Transforming a grammar for LL(1) parsing

m Ambiguous grammars are not LL(1) but unambiguous grammars are
not necessarily LL(1)

m Having a non-LL(1) unambiguous grammar for a language does not
mean that this language is not LL(1).

m But there are languages for which there exist unambiguous
context-free grammars but no LL(1) grammar.

m We will see two grammar transformations that improve the chance
to get a LL(1) grammar:
» Elimination of left-recursion
> Left-factorization

Left-recursion

m The following expression grammar is unambiguous but it is not

LL(1):

Exp — Exp+ Exp2
Exp — Exp— Exp2
Exp — Exp2

Exp2 — Exp2x Exp3

Exp2 — Exp2/Exp3

Exp2 — Exp3

Exp3 — num

Exp3 — (Exp)

m Indeed, First(«) is the same for all RHS « of the productions for
Exp et Exp2

m This is a consequence of left-recursion.

Left-recursion

m Recursive productions are productions defined in terms of
themselves. Examples: A — Ab ou A — bA.

m When the recursive nonterminal is at the left (resp. right), the
production is said to be left-recursive (resp. right-recursive).

m Left-recursive productions can be rewritten with right-recursive
productions

m Example:
N N
N — Nog - A
- N N
N = N, ’ — ﬁn,\//
— (651
N —
b1 N
: N N
N — B, am

N/

l

Right-recursive expression grammar

Exp
Exp
Exp
Exp2
Exp2
Exp2
Exp3
Exp3

oLl

Exp + Exp2
Exp — Exp2
Exp2

Exp2 x Exp3
Exp2/Exp3

Exp3

num

(Exp)

Exp
Exp
Exp
Exp
Exp?2

Exp?2’
Exp2’
Exp2’
Exp3
Exp3

e bbbl

Exp2Exp’
+Exp2Exp’
—Exp2Exp’
€

Exp3Exp2’
*Exp3 Exp2’
/ Exp3Exp2’
€

num
(Exp)

Left-factorisation
m The RHS of these two productions have the same First set.

Stat — if Exp then Stat else Stat
Stat — if Exp then Stat

m The problem can be solved by left factorising the grammar:

Stat — if Exp then Stat ElseStat
ElseStat — else Stat
ElseStat — ¢

m Note
» The resulting grammar is ambiguous and the parsing table will
contain two rules for M[ElseStat, else]
(because else € Follow(ElseStat) and else € First(else Stat))
» Ambiguity can be solved in this case by letting
M|ElseStat, else] = { ElseStat — else Stat}.

Hidden left-factors and hidden left recursion

m Sometimes, left-factors or left recursion are hidden
m Examples:
» The following grammar:

A — dalacB
B — abB|daA|Af

has two overlapping productions: B — daA and B = daf .
» The following grammar:

S — Tulwx
T — Sq|ws

has left recursion on T (T = Tuq)

m Solution: expand the production rules by substitution to make
left-recursion or left factors visible and then eliminate them

Summary

Construction of a LL(1) parser from a CFG grammar

Eliminate ambiguity

Eliminate left recursion

left factorization

Add an extra start production S’ — S$ to the grammar

Calculate First for every production and Follow for every
nonterminal

Calculate the parsing table
Check that the grammar is LL(1)

Recursive implementation

m From the parsing table, it is easy to implement a
recursively (with one function per nonterminal)

T — TS function parseT’() =

T — R if next = ’a’ or next =

T — aTc parseT() ; match(’$’)

R — e else reportError()

R — bR

function parseT() =
if next = ’b’ or next =
N b c $ parseR()

T = 7% T = T% TS T% else if next = ’a’ then
T|T—alc TR T—R T—R match(’a’) ; parseT()
R R—bR R—e€ R— e

else reportError()

function parseR() =
if next = ’c’ or next =

(x do nothing *)
else if next = ’b’ then
match(’b’) ; parseR()

else reportError()

predictive parser

’b’ or next = ’$’ then

’c’ or next = ’$’ then

; match(’c?)

’$’ then

(Mogensen)

Outline

4. Bottom-up parsing
Shift/reduce parsing
LR parsers
Operator precedence parsing
Using ambiguous grammars

Bottom-up parsing

m A bottom-up parser creates the parse tree starting from the leaves
towards the root

m It tries to convert the program into the start symbol

m Most common form of bottom-up parsing: shift-reduce parsing

Bottom-up parsing: example

Bottum-up parsing of
int + (int + int + int)

Grammar:
S — E$
E —- T
E —-— E+ T
T — int
r — (E)

+ i

(Keith Schwarz)

Bottom-up parsing: example

Bottum-up parsing of
int 4 (int + int + int):

Grammar: int + (int 4 int + int)$
+ (int + int 4 int)$
S — E3 + (int + int 4 int)$
E — T + (T + int + int)$
E - E+ T + (E + int + int)$
T & int +(E+ T +int)$
E t
T = (F) EEi I;))
E+ (E)$
E+T$
ES
S

Top-down parsing is often done as a rightmost derivation in reverse
(There is only one if the grammar is unambiguous).

