Part 5

Intermediate code generation

Structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l

Outline

1. Intermediate representations

2. lllustration

3. Optimization

Intermediate code generation

The final phase of the compiler front-end

Goal: translate the program into a format expected by the compiler
back-end

In typical compilers: followed by intermediate code optimization and
machine code generation

Techniques for intermediate code generation can be used for final
code generation

Intermediate representations

Why use an intermediate representation?

m It's easy to change the source or the target language by adapting
only the front-end or back-end (portability)

m |t makes optimization easier: one needs to write optimization
methods only for the intermediate representation

m The intermediate representation can be directly interpreted

Java Sparc

ML& / MIPS
IR/

Pascal — \
/ Pentium
C
Cot Itanium

(Appel)

Intermediate representations

Intermediate
representation

Source ? Target
language | } 1 language
(high-level) D (low-level)

m How to choose the intermediate representation?
> It should be easy to translate the source language to the intermediate

representation
> It should be easy to translate the intermediate representation to the

machine code
» The intermediate representation should be suitable for optimization

m It should be neither too high level nor too low level

m One can have more than one intermediate representation in a single
compiler

Some common intermediate representations

General forms of intermediate representations (IR):

Graphical IR (parse tree, abstract syntax trees, DAG. . .)

m Linear IR (ie., non graphical)

m Three Address Code (TAC): instructions of the form “result=opl
operator op2”

Static single assignment (SSA) form: each variable is assigned once

Continuation-passing style (CPS): general form of IR for functional
languages

Some common intermediate representations

Examples:
m Java bytecode (executed on the Java Virtual Machine)
m LLVM (Low Level Virtual Machine): SSA and TAC based

m Cis used in several compilers as an intermediate representation
(Lisp, Haskell, Cython...)

m Microsoft's Common Intermediate Language (CIL)
m GNU Compiler Collection (GCC) uses several intermediate
representations:
» Abstract syntax trees
GENERIC (tree-based)
GIMPLE (SSA form)
Register Transfer Language (RTL, inspired by lisp lists)

vV vy

(Google them)

Static Single-Assignment Form (SSA)

m A naming discipline used to explicitely encode information about
both the flow of control and the flow of data values
m A program is in SSA form if:

1. each definition has a distinct name
2. each use refers to a single definition

m Example:

Original code SSA form
y=1 n=1
y=2 y2=2
X=y X1 =)2

m Main interest: allows to implement several code optimizations.

» In the example above, it is clear from the SSA form that the first
assignment is not necessary.

Converting to SSA

m Converting a program into a SSA form is not a trivial task

Original code SSA form
x=5 X1:5
x=x-—3 X =x1 —3
if x<3 if xo <3
y=xx2 Yo = Xp %2
w=y w1 =1
else else
y:X—3 y1:X2—3
w=x-—y Wy = Xg — 7
zZ=Xx+y =X+

m Need to introduce a special statement: ®-functions

Converting to SSA

Original code SSA form
x=5 xp =5
x=x—-3 f<2:X1—3
if x<3 if xx <3
y=x%2 Yo = Xp %2
w=y w1 =Mn
else else ;
yi=x —
vy s = 00.32)
Z=X+Yy Wy = Xo — V3

z1 =X+)3

m ®(y1,y») is defined as y; if we arrive at this instruction through the
THEN branch, y» if through the ELSE branch.

m One needs to introduce ® functions at every point of the program
where several “branches” are merged.

SSA form

m Given an arbitrary program, finding where to place the ® functions
is a difficult task.

m However, an efficient solution is available, based on the control flow
graph of the program (see later).

m In practice, the ® functions are not implemented. They indicate to
the compiler that the variables given as arguments need to be stored
in the same place.

m In the previous example, we can infer that y; and y» should be
stored in the same place

Continuation-passing style (CPS)

m A programming style in functional languages where control is passed
explicitely as argument to the functions, in the form of a
continuation.

m A continuation is an abstract representation of the control state of a
program, most of the time in the form of a first-class function.

m Like SSA, CPS is often used in intermediate representation in
compilers of functional languages.

CPS: examples
Direct style

(define (pyth x y)
(sqrt (+ (x x x) Cx y y))))

CPS style (k is the continuation)

(define (pyth& x y k)
(*& x x (lambda (x2)
(*& y y (lambda (y2)
(+& x2 y2 (lambda (x2py2)
(sqrt& x2py2 k))))I))

(define (*x& x y k)

k (x x y)))
(define (+& x y k)

k (+ xy)))
(define (sqrt& x k)

(k (sqrt x)))

CPS

The main interest of CPS is to make explicit several things that are
typically implicit in functional languages: returns, intermediate
values (= continuation arguments), order of argument evaluation...
Like for SSA, the main interest is to ease optimizations.

