Part 4

Semantic analysis

Structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l

Outline

1. Syntax-directed translation

2. Abstract syntax tree

3. Type and scope checking

Syntax-directed definition

m A general way to associate actions (i.e., programs) to production
rules of a context-free grammar

m Used for carrying out most semantic analyses as well as code
translation

m A syntax-directed definition associates:
» With each grammar symbol, a set of attributes, and
» With each production, a set of semantic rules for computing the
values of the attributes associated with the symbols appearing in the
production
m A grammar with attributes and semantic rules is called an attributed
grammar

m A parse tree augmented with the attribute values at each node is
called an annotated parse tree.

Example

Grammar:
s
S — aSb|aS|cSacS|e 3/3&
Semantic rules: ¢ 150 a 150
Production Semantic rules /\ %
S — aSb S.nba := Sy.nba+ 1 a 0So a
S.nbc := S1.nbc | |
S — a5 S.nba:= Sy.nba+1 € €
S.nbc := S1.nbc
S — cS1acS> | S.nba := Sy.nba + Sy.nba + 1 acaacabb
S.nbc := Si.nbc + Sy.nbc + 2
S—e S.nba:=0
S.nbc :=0
S'"—S Final result is in S.nba and S.nbc

(subscripts allow to distinguish different instances of the same symbol in a rule)

Attributes

m Two kinds of attributes

» Synthesized: Attribute value for the LHS nonterminal is computed
from the attribute values of the symbols at the RHS of the rule.

» Inherited: Attribute value of a RHS nonterminal is computed from
the attribute values of the LHS nonterminal and some other RHS
nonterminals.

m Terminals can have synthesized attributes, computed by the lexer
(e.g., id.lexeme), but no inherited attributes.

Example: synthesized attributes to evaluate expressions

Left-recursive expression grammar

I5E
Production |Semantic rules |
L—>E L.val = E.val 15T
E — Ei + T |E.val = Ey.val + T.val /|\
E-T E.val = T.val 3T % '|E5
T — T1xF | T.val = Ty.val x F.val /\I 5
T—F T.val = F.val 3|T * ,|: >
F — (E) F.val = E.val |
F — num | F.val = num./exval

Example: inherited attributes to evaluate expressions

LL expression grammar

i i T.val =15

Production |Semantic rules / \

T — FT" | T'.inh = F.val s

F.val =3 T'.inh =3
T'.syn=15

T.val = T'.syn |

T' — «FT{ | T{.inh = T'.inh x F.val ol 3 // S~
T'.syn= T{.syn Fibl—5 Tlinh=15

T —e¢ T'.syn = T'.inh | T{.syn =15

F — num |F.val = num.lexval

num./exval =5

€

Evaluation order of SDD's

General case of synthesized and inherited attributes:
m Draw a dependency graph between attributes on the parse tree
m Find a topological order on the dependency graph (possible if and
only if there are no directed cycles)
m If a topological order exists, it gives a working evaluation order. If
not, it is impossible to evaluate the attributes
In practice, it is difficult to predict from an attributed grammar whether
no parse tree will have cycles

Example:

digit 2 lexval

(Dragonbook)

Evaluation order of SDD's

Some important particular cases:

m A grammar with only synthesized attributes is called a S-attributed
grammar.

m Attributes can be evaluated by a bottom-up (postorder) traversal of
the parse tree

77N
98 ©
Va

O

Evaluation order of SDD's

Some important particular cases:
m A syntax-directed definition is L-attributed if each attribute is either

1. Synthesized
2. Inherited “from the left": if the production is A — X1 X5... X, then
the inherited attributes for X; can depend only on
2.1 Inherited attributes of A
2.2 Any attributes among Xi,...,Xj_1 (symbols at the left of X;
2.3 Attributes of X; (provided they are not causing cycles)

m To evaluate the attributes: do a depth first traversal evaluating
inherited attributes on the way down and synthesized attributes on
the way up (i.e., an Euler-tour traversal)

Translation of code

m Syntax-directed definitions can be used to translate code

m Example: translating expressions to post-fix notation

Production Semantic rules
L— E Lt=E.t
E—-E+T Et=E.t|T.t]|+
E—E —T E.t=E.t||T.t]|-
E—-T Et=T.t
T—TixF T.t=Ty.t||F.t||'¥
T—F T.t=F.t

F — (E) Ft=E.t

F — num F.t = num./exval

Syntax-directed translation scheme

m The previous solution requires to manipulate strings (concatenate,
create, store)

m An alternative is to use syntax-directed translation schemes.