Terminology

m A Rightmost (canonical) derivation is a derivation where the
rightmost nonterminal is replaced at each step. A rightmost
derivation from « to 8 is noted a =, 3.

m A reduction transforms uwv to uAv if A — w is a production

m « is a right sentential form if S =, o with a = Ox where x is a
string of terminals.

m A handle of a right sentential form v (= afBw) is a production
A — (3 and a position in v where 3 may be found and replaced by A
to produce the previous right-sentential form in a rightmost
derivation of ~:
S, AW =, affw

» Informally, a handle is a production we can reverse without getting
stuck.
> If the handle is A — (3, we will also call 3 the handle.

Handle: example

Bottum-up parsing of
int + (int + int + int)

Grammar: int + (int 4 int 4 int)$
+ (int + int + int)$
S — E + (int + int + int)$
E — T + (T + int + int)$
E — E+ T + (E + int + int)$
T o int +(E+ T +int)$
+ (E + int)$
T = (F) +(E+T)$
E+()$
E+TS$
E$
S

The handle is in red in each right sentential form

Finding the handles

m Bottom-up parsing = finding the handle in the right sentential form
obtained at each step

m This handle is unique as soon as the grammar is unambiguous
(because in this case, the rightmost derivation is unique)

m Suppose that our current form is uvw and the handle is A — v
(getting uAw after reduction). w can not contain any nonterminals
(otherwise we would have reduced a handle somewhere in w)

Shift/reduce parsing

Proposed model for a bottom-up parser:
m Split the input into two parts:
» Left substring is our work area
» Right substring is the input we have not yet processed
m All handles are reduced in the left substring

m Right substring consists only of terminals
m At each point, decide whether to:

» Move a terminal across the split (shift)
» Reduce a handle (reduce)

Shift/reduce parsing:

Grammar:
E —- E4+ T|T

T — T« F|F
F — (E)id

Bottum-up parsing of
id + id * id

example

Left substring Right substring Action

$ id + id x id$ Shift

$id +id * id$ Reduce by F — id
$F +id * id$ Reduceby T — F

$T +id * id$ Reduce by E — T

$SE +id = id$ Shift

$SE+ id x id$ Shift

$E + id xid$ Reduce by F — id
$SE+F xid$ Reduceby T — F
$SE+ T xid$ Shift

$E + Tx* id$ Shift

$SE+ T xid $ Reduceby F — id
$SE+ T xF $ Reduceby T — T xF
$SE+ T $ Reduceby E—-E+ T
$E $ Accept

Shift/reduce parsing

m In the previous example, all the handles were to the far right end of
the left area (not inside)

m This is convenient because we then never need to shift from the left
to the right and thus could process the input from left-to-right in
one pass.

m Is it the case for all grammars? Yes !
m Sketch of proof: by induction on the number of reduces
» After no reduce, the first reduction can be done at the right end of
the left area
> After at least one reduce, the very right of the left area is a
nonterminal (by induction hypothesis). This nonterminal must be

part of the next reduction, since we are tracing a rightmost derivation
backwards.

Shift/reduce parsing

m Consequence: the left area can be represented by a stack (as all
activities happen at its far right)

m Four possible actions of a shift-reduce parser:

. Shift: push the next terminal onto the stack

Reduce: Replace the handle on the stack by the nonterminal

. Accept: parsing is successfully completed

Error: discover a syntax error and call an error recovery routine

Ll A

Shift/reduce parsing

m There still remain two open questions: At each step:
» How to choose between shift and reduce?
» If the decision is to reduce, which rules to choose (i.e., what is the
handle)?
m ldeally, we would like this choice to be deterministic given the stack
and the next k input symbols (to avoid backtracking), with k
typically small (to make parsing efficient)

m Like for top-down parsing, this is not possible for all grammars

m Possible conflicts:

» shift/reduce conflict: it is not possible to decide between shifting or
reducing

» reduce/reduce conflict: the parser can not decide which of several
reductions to make

Shift/reduce parsing

We will see two main categories of shift-reduce parsers:
m LR-parsers

» They cover a wide range of grammars
» Different variants from the most specific to the most general: SLR,
LALR, LR

m Weak precedence parsers

» They work only for a small class of grammars
» They are less efficient than LR-parsers
» They are simpler to implement

Outline

[

. Introduction

2. Context-free grammar
3. Top-down parsing

4. Bottom-up parsing

LR parsers

5. Conclusion and some practical considerations

LR-parsers

m LR(k) parsing: Left-to-right, Rightmost derivation, k symbols
lookahead.
m Advantages:
» The most general non-backtracking shift-reduce parsing, yet as
efficient as other less general techniques
» Can detect syntactic error as soon as possible (on a left-to-right scan
of the input)
» Can recognize virtually all programming language constructs (that
can be represented by context-free grammars)
» Grammars recognized by LR parsers is a proper superset of grammars
recognized by predictive parsers (LL(k) C LR(k))
m Drawbacks:

» More complex to implement than predictive (or operator precedence)
parsers

m Like table-driven predictive parsing, LR parsing is based on a parsing
table.

