = case Cond of

true [GOTO label,]
false [GOTO labely]
! Cond, Transcond(Cond ,label s, label; ,vtable, ftable)

Cond; && Cond,

arg, = newlabel ()
code\=Transcona(Cond,,arg,,labels,vtable, ftable)
codey=Transconq(Condy,label;,labely,vtable, ftable)
code+[LABEL args|+rcode;

Cond; || Cond,

arg, = newlabel ()
codei=Transcong(Cond,,label,,arg,, vtable, ftable)
codes=Transcond(Cond,,label,, labely,vtable, ftable)
code|+[LABEL args|+rcodey

Other statements

More advanced control statements:

m Goto and labels: labels are stored in the symbol table (and
associated with intermediate language labels). Generated as soon as
a jump or a declaration is met (to avoid one additional pass)

m Break/exit: pass an additional (inherited) attribute to the
translation function of loops with the label an break/exit should
jump to. A new label is passed when entering a new loop.

m Case/switch-statements: translated with nested if-then-else
statements.

Arrays

Language can be extended with one-dimensional arrays:

Exp — Index
Stat — Index:= Exp
Index — id[Exp]

Principle of translation:
m Arrays can be allocated statically (at compile-time) or dynamically
(at run-time)
m Base address of the array is stored as a constant in the case of static
allocation, or in a variable in the case of dynamic allocation
m The symbol table binds the array name with to the constant or
variable containing its address

Arrays: translation

Transgy,(Exp,vtable, ftable, place) = case Exp of
Index | (codey,address) = Transigex(Index, vtable, ftable)
codei+|[place := M[address]|

Transg;y (Stat,vtable, ftable) = case Stat of

Index := Exp | (codey,address)=Transmq.c(Index,vtable, ftable)
t = newvar()

codey = Transgy,(Exp,vtable, ftable,t)
code+codey++|Mladdress| := t]

Transmaer(Index,vtable, ftable) = case Index of
id[Exp] | base = lookup(vtable, getname(id))

t = newvar()

code| = Transgy,(Exp,vtable, ftable,t)
codey = code +|t :=t x4t :=t+ base]
(codes,t)

(Assuming arrays are indexed starting at 0 and integers are 64 bits long)

Multi-dimensional arrays

Index — id[Exp]
Index — Index|Exp]

Principle of translation:

m Two ways to represent a 2-dimensional array in linear memory:

» Row-major order: one row at a time. For a 3 x 2 array: a[0][0],
a[0][1], a[1][0], a[1][1], a[2][0], a[2][1]

» Column-major order: one column at a time. For a 3 x 2 array:
a[0][0], a[1][0], a[2][0], a[0][1], a[1][1], a[2][1]

m Generalization: if dimg, dimy, ..., dim,_1 are the sizes of the
dimensions in a n-dimensional arrays, the element [ip][/1] . - . [in—1]
has the address:

» Row-major:

base + ((...(fo - dimy + i) - dima ... + ip_3) - dim,_1 + in_1) - Size
» Column-major:

base + ((...(fo - dimy + i) - dimy ... + ip_2) - dimp_1 + ip—1) - Size

m Dimension sizes are stored as constant (static), in variables or in
memory next to the array data (dynamic)

Multi-dimensional arrays: translation

Transmgex(Index, vtable, ftable) =
(codey,t,base,[]) = Calcipger(Index, vtable, ftable)
codey = code+|t ==t x4t := 1+ base]
(codey,t)

Calcrygex(Index,vtable, ftable) = case Index of

id[Exp] (base,dims) = lookup(vtable,getname(id))

t = newvar()

code = Transgy,(Exp,vtable, ftable,t)
(code,t,base,tail(dims))

Index|Exp] | (codey,ty,base,dims) = Calcppger(Index,viable, ftable)
dim) = head(dims)

tr = newvar()

codey = Transgy,(Exp,vtable, ftable,t,)

codes = codey+codey++t) :=t) xdimy,t) *=1] +1]
(codes,ty,base,tail(dims))

(Assume dimension sizes are stored in the symbol table, as constant or
variable)

Other structures

m Floating point values: can be treated the same way as integers
(assuming the intermediate language has specific variables and
operators for floating point numbers)

m Records/structures: allocated in a similar way as arrays

» Each field is accessed by adding an offset to the base-address of the
record

» Base-addresses and offsets for each field are stored in the symbol
table for all record-variables

m Strings: similar to arrays of bytes but with a length that can vary at
run-time

Variable declaration

Stat — Decl ; Stat
Decl — intid
Decl — int id[num]

Principle of translation:

m Information about where to found scalar variables (e.g. integer) and
arrays after declaration is stored in the symbol table

m Allocations can be done in many ways and places (static, dynamic,
local, global. . .)