m A syntax-directed translation scheme (SDT) is a context-free
grammar with program fragments (called semantic actions)
embedded within production bodies:

A= {R}X{R1} X2 ... X¢{Re}

m Actions are performed from left-to-right when the rules is used for a
reduction

m Interesting for example to generate code incrementally

Example for code translation

Production //E\

L— E E + T {pvi.nt('+’)}
E—E+T {print('+')} //\

E—-T E + T {print(+)} 2 {print('2)}
T— TixF {print(+')} | /™

T—>F T 5 (ein(5)

F — (E) /™

F — num {print(num./exval)} 9 (print('9)}

(Post-fix SDT as all actions are performed at the end of the productions)

Side-effects

m Semantic rules and actions in SDD and SDT's can have side-effects.
E.g., for printing values or adding information into a table

m Needs to ensure that the evaluation order is compatible with
side-effects

m Example: variable declaration in C

Production | Semantic rules

D— TL |L.type= T.type (inherited)
T —int | T.type =int (synthesized)
T — float | T.type =float (synthesized)
L—Ly,id | L;.type = L.type (inherited)

AddType(id.entry, L.type) (synthesized, side effect)
L—id AddType(id.entry, L.type) (synthesized, side effect)

m id.entry is an entry in the symbol table. AddType adds type
information about entry in the symbol table

Implementation of SDD's

Attributes can be computed after parsing:

m By explicitely traversing the parse or syntax tree in any order
permitting the evaluation of the attributes

m Depth-first for S-attributed grammars or Euler tour for L-attributed
grammar

m Advantage: does not depend on the order imposed by the syntax
analysis

m Drawback: requires to build (and store in memory) the syntax tree

Evaluation after parsing of L-attributed grammar

For L-attributed grammars, the following recursive function will do the
computation for inherited and synthesized attributes

ANALYSE(N, InheritedAttributes)
if LEAF(N)
return SynthesizedAttributes / / \\
Attributes = InheritedAttributes
for each child C of N, from left to right / \
ChildAttributes = ANALYSE(C, Attributes) /\
Attributes = Attributes U ChildAttributes

Execute semantic rules for the production at node N
return SynthesizedAttributes

m Inherited attributes are passed as arguments and synthesized
attributes are returned by recursive calls

m In practice, this is implemented as a big two-level switch on
nonterminals and then rules with this nonterminal at its LHS

Variations

m Instead of a giant switch, one could have separate routines for each
nonterminal (as with recursive top-down parsing) and a switch on
productions having this nonterminal as LHS (see examples later)

m Global variables can be used instead of parameters to pass inherited
attributes by side-effects (with care)

m Can be easily adapted to use syntax-directed translation schemes
(by interleaving child analysis and semantic actions)

Implementation of SDD's

Attributes can be computed directly during parsing:
m Attributes of a S-attributed grammar are easily computed during
bottom-up parsing
m Attributes of a L-attributed grammar are easily computed during
top-down parsing
m Attribute values can be stored on a stack (the same as the one for
parsing or a different one)

m Advantage: one pass, does not require to store (or build) the syntax
tree

m Drawback: the order of evaluation is constrained by the parser

Bottom-up parsing and S-attributed grammar

m Synthesized attributes are easily handled during bottom-up parsing.
Handling inherited attributes is possible (for a LL-grammar) but
more difficult.

m Example with only synthesized attributes (stored on a stack):

Production [Semantic rules [Stack actions
E — E1+ T |E.val = Ey.val + T.val | tmpT = pop()
tmpE = pop()

PUSH(tmpE + tempT)
E—-T E.val = T.val
T — Ti*F | T.val = Ti.val X F.val | tmpT = pop()
tmpF = POP()
PUSH(tmpT * tempF)

T—F T.val = F.val
F — (E) F.val = E.val
F — num | F.val = num.lexval PUSH(num./exval)

(Parsing tables on slide 189)