Theoretically, SSA and CPS are equivalent: a program in SSA form
can be transformed into a CPS program and vice versa.

Previous program can be rewritten as:

X2 = X * X
y2=yxy
x2py2 = x2 + y2
res = sqrt(x2py?2)

Outline

2. lllustration

The intermediate language

We will illustrate the translation of typical high-level language
constructions using the following low-level intermediate language:

Program

Instructions
Instructions

Instruction
Instruction
Instruction
Instruction
Instruction

1

Ll

[Instructions |

Instruction
Instruction , Instructions

id := Arom

id := unop Atom

id := id binop Atom
id := M[Atom]
M|Atom] :=id

Instruction
Instruction

Instruction
Instruction

Atom
Atom
Args
Args

Lol

!

U

LABEL labelid

GOTO labelid

IF id relop Atom THEN labelid ELSE labelid
id := CALL functionid(Args)

id

num

id

id , Args

Simplified three-address code, very close to machine code

See chapter 5 and 7 of (Mogensen, 2010) for full details

The intermediate language

Program

Instructions
Instructions

Instruction
Instruction
Instruction
Instruction
Instruction

Atom
Atom

!

Lelblod

Ll

[Instructions |

Instruction
Instruction , Instructions

id := Arom
id := unop Atom
id := id binop Arom

id := M[Arom)]
M[Atom] :=id
id

num

All values are assumed to be
integer

Unary and binary operators
include normal arithmetic and
logical operations

An atomic expression is either a
variable or a constant
M[Atom] :=id is a transfer
from a variable to memory

id := M[Atom] is a transfer
from memory to a variable

The intermediate language

Instruction — LABEL labelid

Instruction — GOTO labelid

Instruction — IF id relop Atom THEN labelid ELSE labelid
Instruction — id := CALL functionid(Args)

Atom — id

Atom — num

Args — id

Args — id, Args

m LABEL only marks a position in the program
m relop includes relational operators {=,#,<,>,< or >}
m Arguments of a function call are variables and the result is assigned

to a variable

Principle of translation

m Syntax-directed translation using several attributes:

» Code returned as a synthesized attribute

» Symbol tables passed as inherited attributes

> Places to store intermediate values as synthesized or inherited
attributes

m Implemented as recursive functions defined on syntax tree nodes (as
for type checking)

m Since translation follows the syntax, it is done mostly independently
of the context, which leads to suboptimal code

m Code is supposed to be optimized globally afterwards

Expressions

Exp
Exp
Exp
Exp
Exp

Exps
Exps

Principle of translation:

Ll

L

num
id

unop Exp

Exp binop Exp
id(Exps)

Exp
Exp , Exps

(source language grammar !)

m Every operation is stored in a new variable in the intermediate
language, generated by a function newvar

m The new variables for sub-expressions are created by parent
expression and passed to sub-expression as inherited attributes
(synthesized attributes are also possible)

Expressions

Transgx,(Exp,vtable, ftable, place) = case Exp of
num v = getvalue(num)

[place :=v)

id x = lookup(vtable,getname(id)) where to place the
[place := x] i > translation of Expi
unop Exp; place; = newvar() : (inherited attribute)
codey = TransEXp(Expl,vtable,ftable,pla'cel)
op = transop(getopname(unop))
codey++[place := op place)

T INEEE » String concatenation

m getopname retrieves the operator associated to the token unop.
transop translates this operator into the equivalent operator in the
intermediate language

m [place := v] is a string where place and v have been replaced by
their values (in the compiler)

» Example: if place = t14 and v = 42, [place := v] is the instruction
[t14:=42].

Expressions: binary operators and function call

Transgy,(Exp,vtable, ftable, place) = case Exp of

Expi binop Exp;

place; = newvar()

place; = newvar()

code; = Transgy,(Expi,vtable, ftable, place)
codey = Transgy,(Expa,vtable, ftable, place)
op = transop(getopname(binop))
codey+codey++|place := place; op place,)

id(Exps)

(codey,[ay,. .., ay))

= Transgyps(Exps,vtable, ftable)
fname = lookup(ftable,getname(id))
codej+|place :== CALL fname(ay,...,ay)]

Expressions: function arguments

Transgyps(Exps,vtable, ftable) = case Exps of

Exp place = newvar()
code; = Transgy,(Exp,vtable, ftable, place)
(codey,|place])

Exp , Exps | place = newvar()

code; = Transgy,(Exp,vtable, ftable, place)
(codey,args) = Transgy,s(Exps,vtable, ftable)
codes = codej++code;

args| = place :: args

(codes,argsy)

Expressions: example of translation

Translation of 3+f(x-y,z):

tl1:=3
t4 :=v0
th :=vl
t3:=t4-1t5
t6 1= v2
t2 := CALL _f(t3,t6)
t0 ;= t1+t2

Assuming that:
® X, Y, and z are bound to variables v0, v1, and v2

m Expression is stored in t0
m New variables are generated as t1, t2, t3...

m Indentation indicates depth of call to Transg,,

Statements

Stat
Stat
Stat
Stat
Stat
Stat

Cond

Principle of translation:

e Ll

!