Structure of a LR parser

input a, | .. |3 | .. |a, |$
stack
Sm
X \
= LR Parsing Algorithm |—————output
Sm—l
Xl /\
. Action Table Goto Table
Sl terminals and $ non-terminal
X1 S S
t four different t each item is
SO a actions a a state number
t t
e e
s s

Structure of a LR parser

m A configuration of a LR parser is described by the status of its stack
and the part of the input not analysed (shifted) yet:

(50X151 . Xmsm, didi+1--- a,,$)

where X; are (terminal or nonterminal) symbols, a; are terminal
symbols, and s; are state numbers (of a DFA)

m A configuration corresponds to the right sentential form
X1...Xmaj...an

m Analysis is based on two tables:
» an action table that associates an action ACTION(s, a] to each state
s and nonterminal a.
» a goto table that gives the next state GOTO[s, A] from state s after
a reduction to a nonterminal A

Actions of a LR-parser

m Let us assume the parser is in configuration
(50X151 . Xmsm, didi41--- a,,$)

(initially, the state is (so, a1az...an$), where a; ... a, is the input
word)
m ACTION]sp, a;] can take four values:

1. Shift s: shifts the next input symbol and then the state s on the
stack (soX1s1... XmSm, @idit1 ... an) — (0X181 ... XmSmaiS, 3it1 - - - an)
2. Reduce A — 3 (denoted by rn where n is a production number)
> Pop 2|3] (= r) items from the stack
> Push A and s where s = GOTO[sm—,, A]
(soXisi...XmSm, @idiq1...an) —
(soXisi... Xm—rSm—rAs, aidi41 ... an)
> Output the prediction A — 3
3. Accept: parsing is successfully completed
4. Error: parser detected an error (typically an empty entry in the action
table).

LR-parsing algorithm

Create a stack with the start state sp
a = GETNEXTTOKEN()
while (True)
s = pop()
if (ACTION([s, a] = shift t)
Push a and t onto the stack
a = GETNEXTTOKEN()
elseif (ACTION[s, a] = reduce A — (3)
Pop 2|8| elements off the stack
Let state t now be the state on the top of the stack
Push A onto the stack
Push GOTO[t, A] onto the stack
Output A — 3
elseif (ACTION[s, a] = accept)
break / Parsing is over
else call error-recovery routine

Example: parsing table for the expression grammar

o~ wh =

E—-E+T
E—T
T—T=xF
T—F
F — (E)
F— id

Action Table Goto Table

state | id + * () $ E T F

0 s5 s4 1 2|3

1 s6 acc

2 12 | s7 2 | 2

3 4 | r4 4 | 4

4 s5 s4 8 2|3

5 16 | 16 16 | 16

6 s5 s4 9 |3

7 s5 s4 10

8 s6 sl

9 rl s7 rl rl

10 3 | 13 3| 3

11 5 | 15 5 5

Example: LR parsing with the expression grammar

stack

0

0id5

OF3

0T2
0T2*7
0T2*71d5
0T2*7F10
0T2

OE1
OE1+6
OE1+6id5
OE1+6F3
OE1+6T9
OE1

input
id*id+id$
*id+id$
*id+id$
*id+id$
id+id$
+id$
+id$
+id$
+id$
id$

$
$
$
$

action

shift 5

reduce by F—id
reduce by T—F
shift 7

shift 5

reduce by F—id
reduce by T—=T*F
reduce by E—=T
shift 6

shift 5

reduce by F—id
reduce by T—F
reduce by E=E+T

accept

output

F—id
T—F

F—id
T—T*F

F—id
T—F
E—E+T

Constructing the parsing tables

m There are several ways of building the parsing tables, among which:

» LR(0): no lookahead, works for only very few grammars

» SLR: the simplest one with one symbol lookahead. Works with less
grammars than the next ones

» LR(1): very powerful but generate potentially very large tables

» LALR(1): tradeoff between the other approaches in terms of power
and simplicity

» LR(k), k> 1: exploit more lookahead symbols

m Main idea of all methods: build a DFA whose states keep track of
where we are in the parsing

Parser generators

m LALR(1) is used in most parser generators like Yacc/Bison

m We will nevertheless only see SLR in details:
> It's simpler.
» LALR(1) is only minorly more expressive.
» When a grammar is SLR, then the tables produced by SLR are
identical to the ones produced by LALR(1).
» Understanding of SLR principles is sufficient to understand how to
handle a grammar rejected by LALR(1) parser generators (see later).

LR(0) item

m An LR(0) item (or item for short) of a grammar G is a production of
G with a dot at some position of the body.

m Example: A — XYZ yields four items:
A— XYZ
A— X.YZ
A— XY .Z
A— XYZ.
(A — € generates one item A — .)

m An item indicates how much of a production we have seen at a
given point in the parsing process.