Variable declaration

Transs;, (Stat,vtable, ftable) = case Star of

Decl ; Staty | (codey,vtable;) = Transpec(Decl,vtable)
codey = Transsq (Staty,vtable,, ftable)
codej+code;

Transpeci(Decl,vtable) = case Decl of

int id t1 = newvar()

vtable) = bind(vtable, getname(id), ;)

([}, vtabley)

int id[num| | #; = newvar()

vtable| = bind(vtable, getname(id), t;)

([fh := HP,HP := HP + (4 x getvalue(num))], vtable;)

(Assumes scalar variables are stored in intermediate language variables
and arrays are allocated in the heap, with their base-addresses stored in a
variable. HP points to the first free position of the heap.)

Comments

m Needs to add error checking in previous illustration (array index out
of bound in arrays, wrong number of dimensions, memory/heap
overflow, etc.)

m In practice, results of translation are not returned as strings but
either:

» output directly into an array or a file
» or stored into a structure (translation tree or linked list)
The latter allows subsequent code restructuring during optimization

m We have not talked about:

» memory organization: typically subdivided into static data (for static
allocation), heap (for dynamic allocation) and stack (for function
calls)

» translation of function calls: function arguments, local variables, and
return address are stored on the stack (similar to what you have seen
in INFO-0012, computation structures)

Outline

3. Optimization

IR code optimization

IR code generation is usually followed by code optimization
Why?

> IR generation introduces redundancy

» To compensate for laziness of programmers

Improvement rather than optimization since optimization is
undecidable
Challenges in optimization:

» Correctness: should not change the semantic of the program
» Efficiency: should produce IR code as efficient as possible
» Computing times: should not take too much time to optimize

m What to optimize?
» Computing times
» Memory usage
» Power consumption
>

Control-flow graph

m A basic block is a series of IR
instructions where:

» there is one entry point into
the basic block, and
» there is one exit point out of
the basic block.
m Control-flow graph: nodes are
basic blocks and edges are
jumps between blocks

=3
t1:=4%i
t2:=a[tl]
ji=2

|

labl: j:=j+1
if j>100 then lab4

!

lab2: if t2<b then lab3

!

t2:=t2+3
GOTO lab2

lab3: b:=b-j
GOTO labl

lab4: a[t1]:=t2

Local optimizations

Local optimization: optimization within a single basic block

Examples:
m Constant folding: evaluation at compile-time of expressions whose
operands are contant
» 10+2*3 — 16
» [If 1 then Labl Else Lab2] — [GOTO Lab1]

m Constant propagation: if a variable is assigned to a constant, then
propagate the constant into each use of the variable

> [xi=4;t:=y*x;] can be transformed into [t:=y*4;] if x is not used later

Local optimizations

Examples:

m Copy propagation:: similar to constant propagation but generalized
to non constant values

tmp2 = tmpl,;

tmp3 = tmp2 * tmpl, tmp3 = tmpl * tmpl;
tmp4 = tmp3; tmp5 = tmp3 * tmpl;
tmp5 = tmp3 * tmp2; ¢ = tmp5 + tmp3;

c = tmpb + tmp4;

m Dead code elimination: remove instructions whose result is never
used

» Example: Remove [tmpl=tmp2+tmp3;] if tmpl is never used

Local optimizations

Examples:

m Common subexpression elimination: if two operations produce the
same results, compute the result once and reference it the second
time

» Example: in a[i]=a[i]+2, the address of a[i] is computed twice.
When translating, do it once and store the result in a temporary
variable

m Code moving/hoisting: move outside of a loop all computations
independent of the variables that are changing inside the loop
» Example: part of the computation of the address for a[i] [j] can be
removed from this loop
while (j<k) {
sum = sum + alil[j];
jt+;

}

IR code optimization

m Local optimizations can be interleaved in different ways and applied
several times each

m Optimal optimization order is very difficult to determine

m Global optimization: optimization across basic blocks
» Implies performing data-flow analysis, i.e., determine how values

propagate through the control-flow graph
» More complicated than local optimization

For your project

m No need to use an intermediate language (except for the syntax tree
if needed)

Syntax-directed translation as illustrated here should be enough

Implementation:

» During parsing: faster and requires less memory

» On the syntax tree: more flexible but less efficient

» Hybrid approaches are possible, i.e., developing explicitely syntax
trees only for some language constructions

If your target language is high-level, then:

» You can pre-defined structures/functions that mimic
structures/functions in the source language to ease translation. For
example, implement scheme lists with linked lists in C.

» You can use memory allocation facilities of the target language
(instead of doing all work manually)

No need to optimize code explicitely but avoid obvious sources of
inefficiency

	Introduction
	What is a compiler
	Compiler structure
	Course project

	Lexical analysis
	Principle
	Regular expressions
	Analysis with non-deterministic finite automata
	Analysis with deterministic finite automata
	Implementing a lexical analyzer

	Syntax analysis
	Introduction
	Context-free grammar
	Top-down parsing
	Bottom-up parsing

	Semantic analysis
	Syntax-directed translation
	Abstract syntax tree
	Type and scope checking

	Intermediate code generation
	Intermediate representations
	Illustration
	Optimization

	Code generation
	Principle