Bottom-up parsing and S-attributed grammar

Stack Input | Action Attribute stack
30 2% (10 +3)$ | s5

$F2 %(1043)$ | r6: F — num 2
CRIGE «(10+3)$ | ra: T —F 2
o7 2 #(10+3)$ | s7 2

o 2[«[7] (10+3)$ | s4 2
slolm2|«7|(4] 10+3)$ | s5 2
o2« T(TIO +3)$ | r6: F — num 210
slo|r{2]«[7|(4]F 3] 43)8 | 4 T—F 210
slo|r{2]«[7](4(m2 +3)$ | 2 E—T 210
slolr2]«7|(4E8 +3)$ | 6 210
slolr{2]«[7|(4 e 8]+[6] 3)$ | s5 210
slo|r{2]«[7|(4lE 8]+ 635)$ | 6: F— num | 2103
slolr2]«7|(4E[8]+ F S | 4 T—F 2103
slo T2]«[7](4]e[8]+[6]])$ | rE—E+T | 213
$0(T|2|=|7]|]4]|E|8)$ | si1 213
s 0|72« [7|(4]g 8)[11] $ | 15 F— (E) 213
${0|T|2]+|7]|F 10 $ |3 T—>T=xF | 26
${0]7(2] $ |2 EST 26
$7Eﬂ $ | Accept 26

Top-down parsing of L-attributed grammar

m Recursive parser: the analysis scheme of slide 247 can be
incorporated within the recursive functions of nonterminals

m Table-driven parser: this is also possible but less obvious.

m Example with only inherited attributes (stored on a stack):

Production [Semantic rules [Stack actions

S'—S S.nb=0 PUSH(0)

S5 —(51)S2|S1.nb = S.nb+ 1| PUsH(TOP() + 1)
So.nb = S.nb

S—e PRINT(S.nb) PRINT(POP())

(print the depth of nested parentheses)

Parsing table:

| () $
s’ S —S S—S
S |15—-(5)S S—e S—ce

Top-down parsing of L-attributed grammar

Stack Input | Attribute stack | Output
S'$ 1 (OMON0 | o
581 (0N |01
(5)5% | (OONO | 01
$)S$ | O(0NO | 012
(5)$)s$ | 00N | 012
$)$)Ss |)ON(| o1 2
)$)S$ |)ONO | 01
5)5$% ONO o012
(5)5)S$ ONO | o012
5)5)S$% 0N | 0123
(5)5)5)S$ ON() 0123
5)5)5)S$ N0 | 012 3
)5)S5)S$ N(O | 012
5)5)S$ N(O) |01 2
)5)S$ N0 |01
5)S$)() | 0 1
)S$) | o
S$ Olo1
(5)s$ Olo1
S5)S$)| O 1
)S$)| O
S$ 0

$

Comments

m It is possible to transform a grammar with synthesized and inherited
attributes into a grammar with only synthesized attributes

m It is usually easier to define semantic rules/actions on the original
(ambiguous) grammar, rather than the transformed one

m There are techniques to transform a grammar with semantic actions
(see reference books for details)

Applications of SDD's

SDD can be used at several places during compilation:
m Building the syntax tree from the parse tree
m Various static semantic checking (type, scope, etc.)
m Code generation
m Building an interpreter

Outline

2. Abstract syntax tree

Abstract syntax tree

Assgnment

/ s(atamvn(\
dentifier QXprassion
I / \
3 / I \
expression + expression

| 1 /
identifier number
] I

y 3

m The abstract syntax tree is often used as a basis for other semantic
analysis or as an intermediate representation

m When the grammar has been modified for parsing, the syntax tree is
a more natural representation than the parse tree

m The abstract syntax tree can be constructed using SDD (see next
slides)

m Another SDD can then be defined on the syntax tree to perform
semantic checking or generate another intermediate code (directed
by the syntax tree and not the parse tree)

Generating an abstract syntax tree

For the left-recursive expression grammar:

Production Semantic rules

E— E1+ T E.node = new Node('+’, E1.node, T.node)
E— E;1— T E.node = new Node('—', E1.node, T.node)
E—T E.node = T.node

T — (E) T.node = E.node

T —id T .node = new Leaf (id, id.entry)

T — num T.node =

new Leaf (num, num.entry)

(Dragonbook)

E.node
E node + 7 .node
B ouode - T.node id
T node wum
W —
—
L e
> . Id
- — — >
S N to enlry for ¢
| id

to emry for &

Generating an abstract syntax tree

For the LL transformed expression grammar:
Production Semantic rules
E — TE' E.node = E’.syn; E'.inh = T .node
E' — +TE] E].inh=new Node('+’, E'.inh, T .node); E' .syn = E].syn
E' — —TE] E|.inh = new Node('—', E'.inh, T .node); E' .syn = E.syn
E' — ¢ E’.syn = E'.inh

E—-T E.node = T.node
T — (E) T .node = E.node
T —id T .node = new Leaf (id, id.entry)
T — num T.node = new Leaf (num, num.entry)
E 13 gede
T 2 Fode oy 5 E12l
'
M 1 entry T }u,.a Pl e TE
oum 3wl 4 T 5 fode .\“.") E 10 o™
' o