» A — X.YZ means we have just seen on the input a string derivable
from X (and we hope to get next YZ).

m Each state of the SLR parser will correspond to a set of LR(0) items

m A particular collection of sets of LR(0) items (the canonical LR(0)
collection) is the basis for constructing SLR parsers

Construction of the canonical LR(0) collection

m The grammar G is first augmented into a grammar G’ with a new
start symbol S’ and a production S’ — S where S is the start
symbol of G

m We need to define two functions:

» CLOSURE(/): extends the set of items / when some of them have a
dot to the left of a nonterminal
» GoTo(/, X): moves the dot past the symbol X in all items in /
m These two functions will help define a DFA:

» whose states are (closed) sets of items
» whose transitions (on terminal and nonterminal symbols) are defined
by the GOTO function

CLOSURE

Example:

E' - E
E—-E+T
E—T
T—TxF
T—F
F — (E)
F— id

CLOSURE(/)

for any item A — . X3 in |
for any production X —
I =1U{X — ~}
until / does not change

CLOSURE({E" — .E})

{E' — .E,
E— E+T
E—.T
T—.Tx*xF
T— .F
F — .(E)
F—.id}

GoTo

Example:

E/—>E IO =
E—E+T
E—T
T—>TxF

T—F

F— (E)

F— id

Goto(/, X)
Set J to the empty set
for any item A — a. X3 in |
J = JU{A — aX.5}
return CLOSURE(J)

{E/ — .E,

coro(l,E)={E' - E.,E—E.+ T}
E—E+T GOTO(/Z,T):{E—>T.,T—’T~*F}
E—.T Goto(l, F) ={T — F.}
T —.T«F coro(h, () = CLOSURE({F — (.E)})
T F = {F = (E)}U(h\{E' — E})
F (E) coT0o(l,id) = {F — id.}

F—.id}

Construction of the canonical collection

C = {cLosSURE({S" — .5})}
repeat
for each item set / in C
for each item A — a.XG in |
C = CuGorto(l, X)
until C did not change in this iteration
return C

m Collect all sets of items reachable from the initial state by one or
several applications of GOTO.

m ltem sets in C are the states of a DFA, GOTO is its transition
function

Example

lo: E' — .E,
E— E+T
E—.T
T—.TxF
T —.F
F — .(E)
F—.id

L: E'—E. + lo: E—E+.T lo: E—-E+T.
E—-E+T T—.TxF F T—>T.%F
T—.F
s] + F—(E) H— *
accept F—.id id
bh: E—T.
T—>T.xF L T—Tx.F
F— (E) F .
F—id F for T TR
| id =——
Is: F—id. id
T F=(E)
ly: F— (.E) E—-E.+F hi: F—(E).
E— E+T
E—.T
T— .T+F
T —.F (
F — (E)
F—.id (
F

L: T —F.
j —

Constructing the LR(0) parsing table

1. Construct C = {ly, h,..., In}, the collection of sets of LR(0) items
for G’ (the augmented grammar)

2. State i of the parser is derived from [;. Actions for state / are as
follows:
2.1 If A— a.aB s in |; and GoTo(l;, a) = Ij, then ACTION[i, a] = Shift j
22 If A= a.isin [;, then set ACTION[i, a] = Reduce A — « for all

terminals a.

23 If S — S.isin [;, then set ACTION[i,$] = Accept

3. If coTo(l;, X) = I;, then GOTO[i, X] = j.

4. All entries not defined by rules (2) and (3) are made “error”

5. The initial state s is the set of items containing S’ — .S

= LR(0) because the chosen action (shift or reduce) only depends on the
current state (but the choice of the next state still depends on the token)

Example of a LR(0) grammar

S — S$
S —> (L)
S —x
L—S
L—L,S

O 0NN B W =

1

S'—>.S$ L’S%x, <«<—L —>1L,.S
S —.(L) L S —.(L)
S => .x S = (.L) S => .x
L >.S T
L - .L,S 5
(Cs —.(L) S > (L.)
. S = .x L >L..S
[s>s.s]) I
L—>s. | [s =) |
() X $ S L
s3 s2 o4
2 2 2 2 r2
s3 s2 g7 a5
a
s6 s8
rl rl rl rl rl
3 r3 r3 3 3
s3 s2 29
4 r4 4 4 r4

s 9
T

(Appel)

Example of a non LR(0) grammar

Io:

E' — .E,
E— E+T
E—.T
T—.TxF
T—.F
F — (E)
F—.id

E h: E'—E. + lo: E—~E+.T ly: E—-E+T.
E—E+T T—.TxF F T—T.xF
T F £
$] + F—(6) H— ¥
accept F—.id d
T h: E=T.
- *
T—TxF i T—Tx.F
E:(Iﬁ) HF .illgz T—TxF.
id
'diillg: F—id. I‘* i
+
lg: F—(E.)
TT Iy: F— (.E) E E—E4+F hi: F—(E)
E— E+T
(E—.T
T .TxF
T .F (
F — .(E)
F—.id (
F

Conflict: in state 2, we don't know whether to shift or reduce.