Stat ; Stat

id:=Exp

if Cond then Stat

if Cond then Stat else Stat
while Cond do Stat

repeat Stat until Cond

Exp relop Exp

m New unused labels are generated by the function newlabel (similar

to newvar)

m These labels are created by parents and passed as inherited

attributes

Statements: sequence of statements and assignment

Transg, (Stat,vtable, frable) = case Stat of

Staty ; Staty codey = Transg;, (Staty,vtable, ftable)
codey = Transg, (Staty, vtable, ftable)
codej++codes

id:=Exp place = lookup(vtable, getname(id))
Transgyx,(Exp,vtable, ftable, place)

Statements: conditions

Transs;q (Stat,vtable, ftable) = case Stat of

if Cond
then Stat;
else Star,

label, = newlabel ()
label, = newlabel ()
labels = newlabel()
codey = Transcnqa(Cond, labely,label,,viable, ftable)
codey = Transs,, (Staty,vtable, ftable)
codes = Transg;y (Staty, vtable, ftable)
code+[LABEL label;]+code;
++[GOTO labels, LABEL label,]
+rcode3++[LABEL labels)

Transconqd(Cond, label,,labely,vtable, ftable) = case Cond of

Expj relop Expy | t; = newvar()

tr = newvar()

code| = TransExp(Expl,vtable,ftable,tl)

codey = TransExp(Expz,vtable,ftable,tz)

op = transop(getopname(relop))
codey+rcodey+[IF ty opty THEN label, ELSE labely)

Statements: while loop

Transs,, (Stat,vtable, ftable) = case Stat of

while Cond | label; = newlabel()
do Stat; label, = newlabel ()
labels = newlabel()
codey = Transcy,q(Cond, labely,labels, vtable, ftable)
codey = Transg;, (Staty,vtable, ftable)
[LABEL label,|++code;
+[LABEL labely|++code,
++[GOTO label;, LABEL labels)

Logical operators

m Logical conjunction, disjunction, and negation are often available to
define conditions

m Two ways to implement them:
» Usual arithmetic operators: arguments are evaluated and then the
operators is applied. Example in C: bitwise operators: ‘&’ and '|'.
» Sequential logical operators: the second operand is not evaluated if
the first determines the result (lazy or short-circuit evaluation).
Example in C: logical operators '&&" and '||'.
m First type is simple to implement:
» by allowing any expression as condition

Cond — Exp

» by including ‘&', '|', and 'I" among binary and unary operators

m Second one requires more modifications

Sequential logical operators

Cond
Cond
Cond
Cond
Cond
Cond

Exp relop Exp
true

false

! Cond

Cond && Cond
Cond || Cond

A

Transcona(Cond, label,,labels,vtable, ftable) = case Cond of

true [GOTO label,]
false [GOTO labely]
! Cond, Transcond(Cond ,label s, label; ,vtable, ftable)

Cond; && Cond,

arg, = newlabel ()
code\=Transcona(Cond,,arg,,labels,vtable, ftable)
codey=Transconq(Condy,label;,labely,vtable, ftable)
code+[LABEL args|+rcode;

Cond; || Cond,

arg, = newlabel ()
codei=Transcong(Cond,,label,,arg,, vtable, ftable)
codes=Transcond(Cond,,label,, labely,vtable, ftable)
code|+[LABEL args|+rcodey

Other statements

More advanced control statements:

m Goto and labels: labels are stored in the symbol table (and
associated with intermediate language labels). Generated as soon as
a jump or a declaration is met (to avoid one additional pass)

m Break/exit: pass an additional (inherited) attribute to the
translation function of loops with the label a break/exit should jump
to. A new label is passed when entering a new loop.

m Case/switch-statements: translated with nested if-then-else
statements.

