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Structure of a compiler     
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Outline

1. Intermediate representations

2. Illustration

3. Optimization
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Intermediate code generation

The final phase of the compiler front-end

Goal: translate the program into a format expected by the compiler
back-end

In typical compilers: followed by intermediate code optimization and
machine code generation

Techniques for intermediate code generation can be used for final
code generation (cf. your project)
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Intermediate representations

Why use an intermediate representation?

It’s easy to change the source or the target language by adapting
only the front-end or back-end (portability)

It makes optimization easier: one needs to write optimization
methods only for the intermediate representation

The intermediate representation can be directly interpreted7.1. INTERMEDIATE REPRESENTATION TREES
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FIGURE 7.1. Compilers for five languages and four target machines:
(a) without an IR, (b) with an IR.

7.1 INTERMEDIATE REPRESENTATION TREES

The intermediate representation tree language is defined by the package Tree,
containing abstract classes Stm and Exp and their subclasses, as shown in
Figure 7.2.

A good intermediate representation has several qualities:

• It must be convenient for the semantic analysis phase to produce.
• It must be convenient to translate into real machine language, for all the de-

sired target machines.
• Each construct must have a clear and simple meaning, so that optimizing

transformations that rewrite the intermediate representation can easily be spec-
ified and implemented.

Individual pieces of abstract syntax can be complicated things, such as
array subscripts, procedure calls, and so on. And individual “real machine”
instructions can also have a complicated effect (though this is less true of
modern RISC machines than of earlier architectures). Unfortunately, it is not
always the case that complex pieces of the abstract syntax correspond exactly
to the complex instructions that a machine can execute.

Therefore, the intermediate representation should have individual compo-
nents that describe only extremely simple things: a single fetch, store, add,
move, or jump. Then any “chunky” piece of abstract syntax can be trans-
lated into just the right set of abstract machine instructions; and groups of
abstract machine instructions can be clumped together (perhaps in quite dif-
ferent clumps) to form “real” machine instructions.

137

(Appel)
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Intermediate representations

Source
language
(high-level)

Target
language
(low-level)

Intermediate
representation

?

How to choose the intermediate representation?
I It should be easy to translate the source language to the intermediate

representation
I It should be easy to translate the intermediate representation to the

machine code
I The intermediate representation should be suitable for optimization

It should be neither too high level nor too low level

One can have more than one intermediate representation in a single
compiler
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Some common intermediate representations

Graphical representations: parse tree, abstract syntax trees, DAG. . .

Java bytecode (executed on the Java Virtual Machine)

LLVM (Low Level Virtual Machine), a general compiler infrastructure

Three Address Code (TAC, of the form “result=op1 operator op2”)

C is used in several compilers as an intermediate representation (Lisp,
Haskell, Cython. . . )

Continuation-passing style (CPS): general form of IR for functional
languages

Microsoft’s Common Intermediate Language (CIL)

GNU Compiler Collection (GCC) uses several intermediate representations:

I Abstract syntax trees
I GENERIC (tree-based)
I GIMPLE (SSA-based, static single assignment form)
I Register Transfer Language (RTL, inspired by lisp lists)

(Google them)
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The intermediate language

We will illustrate the translation of typical high-level language
constructions using the following low-level intermediate language:150 CHAPTER 7. INTERMEDIATE-CODE GENERATION

Program ! [ Instructions ]

Instructions ! Instruction
Instructions ! Instruction , Instructions

Instruction ! LABEL labelid
Instruction ! id := Atom
Instruction ! id := unop Atom
Instruction ! id := id binop Atom
Instruction ! id := M[Atom]
Instruction ! M[Atom] := id
Instruction ! GOTO labelid
Instruction ! IF id relop Atom THEN labelid ELSE labelid
Instruction ! id := CALL functionid(Args)

Atom ! id
Atom ! num

Args ! id
Args ! id , Args

Grammar 7.1: The intermediate language

7.3 The intermediate language

In this chapter we have chosen a fairly low-level fine-grained intermediate lan-
guage, as it is best suited to convey the techniques we want to cover.

We will not treat translation of function calls until chapter 10, so a “program”
in our intermediate language will, for the time being, correspond to the body of a
function or procedure in a real program. For the same reason, function calls are
initially treated as primitive operations in the intermediate language.

The grammar for the intermediate language is shown in grammar 7.1. A pro-
gram is a sequence of instructions. The instructions are:

• A label. This has no effect but serves only to mark the position in the program
as a target for jumps.

• An assignment of an atomic expression (constant or variable) to a variable.

• A unary operator applied to an atomic expression, with the result stored in a
variable.
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7.3 The intermediate language

In this chapter we have chosen a fairly low-level fine-grained intermediate lan-
guage, as it is best suited to convey the techniques we want to cover.

We will not treat translation of function calls until chapter 10, so a “program”
in our intermediate language will, for the time being, correspond to the body of a
function or procedure in a real program. For the same reason, function calls are
initially treated as primitive operations in the intermediate language.