Constructing the SLR parsing tables

1. Construct ¢ = {lp, h,...,In}, the collection of sets of LR(0) items
for G’ (the augmented grammar)

2. State i of the parser is derived from [;. Actions for state / are as
follows:
2.1 If A— a.af isin l; and GoTO(l;, a) = I;, then ACTION[i, a] = Shift j
22 If A— a.isin I;, then ACTION[i, a] = Reduce A — « for all
terminals a in Follow(A) where A # S’
23 If 8" — S.isin I;, then set ACTION[i,$] = Accept

3. If GoTo(l;, A) = I; for a nonterminal A, then GOTO[i, A] =
4. All entries not defined by rules (2) and (3) are made “error”

5. The initial state sy is the set of items containing S’ — .S

= the simplest form of one symbol lookahead, SLR (Simple LR)

Example

Action Table Goto Table
state | id | + * () $ E | T |F
0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 2
3 4 | r4 4 | r4
4 s5 s4 8 213
5 6 | 16 6 | 16
6 s5 s4 9|3
7 s5 s4 10
8 s6 sll
9 rl s7 rl | rl
‘ First ‘ Follow 10 B3| 3 3| 3
E | id ($ +) 11 5 | 15 5 | 15
Tlid([$+*)
Flid(|$+%*)

SLR(1) grammars

m A grammar for which there is no (shift/reduce or reduce/reduce)
conflict during the construction of the SLR table is called SLR(1)
(or SLR in short).

m All SLR grammars are unambiguous but many unambiguous
grammars are not SLR

m There are more SLR grammars than LL(1) grammars but there are
LL(1) grammars that are not SLR.

Conflict example for SLR parsing

S 5> L=R|R Iy §'=-S L: L—id
L - xR |id §—+L=R
R = L S—-R I S—L='R
L—-xR R—-L
L—id L— xR
R L L—-id
Li: §—=8S I;: L — =R
Iy S—»L-=R Iy: R— L-
R— L
Iy: S—»L=R
I3Z S — R
[4f L~ *R
R— L
L—-xR
L — -id
(Dragonbook)
Follow(R) contains '=". In k, when seeing '=" on the input, we don't

know whether to shift or to reduce with R — L.

Summary of SLR parsing

Construction of a SLR parser from a CFG grammar

Eliminate ambiguity (or not, see later)
Add the production S’ — S, where S is the start symbol of the
grammar

Compute the LR(0) canonical collection of LR(0) item sets and the
GoToO function (transition function)

Add a shift action in the action table for transitions on terminals
and goto actions in the goto table for transitions on nonterminals

Compute Follow for each nonterminals (which implies first adding
S§"” — §’$ to the grammar and computing First and Nullable)

Add the reduce actions in the action table according to Follow

Check that the grammar is SLR (and if not, try to resolve conflicts,
see later)

Outline

1. Introduction
2. Context-free grammar
3. Top-down parsing

4. Bottom-up parsing

Operator precedence parsing

5. Conclusion and some practical considerations

Operator precedence parsing

Bottom-up parsing methods that follow the idea of shift-reduce
parsers

Several flavors: operator, simple, and weak precedence.

In this course, only weak precedence

m Main differences compared to LR parsers:

» There is no explicit state associated to the parser (and thus no state
pushed on the stack)

» The decision of whether to shift or reduce is taken based solely on the
symbol on the top of the stack and the next input symbol (and stored
in a shift-reduce table)

» In case of reduction, the handle is the longest sequence at the top of
stack matching the RHS of a rule

Structure of the weak precedence parser

stack

X

X1

input | a1 a; an| §

Weak precedence parsing

——— > output

Shift-reduce table

terminals and $

Shift/Reduce/Error

terminals,
nonterminals and $

Weak precedence parsing algorithm

Create a stack with the special symbol $
a = GETNEXTTOKEN()
while (True)
if (Stack==3$S and a==9)
break / Parsing is over
Xm = TOP(Stack)
if (SRT[Xm, a] = shift)
Push a onto the stack
a = GETNEXTTOKEN()
elseif (SRT[Xn, a] = reduce)
Search for the longest RHS that matches the top of the stack
if no match found
call error-recovery routine
Let denote this rule by Y — Xp_ry1... Xm
Pop r elements off the stack
Push Y onto the stack
Output Y — Xp—r41 ... Xm
else call error-recovery routine

Example for the expression grammar

Example:

E—E+T
E—T
T—TxF
T—F
F — (E)
F— id

Shift/reduce table

L [« +[C[)[id]$
E S S R
T S| R R R
F R | R R R
* S S
+ S S
(S S
)y TR R R R
id R | R R R
$ S S

Example of parsing

Stack Input Action

$ id + id * id$ Shift

$id +id x id$ Reduce by F — id
$F +id % id$ Reduceby T — F

$T +id * id$ Reduceby E — T

$E +id x id$ Shift

$E+ id x id$ Shift

$E + id xid$ Reduce by F — id
$E+F xid$ Reduceby T — F
$SE+ T xid$ Shift

$E + T« id$ Shift

$E+ T xid $ Reduce by F — id
$E4+TxF $ Reduceby T — TxF
$SE+ T $ Reduceby E—-E+ T
$E $ Accept