(Dragonbook) id 7 entry '

Outline

3. Type and scope checking

Type and scope checking

m Static checkings:
» All checkings done at compilation time (versus dynamic checkings

done at run time)
» Allow to catch errors as soon as possible and ensure that the program

can be compiled

m Two important checkings:
» Scope checking: checks that all variables and functions used within a

given scope have been correctly declared
» Type checking: ensures that an operator or function is applied to the

correct number of arguments of the correct types

m These two checks are based on information stored in a symbol table

Scope
¢

int x = 1;
int y = 2;
{
double x = 3.1416;
y += (int)x;

y o= X

}

m Most languages offer some sort of control for scopes, constraining
the visibility of an identifier to some subsection of the program

m A scope is typically a section of program text enclosed by basic
program delimiters, e.g., {} in C, begin-end in Pascal.

m Many languages allow nested scopes, i.e., scopes within scopes. The
current scope (at some program position) is the innermost scope.

m Global variables and functions are available everywhere

m Determining if an identifier encountered in a program is accessible at
that point is called Scope checking.

Symbol table

{ int x; int y;

{ int w; bool y; int z; x | int
CoWels X Y eZaa y | int
}
R ST w_ | int
¥ y | bool
z int

m The compiler keeps track of names and their binding using a symbol
table (also called an environment)

m A symbol table must implement the following operations:

» Create an empty table

Add a binding between a name and some information

Look up a name and retrieve its information

Enter a new scope

Exit a scope (and reestablish the symbol table in its state before
entering the scope)

>
>
>
>

Symbol table

m To manage scopes, one can use a persistent or an imperative data
structure

m A persistent data structure is a data structure which always
preserves the previous version of itself when it is modified

m Example: lists in functional languages such as Scheme
» Binding: insert the binding at the front of the list, lookup: search the
list from head to tail
» Entering a scope: save the current list, exiting: recalling the old list
m A non persistent implementation: with a stack
» Binding: push the binding on top of the stack, lookup: search the
stack from top to bottom
» Entering a scope: push a marker on the top of the stack, exiting: pop
all bindings from the stack until a marker is found, which is also
popped
» This approach destroys the symbol table when exiting the scope
(problematic in some cases)

More efficient data structures

m Search in list or stack is O(n) for n symbols in the table

m One can use more efficient data structures like hash-tables or binary
search trees

m Scopes can then be handled in several ways:

» Create a new symbol table for each scope and use a stack or a linked
list to link them
» Use one big symbol table for all scopes:
> Each scope receives a number
> All variables defined within a scope are stored with their scope number
» Exiting a scope: removing all variables with the current scope number

» There exist persistent hash-tables

Types

m Type checking is verifying that each operation executed in a
program respects the type system of the language, i.e., that all
operands in any expression are of appropriate types and number

m Static typing if checking is done at compilation-time (e.g., C, Java,
C++)

m Dynamic typing if checking is done at run-time (e.g., Scheme,
Javascript).

m Implicit type conversion, or coercion, is when a compiler finds a type
error and changes the type of the variable into the appropriate one
(e.g., integer—float)

Principle of type checking

m Identify the types of the language and the language constructs that
have types associated with them

m Associate a type attribute to these constructs and semantic rules to
compute them and to check that the typing system is respected

m Needs to store identifier types in the symbol table
m One can use two separate tables, one for the variable names and one
for the function names

m Function types is determined by the types (and number) of
arguments and return type. E.g., (int,int) — int

m Type checking can not be dissociated from scope and other
semantic checking

[[lustration

We will use the following source grammar to illustrate type checking

P F Exp — num
rogram — Funs .
Exp — id
P P Exp — Exp+Exp
Funs - Fun F Exp — Exp=FExp
uns - funbuns Exp — if Exp then Exp else Exp
Exp — id (Exps
Fun = Typeld (Typelds) = Exp Exp — 1e‘£ id= E)xp in Exp
Typeld — int id Exps ~ Exp

Typeld — bool id Exps . Exp, Exps

Typelds — Typeld
Typelds — Typeld , Typelds

(see chapter 5 and 6 of (Mogensen, 2010) for full details)

Implementation on the syntax tree: expressions

Type checking of expressions:

— inherited attributes

Checkg,,(Exp,vtable, ftable) = case Exp of

num int feeneenemseseeceneenenes - filled in by lexer

id t = lookup(vtable, getname(id))
f 1= UnbOURA =eescaomcercenen e -> scope checking
then error(); int --....__
elset T .