The grammar for the intermediate language is shown in grammar 7.1. A pro-
gram is a sequence of instructions. The instructions are:

• A label. This has no effect but serves only to mark the position in the program
as a target for jumps.

• An assignment of an atomic expression (constant or variable) to a variable.

• A unary operator applied to an atomic expression, with the result stored in a
variable.

Simplified three-address code, very close to machine code

See chapter 5 and 7 of (Mogensen, 2010) for full details
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The intermediate language
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7.3 The intermediate language

In this chapter we have chosen a fairly low-level fine-grained intermediate lan-
guage, as it is best suited to convey the techniques we want to cover.

We will not treat translation of function calls until chapter 10, so a “program”
in our intermediate language will, for the time being, correspond to the body of a
function or procedure in a real program. For the same reason, function calls are
initially treated as primitive operations in the intermediate language.

The grammar for the intermediate language is shown in grammar 7.1. A pro-
gram is a sequence of instructions. The instructions are:

• A label. This has no effect but serves only to mark the position in the program
as a target for jumps.

• An assignment of an atomic expression (constant or variable) to a variable.

• A unary operator applied to an atomic expression, with the result stored in a
variable.

All values are assumed to be
integer

Unary and binary operators
include normal arithmetic and
logical operations

An atomic expression is either a
variable or a constant

M[Atom] := id is a tranfer from
a variable to memory

id := M[Atom] is a tranfer from
memory to a variable
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The intermediate language
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7.3 The intermediate language

In this chapter we have chosen a fairly low-level fine-grained intermediate lan-
guage, as it is best suited to convey the techniques we want to cover.

We will not treat translation of function calls until chapter 10, so a “program”
in our intermediate language will, for the time being, correspond to the body of a
function or procedure in a real program. For the same reason, function calls are
initially treated as primitive operations in the intermediate language.

The grammar for the intermediate language is shown in grammar 7.1. A pro-
gram is a sequence of instructions. The instructions are:

• A label. This has no effect but serves only to mark the position in the program
as a target for jumps.

• An assignment of an atomic expression (constant or variable) to a variable.

• A unary operator applied to an atomic expression, with the result stored in a
variable.

LABEL only marks a position in the program

relop includes relational operators {=, 6=, <,>, or �}
Arguments of a function call are variables and the result is assigned
to a variable
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Principle of translation

Syntax-directed translation using several attributes:
I Code returned as a synthesized attribute
I Symbol tables passed as inherited attributes
I Places to store intermediate values as synthesized or inherited

attributes

Implemented as recursive functions defined on syntax tree nodes (as
for type checking)

Since translation follows the syntax, it is done mostly independently
of the context, which leads to suboptimal code

Code is supposed to be optimized globally afterwards
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Expressions

152 CHAPTER 7. INTERMEDIATE-CODE GENERATION

Exp ! num
Exp ! id
Exp ! unop Exp
Exp ! Exp binop Exp
Exp ! id(Exps)

Exps ! Exp
Exps ! Exp , Exps

Grammar 7.2: A simple expression language

7.5 Generating code from expressions

Grammar 7.2 shows a simple language of expressions, which we will use as our
initial example for translation. Again, we have let the set of unary and binary
operators be unspecified but assume that the intermediate language includes all
those used by the expression language. We assume that there is a function transop
that translates the name of an operator in the expression language into the name
of the corresponding operator in the intermediate language. The tokens unop and
binop have the names of the actual operators as attributes, accessed by the function
getopname.

When writing a compiler, we must decide what needs to be done at compile-
time and what needs to be done at run-time. Ideally, as much as possible should
be done at compile-time, but some things need to be postponed until run-time, as
they need the actual values of variables, etc., which are not known at compile-time.
When we, below, explain the workings of the translation functions, we might use
phrasing like “the expression is evaluated and the result stored in the variable”.
This describes actions that are performed at run-time by the code that is generated
at compile-time. At times, the textual description may not be 100% clear as to
what happens at which time, but the notation used in the translation functions make
this clear: Intermediate-language code is executed at run-time, the rest is done at
compile time. Intermediate-langauge instructions may refer to values (constants
and register names) that are generated at compile time. When instructions have
operands that are written in italics, these operands are variables in the compiler
that contain compile-time values that are inserted into the generated code. For
example, if place holds the variable name t14 and v holds the value 42, then the
code template [place := v] will generate the code [t14 := 42] .