Precedence relation: principle

m We define the (weak precedence) relations < and > between
symbols of the grammar (terminals or nonterminals)
» X < Y if XY appears in the RHS of a rule or if X precedes a
reducible word whose leftmost symbol is Y
» X > Y if X is the rightmost symbol of a reducible word and Y the
symbol immediately following that word

m Shift when X, < a, reduce when X, > a

m Reducing changes the precedence relation only at the top of the
stack (there is thus no need to shift backward)

Precedence relation: formal definition

m Let G=(V,X,R,S) be a context-free grammar and $ a new
symbol acting as left and right end-marker for the input word.
Define V/ = V U {$}

m The weak precedence relations < and > are defined respectively on
V' x V and V x V' as follows:

1. X<YifA—aXBBisin R, and B = Y+,
2. X<YifA—=aXY[isin R
3. $<Xif S+ Xa

4. X»>aif A— aBfisin R, and B:+>7Xandﬂ:*>av
5 X»>$if S5 aX
for some «, 3, 7, and B

Construction of the SR table: shift

Shift relation, <:

Initialize S to the empty set.
1 add$<StoS
2 for each production X — LiLy...Lg
fori=1tok—-1
add L; < L,'+1 to S
3 repeat
for each* pair X < Y in S
for each production Y — LiL,... Lk
Add X <L;to S
until § did not change in this iteration.

* We only need to consider the pairs X < Y with Y a nonterminal that were added in

S at the previous iteration

Example of the expression grammar:

E—-E+T
E—T
T—TxF
T—F
F—>(E)
F— id

Step 1

S<$

Step 2

E<+
+<T
T <
* << F
(<E
E<)

Step 3.1

+<F
* < id
* << (
(<«T

Step 3.2

+<id
+<(
(<F

Step 3.3

(<(
(«id

shift

Construction of the SR table: reduce

Reduce relation, >:

Initialize R to the empty set.
1 addS>$toR
2 for each production X — LiL;... L,
for each pair X <Y in S
add Ly > Y in R
3 repeat
for each™ pair X > Y in R
for each production X — LiLy... L,
Add Ly > Y to R
until R did not change in this iteration.

* We only need to consider the pairs X > Y with X a nonterminal that were added in

R at the previous iteration.

Example of the expression grammar: reduce

Step 1 E>$
Step2 T+

F > x

T>)

Step3.1 T>$
E—-E4+T F>+
E—-T) > x
T—TxF id > x
T—F F>)
F — (E) Step 32 F>$
F— id) >+
id > +

)>)

id>)

Step33 id>$
)>$

Weak precedence grammars

m Weak precedence grammars are those that can be analysed by a
weak precedence parser.

m A grammar G = (V,X,R,S) is called a weak precedence grammar
if it satisfies the following conditions:

1.
2.
3.

There exist no pair of productions with the same right hand side
There are no empty right hand sides (A —)

There is at most one weak precedence relation between any two
symbols

4. Whenever there are two syntactic rules of the form A — aX(and
B — 3, we don't have X < B

m Conditions 1 and 2 are easy to check

m Conditions 3 and 4 can be checked by constructing the SR table.

Example of the expression grammar

E—E+T
E—T
T—TxF
T—F
F — (E)
F— id

m Conditions 1-3 are satisfied (there is no conflict in the SR table)
m Condition 4:

» E— E+ T and E — T but we don't have 4+ < E (see slide 250)
» T — TxFand T — F but we don't have * < T (see slide 250)

Shift/reduce table

[[«[+[C])[id]S
E S S R
T S| R R R
F R | R R R
* S S
+ S S
(S S
Yy TRTR R R
id R | R R R
$ S S

Removing € rules

m Removing rules of the form A — ¢ is not difficult

m For each rule with A in the RHS, add a set of new rules consisting
of the different combinations of A replaced or not with e.

m Example:

)
!

AbA|B
b|c

A — ¢

o
!

is transformed into

S — AbA|Ab|bA|b|B
B — blc

Summary of weak precedence parsing

Construction of a weak precedence parser
m Eliminate ambiguity (or not, see later)

m Eliminate productions with € and ensure that there are no two
productions with identical RHS

m Construct the shift/reduce table
m Check that there is no conflict during the construction
m Check condition 4 of slide 254

Outline

1. Introduction
2. Context-free grammar
3. Top-down parsing

4. Bottom-up parsing

Using ambiguous grammars

5. Conclusion and some practical considerations

Using ambiguous grammars with bottom-up parsers

m All grammars used in the construction of Shift/Reduce parsing
tables must be un-ambiguous

m We can still create a parsing table for an ambiguous grammar but
there will be conflicts

m We can often resolve these conflicts in favor of one of the choices to
disambiguate the grammar
m Why use an ambiguous grammar?
» Because the ambiguous grammar is much more natural and the

corresponding unambiguous one can be very complex
» Using an ambiguous grammar may eliminate unnecessary reductions

m Example:
E—-E+T|T
E—E+EExE|(E)id = T—T=xF|F
F — (E)|id

Set of LR(0) items of the ambiguous expression grammar

Iy: E' —-E Is: E— Ex-E
E— -E+E E— E+E
E— -ExE E— -ExE
E - (E) E - (E)
E—.id E—-id
L: E - B I E—(E)
. E—E-+F E—-E+F
E— E+ E|E + E|(E)lid E— ExE E— E-+E
I: E—(-E) L E-E+E
. E—>.E+E E—-E+FE
FO”OW(E)—{$7+7*7)} E > -ExE E—>SE xE
= states 7 and 8 have E — (E)