Expy +Exp, | 1 7CheckEx,,(Exp1,vtable ftable) 7 error recovery
L= Checkgyy(Expy,vtable)_‘table) . -
Tf t =int and ty = int ------ SOGIEEREREERED -> type checkin
then int ___.—"" yp g
else error(); int .-~

synthesized attribute

Follows the implementation of slide 248 with one function per
nonterminal, with a switch on production rules

Implementation on the syntax tree: function calls

ChECkExp(Exp7Vtable7ftable) =caseExpof Ly ﬁ”ed in by Iexer
id (Exps) t = lookup(ftable, getnume(id))
if £ = UNbOUNA +=====-==reemeeaneeanmaneene] - scope checking
then error(); int
else

((ty,.ostn) = 10) =1
(115 1] = Checke.ps (Exps,viable, frable) | checking function
if m=nand 1y =1t],...,I, =t)-=======x=-u-- -

then t arguments

else error(); ty

Checkg.ps(Exps,vtable, ftable) = case Exps of
Exp [Checkgy,(Exp,vtable, ftable)]
Exp , Exps | Checkg,,(Exp,vtable, ftable)

it Checkgyps(Exps,vtable, ftable)

=cons

Implementation on the syntax tree: variable declaration

Checkgy,(Exp,vtable, ftable) = case Exp of

let id = Exp
in Exp;

t1 = Checkg.p(Expi,vtable, ftable)
vtable' = bind(vtable, getname(id), t;)
Checkgy,(Expy,vtablé', ftable)

create a new
scope

m Create a new symbol table vtable’ with the new binding

m Pass it as an argument for the evaluation of Exp, (right child)

Implementation on the syntax tree: function declaration

synthesized attribute

Checkpyy(Fun, ftable) = case Fun of

Typeld (Typelds) = Exp

ifto#n

then error()

(fJO) = Getfvpeld(Typeld)
vtable = Checkryperas(Typelds) —
ty = Checkg,,(Exp,vtable, ftable)

Getrypera(Typeld) = case Typeld of

intid | (getname(id), int)

bool id | (gername(id), bool)

Checkryperas(Typelds) = case Typelds of

Typeld

(x,1) = Getrypera(Typeld)
bind(emptytable,x,t)

Typeld , Typelds

(x,1) = Getrypera(Typeld)
vtable = Checkryperas(Typelds)
if lookup(vtable,x) = unbound
then bind(vtable,x,t)

else error(); vtable

inherited attributes

Fun

AN

Typeld (Typelds) = Exp

Create a symbol table
with arguments

Implementation on the syntax tree: program

Checkpy, Program) = case Program of . L. .
progran 108) g Collect all function definitions in a

Funs | ftable = Getpys(Funs) «-----«ee-eeeee- >)

Checkpuns (Funs, ftable) symbol table (to allow mutual recursion)

if lookup(ftable, main) # (int) — int |

then error()

----> Language semantic requires a main function

Checkpuns(Funs, ftable) = case Funs of
Fun Checkpy(Fun, ftable)

Fun Funs | Checkpy,(Fun, ftable)
Checkpyns(Funs, ftable)

m Needs two passes over the function definitions to allow mutual
recursion

m See (Mogensen, 2010) for Getg,ps (similar to Checkgyns)

More on types

m Compound types are represented by trees (constructed by a SDD)

m Example: array declarations in C

int [3][4]
Production Semantic rules
T = BC Tt=Ct Chb=Bt arYy
B — int B.t =int
B — float B.t =float 3 array
C —-[NUM]G | C.t = array(NUM.val, Ci.t)
C—e¢ Ct=C.b \

4 int

m Compound types are compared by comparing their trees

More on types

m Type coercion:

» The compiler supplies implicit conversions of types
» Define a hierarchy of types and convert each operand to their least
upper bound (LUB) in the hierarchy

m Overloading:

» An operator accepting different types (e.g., = in our source language)
» Type must be defined at translation

Expy =Expy | 1y = Checkgyy,(Expy,vtable, ftable)
ty = Checkg,,(Expy,vtable, ftable)
if h=n

then bool

else error(); bool

m Polymorphism: functions defined over a large class of similar types

m Implicit types: some languages (like Caml, Haskell, C#) do not
require to explicitly declare types of functions or variables. Types are
automatically inferred at compile time.