When we want to translate the expression language to the intermediate lan-
guage, the main complication is that the expression language is tree-structured

Principle of translation:

Every operations is stored in a new variable in the intermediate
language, generated by a function newvar

The new variables for sub-expressions are created by parent
expression and passed to sub-expression as inherited attributes
(synthesized attributes are also possible)
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Expressions

154 CHAPTER 7. INTERMEDIATE-CODE GENERATION

TransExp(Exp,vtable, f table, place) = case Exp of
num v = getvalue(num)

[place := v]
id x = lookup(vtable,getname(id))

[place := x]
unop Exp1 place1 = newvar()

code1 = TransExp(Exp1,vtable, f table, place1)
op = transop(getopname(unop))
code1++[place := op place1]

Exp1 binop Exp2 place1 = newvar()
place2 = newvar()
code1 = TransExp(Exp1,vtable, f table, place1)
code2 = TransExp(Exp2,vtable, f table, place2)
op = transop(getopname(binop))
code1++code2++[place := place1 op place2]

id(Exps) (code1, [a1, . . . ,an])
= TransExps(Exps,vtable, f table)

f name = lookup( f table,getname(id))
code1++[place := CALL f name(a1, . . . ,an)]

TransExps(Exps,vtable, f table) = case Exps of
Exp place = newvar()

code1 = TransExp(Exp,vtable, f table, place)
(code1, [place])

Exp , Exps place = newvar()
code1 = TransExp(Exp,vtable, f table, place)
(code2,args) = TransExps(Exps,vtable, f table)
code3 = code1++code2
args1 = place :: args
(code3,args1)

Figure 7.3: Translating an expression

String concatenation

where to place the 
translation of Exp1
(inherited attribute)

getopname retrieves the operator associated to the token unop.
transop translates this operator into the equivalent operator in the
intermediate language

[place := v ] is a string where place and v have been replaced by
their values (in the compiler)

I Exemple: if place = t14 and v = 42, [place := v ] is the instruction
[t14:=42].
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Expressions: binary operators and function call
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code1++code2++[place := place1 op place2]
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Expressions: function arguments
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Expressions: example of translation

Translation of 3+f(x-y,z):

t1 := 3
t4 := v0
t5 := v1

t3 := t4 - t5
t6 := v2

t2 := CALL f(t3,t6)
t0 := t1+t2

Assuming that:
x, y, and z are bound to variables v0, v1, and v2

Expression is stored in t0

New variables are generated as t1, t2, t3. . .

Indentation indicates depth of call to TransExp

Intermediate code generation 279



Statements
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Stat ! Stat ; Stat
Stat ! id := Exp
Stat ! if Cond then Stat
Stat ! if Cond then Stat else Stat
Stat ! while Cond do Stat
Stat ! repeat Stat until Cond

Cond ! Exp relop Exp

Grammar 7.4: Statement language

treat each subexpression independently of its context. This may lead to superfluous
assignments. We will look at ways of getting rid of these when we treat machine
code generation and register allocation in chapters 8 and 9.

A more complex expression is 3+f(x-y,z). Using the same assumptions as
above, this yields the code

t1 := 3
t4 := v0
t5 := v1
t3 := t4�t5
t6 := v2
t2 := CALL _f(t3,t6)
t0 := t1+t2

We have, for readability, laid the code out on separate lines rather than using a
comma-separated list. The indentation indicates the depth of calls to TransExp that
produced the code in each line.

Suggested exercises: 7.1.

7.6 Translating statements

We now extend the expression language in figure 7.2 with statements. The exten-
sions are shown in grammar 7.4.

When translating statements, we will need the symbol table for variables (for
translating assignment), and since statements contain expressions, we also need
f table so we can pass it on to TransExp.

Principle of translation:

New unused labels are generated by the function newlabel (similar
to newvar)

These labels are created by parents and passed as inherited
attributes
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Statements: sequence of statements and assignment
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TransStat(Stat,vtable, f table) = case Stat of
Stat1 ; Stat2 code1 = TransStat(Stat1,vtable, f table)

code2 = TransStat(Stat2,vtable, f table)
code1++code2

id := Exp place = lookup(vtable,getname(id))
TransExp(Exp,vtable, f table, place)

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code1++[LABEL label1]++code2

++[LABEL label2]
if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 label3 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code3 = TransStat(Stat2,vtable, f table)
code1++[LABEL label1]++code2

++[GOTO label3, LABEL label2]
++code3++[LABEL label3]

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

label3 = newlabel()
code1 = TransCond(Cond, label2, label3,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1, LABEL label3]

repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1,vtable, f table)
code2 = TransCond(Cond, label2, label1,vtable, f table)
[LABEL label1]++code1

++code2++[LABEL label2]

Figure 7.5: Translation of statements
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Statements: conditions
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TransStat(Stat,vtable, f table) = case Stat of
Stat1 ; Stat2 code1 = TransStat(Stat1,vtable, f table)

code2 = TransStat(Stat2,vtable, f table)
code1++code2

id := Exp place = lookup(vtable,getname(id))
TransExp(Exp,vtable, f table, place)

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code1++[LABEL label1]++code2

++[LABEL label2]
if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 label3 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code3 = TransStat(Stat2,vtable, f table)
code1++[LABEL label1]++code2

++[GOTO label3, LABEL label2]
++code3++[LABEL label3]