. . E—id I3: E—ExE.
shift/reduce conflicts for EsE+E
+ and x. I: E—id E— E+E

Iy E-E+E Iy E—(E)
E— .E+E
E— -ExE
E - «(E)
E —-id

(Dragonbook)

Disambiguation
Example:

m Parsing of id + id * id will give the configuration
(0E1 + 4ET7, xid$)

We can choose:

» ACTIONI[7,] =shift 5= precedence to
» ACTION[7, %] =reduce E — E + E = precedence to +

m Parsing of id 4 id + id will give the configuration
(0E1 + 4E7,+id$)

We can choose:

» ACTION[7,+] =shift 4= + is right-associative
» ACTION[7,+] =reduce E — E + E = + is left-associative

(same analysis for Ig)

outline

5. Conclusion and some practical considerations

Top-down versus bottom-up parsing

m Top-down

>

>

>

Easier to implement (recursively), enough for most standard
programming languages

Need to modify the grammar sometimes strongly, less general than
bottom-up parsers

Used in most hand-written compilers and some parser generators
(JavaCC, ANTLR)

m Bottom-up:

| 4

More general, less strict rules on the grammar, SLR(1) powerful
enough for most standard programming languages

More difficult to implement, less easy to maintain (add new rules,
etc.)

Used in most parser generators (Yacc, Bison)

Hierarchy of grammar classes

Unambiguous Grammars Ambiguous
Grammars

(Appel)

Error detection and recovery

m In table-driven parsers, there is an error as soon as the table
contains no entry (or an error entry) for the current stack (state)
and input symbols

m The least one can do: report a syntax error and give information
about the position in the input file and the tokens that were
expected at that position

m In practice, it is however desirable to continue parsing to report
more errors
m There are several ways to recover from an error:

Panic mode

Phrase-level recovery

Introduce specific productions for errors
Global error repair

vV vy vVvYy

Panic-mode recovery

m In case of syntax error within a “phrase”, skip until the next
synchronizing token is found (e.g., semicolon, right parenthesis) and
then resume parsing

m In LR parsing:

» Scan down the stack until a state s with a goto on a particular
nonterminal A is found
» Discard zero or more input symbols until a symbol a is found that can

follow A
» Stack the state GOTO(s, A) and resume normal parsing

Phrase-level recovery

m Examine each error entry in the parsing table and decide on an
appropriate recovery procedure based on the most likely programmer
error.

m Examples in LR parsing: E — E + E|E « E|(E)|id

> id + *id:
x is unexpected after a +: report a “missing operand” error, push an
arbitrary number on the stack and go to the appropriate next state

> id +id) + id:
Report an “unbalanced right parenthesis” error and remove the right
parenthesis from the input

Other error recovery approaches

Introduce specific productions for detecting errors:
m Add rules in the grammar to detect common errors

m Examples for a C compiler:
| — if E | (parenthesis are missing around the expression)
| — if (E) then / (then is not needed in C)

Global error repair:

m Try to find globally the smallest set of insertions and deletions that
would turn the program into a syntactically correct string

m Very costly and not always effective

Building the syntax tree

m Parsing algorithms presented so far only check that the program is
syntactically correct

m In practice, the parser also needs to build the parse tree (also called
concrete syntax tree)

m Its construction is easily embedded into the parsing algorithm

m Top-down parsing:
» Recursive descent: let each parsing function return the sub-trees for
the parts of the input they parse
» Table-driven: each nonterminal on the stack points to its node in the
partially built syntax tree. When the nonterminal is replaced by one
of its RHS, nodes for the symbols on the RHS are added as children
to the nonterminal node

Building the syntax tree

m Bottom-up parsing:
» Each stack element points to a subtree of the syntax tree
» When performing a reduce, a new syntax tree is built with the
nonterminal at the root and the popped-off stack elements as children

m Note:
> In practice, the concrete syntax tree is not built but rather a
simplified (abstract) syntax tree
» Depending on the complexity of the compiler, the syntax tree might
even not be constructed

assignment
/ Statemem \
identifier expression :
I / \
<3 / | ™
eXprESSiOn + eXpreSSlOn

| 1
identifier number / \
|

1
y 3

For your project

m The choice of a parsing technique is left open for the project

m You can either use a parser generator or implement the parser by
yourself

m Motivate your choice in your report and explain any transformation
you had to apply to your grammar to make it fit the constraints of
the parser

m Parser generators:

» Yacc: Unix parser generator, LALR(1) (companion of Lex)

» Bison: free implementation of Yacc, LALR(1) (companion of Flex)