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

label3 = newlabel()
code1 = TransCond(Cond, label2, label3,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1, LABEL label3]

repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1,vtable, f table)
code2 = TransCond(Cond, label2, label1,vtable, f table)
[LABEL label1]++code1

++code2++[LABEL label2]

Figure 7.5: Translation of statements
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TransStat(Stat,vtable, f table) = case Stat of
Stat1 ; Stat2 code1 = TransStat(Stat1,vtable, f table)

code2 = TransStat(Stat2,vtable, f table)
code1++code2

id := Exp place = lookup(vtable,getname(id))
TransExp(Exp,vtable, f table, place)

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code1++[LABEL label1]++code2

++[LABEL label2]
if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 label3 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code3 = TransStat(Stat2,vtable, f table)
code1++[LABEL label1]++code2

++[GOTO label3, LABEL label2]
++code3++[LABEL label3]

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

label3 = newlabel()
code1 = TransCond(Cond, label2, label3,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1, LABEL label3]

repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1,vtable, f table)
code2 = TransCond(Cond, label2, label1,vtable, f table)
[LABEL label1]++code1

++code2++[LABEL label2]

Figure 7.5: Translation of statements
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TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
Exp1 relop Exp2 t1 = newvar()

t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(getopname(relop))
code1++code2++[IF t1 opt2 THEN labelt ELSE label f ]

Figure 7.6: Translation of simple conditions

7.7 Logical operators

Logical conjunction, disjunction and negation are often available for conditions, so
we can write, e.g., x = y or y = z, where or is a logical disjunction operator. There
are typically two ways to treat logical operators in programming languages:

1) Logical operators are similar to arithmetic operators: The arguments are eval-
uated and the operator is applied to find the result.

2) The second operand of a logical operator is not evaluated if the first operand
is sufficient to determine the result. This means that a logical and will not
evaluate its second operand if the first evaluates to false, and a logical or will
not evaluate the second operand if the first is true.

The first variant is typically implemented by using bitwise logical operators and
uses 0 to represent false and a nonzero value (typically 1 or �1) to represent true.
In C, there is no separate boolean type. The integer 1 is used for logical truth1 and
0 for falsehood. Bitwise logical operators & (bitwise and) and | (bitwise or) are
used to implement the corresponding logical operations. Logical negation is not
handled by bitwise negation, as the bitwise negation of 1 is not 0. Instead, a special
logical negation operator ! is used that maps any non-zero value to 0 and 0 to 1.
We assume an equivalent operator is available in the intermediate language.

The second variant is called sequential logical operators. In C, these are called
&& (logical and) and || (logical or).

Adding non-sequential logical operators to our language is not too difficult.
Since we have not said exactly which binary and unary operators exist in the inter-
mediate language, we can simply assume these include relational operators, bitwise
logical operations and logical negation. We can now simply allow any expression2

as a condition by adding the production

1Actually, any non-zero value is treated as logical truth.
2If it is of boolean type, which we assume has been verified by the type checker.
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Statements: while loop
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TransStat(Stat,vtable, f table) = case Stat of
Stat1 ; Stat2 code1 = TransStat(Stat1,vtable, f table)

code2 = TransStat(Stat2,vtable, f table)
code1++code2

id := Exp place = lookup(vtable,getname(id))
TransExp(Exp,vtable, f table, place)

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code1++[LABEL label1]++code2

++[LABEL label2]
if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 label3 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code3 = TransStat(Stat2,vtable, f table)
code1++[LABEL label1]++code2

++[GOTO label3, LABEL label2]
++code3++[LABEL label3]

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

label3 = newlabel()
code1 = TransCond(Cond, label2, label3,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1, LABEL label3]

repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1,vtable, f table)
code2 = TransCond(Cond, label2, label1,vtable, f table)
[LABEL label1]++code1

++code2++[LABEL label2]

Figure 7.5: Translation of statements
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TransStat(Stat,vtable, f table) = case Stat of
Stat1 ; Stat2 code1 = TransStat(Stat1,vtable, f table)

code2 = TransStat(Stat2,vtable, f table)
code1++code2

id := Exp place = lookup(vtable,getname(id))
TransExp(Exp,vtable, f table, place)

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code1++[LABEL label1]++code2

++[LABEL label2]
if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 label3 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code3 = TransStat(Stat2,vtable, f table)
code1++[LABEL label1]++code2

++[GOTO label3, LABEL label2]
++code3++[LABEL label3]

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

label3 = newlabel()
code1 = TransCond(Cond, label2, label3,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1, LABEL label3]

repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1,vtable, f table)
code2 = TransCond(Cond, label2, label1,vtable, f table)
[LABEL label1]++code1

++code2++[LABEL label2]
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Logical operators

Logical conjunction, disjunction, and negation are often available to
define conditions

Two ways to implement them:
I Usual arithmetic operators: arguments are evaluated and then the

operators is applied. Example in C: bitwise operators: ’&’ and ’|’.
I Sequential logical operators: the second operand is not evaluated if

the first determines the result (lazy or short-circuit evaluation).
Example in C: logical operators ’&&’ and ’||’.

First type is simple to implement:
I by allowing any expression as condition

Cond ! Exp

I by including ’&’, ’|’, and ’!’ among binary and unary operators

Second one requires more modifications
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Sequential logical operators

7.7. LOGICAL OPERATORS 161

Exp ! num
Exp ! id
Exp ! unop Exp
Exp ! Exp binop Exp
Exp ! id(Exps)
Exp ! true
Exp ! false
Exp ! Cond

Exps ! Exp
Exps ! Exp , Exps

Cond ! Exp relop Exp
Cond ! true
Cond ! false
Cond ! ! Cond
Cond ! Cond && Cond
Cond ! Cond || Cond
Cond ! Exp

Grammar 7.7: Example language with logical operators
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TransExp(Exp,vtable, f table, place) = case Exp of
...

true [place := 1]
false [place := 0]
Cond label1 = newlabel()

label2 = newlabel()
code1 = TransCond(Cond, label1, label2,vtable, f table)
[place := 0]++code1

++[LABEL label1, place := 1]
++[LABEL label2]

TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
Exp1 relopExp2 t1 = newvar()

t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(getopname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE label f ]

true [GOTO labelt ]
false [GOTO label f ]
! Cond1 TransCond(Cond1, label f , labelt ,vtable, f table)
Cond1 && Cond2 arg2 = newlabel()

code1=TransCond(Cond1,arg2, label f ,vtable, f table)
code2=TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL arg2]++code2

Cond1 || Cond2 arg2 = newlabel()
code1=TransCond(Cond1, labelt ,arg2,vtable, f table)
code2=TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL arg2]++code2

Exp t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code1++[IF t 6= 0 THEN labelt ELSE label f ]

Figure 7.8: Translation of sequential logical operators
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TransExp(Exp,vtable, f table, place) = case Exp of
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true [place := 1]
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TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
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t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(getopname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE label f ]

true [GOTO labelt ]
false [GOTO label f ]
! Cond1 TransCond(Cond1, label f , labelt ,vtable, f table)
Cond1 && Cond2 arg2 = newlabel()

code1=TransCond(Cond1,arg2, label f ,vtable, f table)
code2=TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL arg2]++code2

Cond1 || Cond2 arg2 = newlabel()
code1=TransCond(Cond1, labelt ,arg2,vtable, f table)
code2=TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL arg2]++code2

Exp t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code1++[IF t 6= 0 THEN labelt ELSE label f ]

Figure 7.8: Translation of sequential logical operators
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Other statements

More advanced control statements:

Goto and labels: labels are stored in the symbol table (and
associated with intermediate language labels). Generated as soon as
a jump or a declaration is met (to avoid one additional pass)

Break/exit: pass an additional (inherited) attribute to the
translation function of loops with the label an break/exit should
jump to. A new label is passed when entering a new loop.

Case/switch-statements: translated with nested if-then-else
statements.

. . .
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Arrays

Language can be extended with one-dimensional arrays:

7.9. TRANSLATING STRUCTURED DATA 165

these are now GOTO’s to the code for each case-branch. The code for the branches is
placed in sequence after the nested if-then-else, with break handled by GOTO’s
as described above. Hence, if no explicit jump is made, one branch will fall through
to the next.

7.9 Translating structured data

So far, the only values we have used are integers and booleans. However, most
programming languages provide floating-point numbers and structured values like
arrays, records (structs), unions, lists or tree-structures. We will now look at how
these can be translated. We will first look at floats, then at one-dimensional arrays,
multi-dimensional arrays and finally other data structures.

7.9.1 Floating-point values

Floating-point values are, in a computer, typically stored in a different set of regis-
ters than integers. Apart from this, they are treated the same way we treat integer
values: We use temporary variables to store intermediate expression results and
assume the intermediate language has binary operators for floating-point numbers.
The register allocator will have to make sure that the temporary variables used for
floating-point values are mapped to floating-point registers. For this reason, it may
be a good idea to let the intermediate code indicate which temporary variables hold
floats. This can be done by giving them special names or by using a symbol table
to hold type information.

7.9.2 Arrays

We extend our example language with one-dimensional arrays by adding the fol-
lowing productions:

Exp ! Index
Stat ! Index := Exp
Index ! id[Exp]

Index is an array element, which can be used the same way as a variable, either as
an expression or as the left part of an assignment statement.

We will initially assume that arrays are zero-based (i.e.. the lowest index is 0).
Arrays can be allocated statically, i.e., at compile-time, or dynamically, i.e., at

run-time. In the first case, the base address of the array (the address at which index
0 is stored) is a compile-time constant. In the latter case, a variable will contain
the base address of the array. In either case, we assume that the symbol table for
variables binds an array name to the constant or variable that holds its base address.