» ANTLR: LL(*), implemented in Java but output code in several
languages

-

B http://en.wikipedia.org/wiki/Comparison_of_parser_generators

http://en.wikipedia.org/wiki/Comparison_of_parser_generators

An example with Flex/Bison
Example: Parsing of the following expression grammar:

Input — Input Line
Input — €
Line — Exp EOL
Line — EOL
Exp — num
Exp — Exp+ Exp
Exp — Exp— Exp
Exp — Expx Exp
Exp — Exp/Exp
Exp — (Exp)

https://github.com/prashants/calc

https://github.com/prashants/calc

Flex file: calc.lex

w{

#define YYSTYPE double /* Define the main semantic type */
#include "calc.tab.h" /* Define the token constants */
#include <stdlib.h>

Y3z

%option yylineno /* Ask flex to put line number in yylineno */
white [\tl+

digit [0-9]

integer {digit}+

exponent [eE] [+-]17{integer}

real {integer}("."{integer})?{exponent}?

T

{white} {}

{real} { yylval=atof(yytext); return NUMBER; }

"+" { return PLUS; }

"-m { return MINUS; }

"x" { return TIMES; }

"/" { return DIVIDE; }

"(" { return LEFT; }

")" { return RIGHT; }

"\n" { return END; }

. { yyerror("Invalid token"); }

Bison file: calc.y

m Declaration:
W
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define YYSTYPE double /* Define the main semantic type */
extern char *yytext; /* Global variables of Flex */
extern int yylineno;
extern FILE *yyin;
Y

m Definition of the tokens and start symbol

J%token NUMBER

Y%token PLUS MINUS TIMES DIVIDE
Y%token LEFT RIGHT

J%token END

%start Input

Bison file: calc.y

m Operator associativity and precedence:
%left PLUS MINUS

%left TIMES DIVIDE
%left NEG

m Production rules and associated actions:
YAA

Input: /* epsilon */
| Input Line

Line:
END
| Expression END { printf("Result: %f\n", $1); }

Bison file: calc.y

m Production rules and actions (continued):

Expression:
NUMBER { $$ = $1; }
| Expression PLUS Expression { $$ = $1 + $3; }
| Expression MINUS Expression { $$ = $1 - $3; }
| Expression TIMES Expression { $$ = $1 * $3; }
| Expression DIVIDE Expression { $$ = $1 / $3; }
| MINUS Expression %prec NEG { $$ = -$2; }
| LEFT Expression RIGHT { $$ = $2; }

3

m Error handling:
hh
int yyerror(char *s)
{

printf("%s on line %d - %s\n", s, yylineno, yytext);
}

Bison file: calc.y

m Main functions:
int main(int argc, char **argv)
{
/* if any input file has been specified read from that */
if (arge >= 2) {
yyin = fopen(argv[i], "r");
if (lyyin) {
fprintf (stderr, "Failed to open input file\n");
}
return EXIT_FAILURE;

if (yyparse()) {
fprintf (stdout, "Successful parsing\n");
}

fclose(yyin);
fprintf (stdout, "End of processing\n");
return EXIT_SUCCESS;

Bison file: makefile

m How to compile:

bison -v -d calc.y
flex -o calc.lex.c calc.lex
gcc -o calc calc.lex.c calc.tab.c -1fl -1m

m Example:

>./calc

1+2x3-4

Result: 3.000000

1+3%-4

Result: -11.000000

*2

syntax error on line 3 - *
Successful parsing

End of processing

The state machine
Excerpt of calc.output (with Expression abbreviated in Exp):

state 9
6 Exp: Exp
7 | Exp
8 | Exp
9 | Exp .
10 | MINUS

. PLUS Exp
. MINUS Exp
. TIMES Exp

DIVIDE Exp
Exp .

$default reduce using rule 10 (Exp)

state 10

Exp .

PLUS
MINUS
TIMES
DIVIDE
RIGHT

LEFT Exp .

shift,
shift,
shift,
shift,
shift,

. PLUS Exp
. MINUS Exp
. TIMES Exp

DIVIDE Exp
RIGHT

and go to state 11
and go to state 12
and go to state 13
and go to state 14
and go to state 16

state 11

6 Exp: Exp PLUS . Exp
NUMBER shift, and go
MINUS shift, and go
LEFT shift, and go

Exp go to state 17

to state 3
to state 4
to state 5

	Introduction
	What is a compiler
	Compiler structure
	Course project

	Lexical analysis
	Principle
	Regular expressions
	Analysis with non-deterministic finite automata
	Analysis with deterministic finite automata
	Implementing a lexical analyzer

	Syntax analysis
	Introduction
	Context-free grammar
	Top-down parsing
	Bottom-up parsing
	Shift/reduce parsing
	LR parsers
	Operator precedence parsing
	Using ambiguous grammars

	Conclusion and some practical considerations

	Semantic analysis
	Syntax-directed translation
	Abstract syntax tree
	Type and scope checking

	Intermediate code generation
	Intermediate representations
	Illustration
	Optimization

	Code generation
	Introduction
	Instruction selection
	Register allocation
	Memory management

	Conclusion