Principle of translation:

Arrays can be allocated statically (at compile-time) or dynamically
(at run-time)

Base address of the array is stored as a constant in the case of static
allocation, or in a variable in the case of dynamic allocation

The symbol table binds the array name with to the constant or
variable containing its address
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Arrays: translation166 CHAPTER 7. INTERMEDIATE-CODE GENERATION

TransExp(Exp,vtable, f table, place) = case Exp of
Index (code1,address) = TransIndex(Index,vtable, f table)

code1++[place := M[address]]

TransStat(Stat,vtable, f table) = case Stat of
Index := Exp (code1,address)=TransIndex(Index,vtable, f table)

t = newvar()
code2 = TransExp(Exp,vtable, f table, t)
code1++code2++[M[address] := t]

TransIndex(Index,vtable, f table) = case Index of
id[Exp] base = lookup(vtable,getname(id))

t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code2 = code1++[t := t ⇤4, t := t +base]
(code2, t)

Figure 7.9: Translation for one-dimensional arrays

Most modern computers are byte-addressed, while integers typically are 32 or
64 bits long. This means that the index used to access array elements must be
multiplied by the size of the elements (measured in bytes), e.g., 4 or 8, to find the
actual offset from the base address. In the translation shown in figure 7.9, we use 4
for the size of integers. We show only the new parts of the translation functions for
Exp and Stat.

We use a translation function TransIndex for array elements. This returns a
pair consisting of the code that evaluates the address of the array element and the
variable that holds this address. When an array element is used in an expression,
the contents of the address is transferred to the target variable using a memory-load
instruction. When an array element is used on the left-hand side of an assignment,
the right-hand side is evaluated, and the value of this is stored at the address using
a memory-store instruction.

The address of an array element is calculated by multiplying the index by the
size of the elements and adding this to the base address of the array. Note that
base can be either a variable or a constant (depending on how the array is allocated,
see below), but since both are allowed as the second operator to a binop in the
intermediate language, this is no problem.

Allocating arrays

So far, we have only hinted at how arrays are allocated. As mentioned, one pos-
sibility is static allocation, where the base-address and the size of the array are

(Assuming arrays are indexed starting at 0 and integers are 64 bits long)
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Multi-dimensional arrays
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1st column 2nd column 3rd column · · ·
1st row a[0][0] a[0][1] a[0][2] · · ·
2nd row a[1][0] a[1][1] a[1][2] · · ·
3rd row a[2][0] a[2][1] a[2][2] · · ·
...

...
...

...
. . .

Figure 7.10: A two-dimensional array

form it is laid out one column at a time. In a 3⇥2 array, the ordering for row-major
is

a[0][0], a[0][1], a[1][0], a[1][1], a[2][0], a[2][1]

For column-major the ordering is

a[0][0], a[1][0], a[2][0], a[0][1], a[1][1], a[2][1]

If the size of an element is size and the sizes of the dimensions in an n-dimensional
array are dim0,dim1, . . . ,dimn�2,dimn�1, then in row-major format an element at
index [i0][i1] . . . [in�2][in�1] has the address

base+((. . .(i0 ⇤dim1 + i1)⇤dim2 . . .+ in�2)⇤dimn�1 + in�1)⇤ size

In column-major format the address is

base+((. . .(in�1 ⇤dimn�2 + in�2)⇤dimn�3 . . .+ i1)⇤dim0 + i0)⇤ size

Note that column-major format corresponds to reversing the order of the indices of
a row-major array. i.e., replacing i0 and dim0 by in�1 and dimn�1, i1 and dim1 by
in�2 and dimn�2, and so on.

We extend the grammar for array-elements to accommodate multi-dimensional
arrays:

Index ! id[Exp]
Index ! Index[Exp]

and extend the translation functions as shown in figure 7.11. This translation is for
row-major arrays. We leave column-major arrays as an exercise.

With these extensions, the symbol table must return both the base-address of the
array and a list of the sizes of the dimensions. Like the base-address, the dimension
sizes can either be compile-time constants or variables that at run-time will hold the
sizes. We use an auxiliary translation function CalcIndex to calculate the position of

Principle of translation:
Two ways to represent a 2-dimensional array in linear memory:

I Row-major order: one row at a time. For a 3⇥ 2 array: a[0][0],
a[0][1], a[1][0], a[1][1], a[2][0], a[2][1]

I Column-major order: one column at a time. For a 3⇥ 2 array:
a[0][0], a[1][0], a[2][0], a[0][1], a[1][1], a[2][1]

Generalization: if dim0, dim1, . . . , dimn�1 are the sizes of the
dimensions in a n-dimensional arrays, the element [i0][i1] . . . [in�1]
has the address:

I Row-major:
base + ((. . . (i0 · dim1 + i1) · dim2 . . . + in�2) · dimn�1 + in�1) · size

I Column-major:
base + ((. . . (i0 · dim1 + i1) · dim2 . . . + in�2) · dimn�1 + in�1) · size

Dimension sizes are stored as constant (static), in variables or in
memory next to the array data (dynamic)
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Multi-dimensional arrays: translation

7.9. TRANSLATING STRUCTURED DATA 169

TransExp(Exp,vtable, f table, place) = case Exp of
Index (code1,address) = TransIndex(Index,vtable, f table)

code1++[place := M[address]]

TransStat(Stat,vtable, f table) = case Stat of
Index := Exp (code1,address) = TransIndex(Index,vtable, f table)

t = newvar()
code2 = TransExp(Exp2,vtable, f table, t)
code1++code2++[M[address] := t]

TransIndex(Index,vtable, f table) =
(code1, t,base, []) = CalcIndex(Index,vtable, f table)
code2 = code1++[t := t ⇤4, t := t +base]
(code2, t)

CalcIndex(Index,vtable, f table) = case Index of
id[Exp] (base,dims) = lookup(vtable,getname(id))

t = newvar()
code = TransExp(Exp,vtable, f table, t)
(code, t,base, tail(dims))

Index[Exp] (code1, t1,base,dims) = CalcIndex(Index,vtable, f table)
dim1 = head(dims)
t2 = newvar()
code2 = TransExp(Exp,vtable, f table, t2)
code3 = code1++code2++[t1 := t1 ⇤dim1, t1 := t1 + t2]
(code3, t1,base, tail(dims))

Figure 7.11: Translation of multi-dimensional arrays(Assume dimension sizes are stored in the symbol table, as constant or
variable)
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Other structures

Floating point values: can be treated the same way as integers
(assuming the intermediate language has specific variables and
operators for floating point numbers)

Records/structures: allocated in a similar way as arrays
I Each field is accessed by adding an o↵set to the base-address of the

record
I Base-addresses and o↵sets for each field are stored in the symbol

table for all record-variables

Strings: similar to arrays of bytes but with a length that can vary at
run-time

. . .
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Variable declaration

172 CHAPTER 7. INTERMEDIATE-CODE GENERATION

Suggested exercises: 7.8.

7.10 Translating declarations

In the translation functions used in this chapter, we have several times required that
“The symbol table must contain . . . ”. It is the job of the compiler to ensure that
the symbol tables contain the information necessary for translation. When a name
(variable, label, type, etc.) is declared, the compiler must keep in the symbol-table
entry for that name the information necessary for compiling any use of that name.
For scalar variables (e.g., integers), the required information is the intermediate-
language variable that holds the value of the variable. For array variables, the
information includes the base-address and dimensions of the array. For records, it
is the offsets for each field and the total size. If a type is given a name, the symbol
table must for that name provide a description of the type, such that variables that
are declared to be that type can be given the information they need for their own
symbol-table entries.

The exact nature of the information that is put into the symbol tables will de-
pend on the translation functions that use these tables, so it is usually a good idea to
write first the translation functions for uses of names and then translation functions
for their declarations.

Translation of function declarations will be treated in chapter 10.

7.10.1 Example: Simple local declarations

We extend the statement language by the following productions:

Stat ! Decl ; Stat
Decl ! int id
Decl ! int id[num]

We can, hence, declare integer variables and one-dimensional integer arrays for use
in the following statement. An integer variable should be bound to a location in the
symbol table, so this declaration should add such a binding to vtable. An array
should be bound to a variable containing its base address. Furthermore, code must
be generated for allocating space for the array. We assume arrays are heap allocated
and that the intermediate-code variable HP points to the first free element of the
(upwards growing) heap. Figure 7.12 shows the translation of these declarations.
When allocating arrays, no check for heap overflow is done.

7.11 Further reading

A comprehensive discussion about intermediate languages can be found in [35].

Principle of translation:

Information about where to found scalar variables (e.g. integer) and
arrays after declaration is stored in the symbol table

Allocations can be done in many ways and places (static, dynamic,
local, global. . . )
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Variable declarationEXERCISES 173

TransStat(Stat,vtable, f table) = case Stat of
Decl ; Stat1 (code1,vtable1) = TransDecl(Decl,vtable)

code2 = TransStat(Stat1,vtable1, f table)
code1++code2

TransDecl(Decl,vtable) = case Decl of
int id t1 = newvar()

vtable1 = bind(vtable,getname(id), t1)
([], vtable1)

int id[num] t1 = newvar()
vtable1 = bind(vtable,getname(id), t1)
([t1 := HP, HP := HP+(4⇤getvalue(num))], vtable1)

Figure 7.12: Translation of simple declarations

Functional and logic languages often use high-level intermediate languages,
which are in many cases translated to lower-level intermediate code before emit-
ting actual machine code. Examples of such intermediate languages can be found
in [23], [8] and [6].

Another high-level intermediate language is the Java Virtual Machine [29].
This language has single instructions for such complex things as calling virtual
methods and creating new objects. The high-level nature of JVM was chosen for
several reasons:

• By letting common complex operations be done by single instructions, the
code is smaller, which reduces transmission time when sending the code over
the Internet.

• JVM was originally intended for interpretation, and the complex operations
also helped reduce the overhead of interpretation.

• A program in JVM is validated (essentially type-checked) before interpreta-
tion or further translation. This is easier when the code is high-level.

Exercises

Exercise 7.1

Use the translation functions in figure 7.3 to generate code for the expression
2+g(x+y,x*y). Use a vtable that binds x to v0 and y to v1 and an f table that
binds g to _g. The result of the expression should be put in the intermediate-code
variable r (so the place attribute in the initial call to TransExp is r).

(Assumes scalar variables are stored in intermediate language variables
and arrays are allocated in the heap, with their base-addresses stored in a
variable. HP points to the first free position of the heap.)
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Comments

Needs to add error checking in previous illustration (array index out
of bound in arrays, wrong number of dimensions, memory/heap
overflow, etc.)

In practice, results of translation are not returned as strings but
either:

I output directly into an array or a file
I or stored into a structure (translation tree or linked list)

The latter allows subsequent code restructuring during optimization

We have not talked about:
I memory organization: typically subdivided into static data (for static

allocation), heap (for dynamic allocation) and stack (for function
calls)

I translation of function calls: function arguments, local variables, and
return address are stored on the stack (similar to what you have seen
in INFO-0012, computation structures)
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Outline

1. Intermediate representations

2. Illustration

3. Optimization
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IR code optimization

IR code generation is usually followed by code optimization

Why?
I IR generation introduces redundancy
I To compensate for laziness of programmers

Improvement rather than optimization since optimization is
undecidable

Challenges in optimization:
I Correctness: should not change the semantic of the program
I E�ciency: should produce IR code as e�cient as possible
I Computing times: should not take too much time to optimize

What to optimize?
I Computing times
I Memory usage
I Power consumption
I . . .
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Control-flow graph

A basic block is a series of IR
instructions where:

I there is one entry point into
the basic block, and

I there is one exit point out of
the basic block.

Control-flow graph: nodes are
basic blocks and edges are
jumps between blocks

i:=3
t1:=4*i
t2:=a[t1]
j:=2

lab1: j:=j+1
if j>100 then lab4

lab2: if t2<b then lab3

t2:=t2+3
GOTO lab2

lab3: b:=b-j
GOTO lab1

lab4: a[t1]:=t2
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Local optimizations

Local optimization: optimization within a single basic block

Examples:

Constant folding: evaluation at compile-time of expressions whose
operands are contant

I 10+2*3 ! 16
I [If 1 then Lab1 Else Lab2] ! [GOTO Lab1]

Constant propagation: if a variable is assigned to a constant, then
propagate the constant into each use of the variable

I [x:=4;t:=y*x;] can be transformed into [t:=y*4;] if x is not used later
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Local optimizations

Examples:
Copy propagation:: similar to constant propagation but generalized
to non constant values

tmp2 = tmp1;
tmp3 = tmp2 * tmp1;
tmp4 = tmp3;
tmp5 = tmp3 * tmp2;
c = tmp5 + tmp4;

tmp3 = tmp1 * tmp1;
tmp5 = tmp3 * tmp1;
c = tmp5 + tmp3;

Dead code elimination: remove instructions whose result is never
used

I Example: Remove [tmp1=tmp2+tmp3;] if tmp1 is never used
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Local optimizations

Examples:

Common subexpression elimination: if two operations produce the
same results, compute the result once and reference it the second
time

I Example: in a[i]=a[i]+2, the address of a[i] is computed twice.
When translating, do it once and store the result in a temporary
variable

Code moving/hoisting: move outside of a loop all computations
independent of the variables that are changing inside the loop

I Example: part of the computation of the address for a[i][j] can be
removed from this loop

while (j<k) {
sum = sum + a[i][j];
j++;

}
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IR code optimization

Local optimizations can be interleaved in di↵erent ways and applied
several times each

Optimal optimization order is very di�cult to determine

Global optimization: optimization across basic blocks
I Implies performing data-flow analysis, i.e., determine how values

propagate through the control-flow graph
I More complicated than local optimization

Intermediate code generation 301



For your project

No need to use an intermediate language (except for the syntax tree
if needed)

Syntax-directed translation as illustrated here should be enough

Implementation:
I During parsing: faster and requires less memory
I On the syntax tree: more flexible but less e�cient
I Hybrid approaches are possible, i.e., developing explicitely syntax

trees only for some language constructions

If your target language is high-level, then:
I You can pre-defined structures/functions that mimic

structures/functions in the source language to ease translation. For
example, implement scheme lists with linked lists in C.

I You can use memory allocation facilities of the target language
(instead of doing all work manually)

No need to optimize code explicitely but avoid obvious sources of
ine�ciency
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