Arrays

Language can be extended with one-dimensional arrays:

Exp — Index
Stat — Index:= Exp
Index — id[Exp]

Principle of translation:
m Arrays can be allocated statically (at compile-time) or dynamically
(at run-time)
m Base address of the array is stored as a constant in the case of static
allocation, or in a variable in the case of dynamic allocation
m The symbol table binds the array name to the constant or variable
containing its address

Arrays: translation

Transgy,(Exp,vtable, ftable, place) = case Exp of
Index | (codey,address) = Transigex(Index, vtable, ftable)
codei+|[place := M[address]|

Transg;y (Stat,vtable, ftable) = case Stat of

Index := Exp | (codey,address)=Transmq.c(Index,vtable, ftable)
t = newvar()

codey = Transgy,(Exp,vtable, ftable,t)
code+codey++|Mladdress| := t]

Transmaer(Index,vtable, ftable) = case Index of
id[Exp] | base = lookup(vtable, getname(id))

t = newvar()

code| = Transgy,(Exp,vtable, ftable,t)
codey = code +|t :=t x4t :=t+ base]
(codes,t)

(Assuming arrays are indexed starting at 0 and integers are 32 bits long)

Multi-dimensional arrays

Index — id[Exp]
Index — Index|Exp]

Principle of translation:

m Two ways to represent a 2-dimensional array in linear memory:

» Row-major order: one row at a time. For a 3 x 2 array: a[0][0],
a[0][1], a[1][0], a[1][1], a[2][0], a[2][1]

» Column-major order: one column at a time. For a 3 x 2 array:
a[0][0], a[1][0], a[2][0], a[0][1], a[1][1], a[2][1]

m Generalization: if dimg, dimy, ..., dim,_1 are the sizes of the
dimensions in a n-dimensional array, the element [io][/1] ... [in—1] has
the address:

» Row-major:

base + ((...(fo - dimy + i) - dimy ... + ip_23) - dim,_1 + in_1) - Size
» Column-major:

base + ((.. (in—l . dl'mo + in_2) . d/m1 et I'l) . dim,,_2 + Io) - size

m Dimension sizes are stored as constant (static), in variables or in
memory next to the array data (dynamic)

Multi-dimensional arrays: translation

Transmgex(Index, vtable, ftable) =
(codey,t,base,[]) = Calcipger(Index, vtable, ftable)
codey = code+|t ==t x4t := 1+ base]
(codey,t)

Calcrygex(Index,vtable, ftable) = case Index of

id[Exp] (base,dims) = lookup(vtable,getname(id))

t = newvar()

code = Transgy,(Exp,vtable, ftable,t)
(code,t,base,tail(dims))

Index|Exp] | (codey,ty,base,dims) = Calcppger(Index,viable, ftable)
dim) = head(dims)

tr = newvar()

codey = Transgy,(Exp,vtable, ftable,t,)

codes = codey+codey++t) :=t) xdimy,t) *=1] +1]
(codes,ty,base,tail(dims))

(Assume dimension sizes are stored in the symbol table, as constant or
variable)

Other structures

m Floating point values: can be treated the same way as integers
(assuming the intermediate language has specific variables and
operators for floating point numbers)

m Records/structures: allocated in a similar way as arrays

» Each field is accessed by adding an offset to the base-address of the
record

» Base-addresses and offsets for each field are stored in the symbol
table for all record-variables

m Strings: similar to arrays of bytes but with a length that can vary at
run-time

Variable declaration

Stat — Decl ; Stat
Decl — intid
Decl — int id[num]

Principle of translation:

m Information about where to find scalar variables (e.g. integer) and
arrays after declaration is stored in the symbol table

m Allocations can be done in many ways and places (static, dynamic,
local, global. . .)

Variable declaration

Transs (Stat,vtable, ftable) = case Stat of

Decl ; Staty | (codey,vtabley) = Transp,c(Decl,vtable)
codey = Transg, (Staty,vtabley, ftable)
codej+rcode;

Transpec(Decl,vtable) = case Decl of

int id t1 = newvar()
vtable, = bind(vtable, getname(id),)
([}, vtabley)

int id[num] | #; = newvar()
vtable, = bind(vtable, getname(id), ;)
([t := HP, HP := HP + (4 * getvalue(num))), vtable;)

(Assumes scalar variables are stored in intermediate language variables
and arrays are dynamically allocated on the heap, with their
base-addresses stored in a variable. HP points to the first free position of
the heap.)

Comments

m Needs to add error checking in previous illustration (array index out
of bounds in arrays, wrong number of dimensions, memory/heap
overflow, etc.)

m In practice, results of translation are not returned as strings but
either:

» output directly into an array or a file
» or stored into a structure (translation tree or linked list)
The latter allows subsequent code restructuring during optimization

m We have not talked about:

» memory organization: typically subdivided into static data (for static
allocation), heap (for dynamic allocation) and stack (for function
calls)

» translation of function calls: function arguments, local variables, and
return address are stored on the stack (similar to what you have seen
in INFO-0012, computation structures)

Outline

3. Optimization

IR code optimization

IR code generation is usually followed by code optimization
Why?

> IR generation introduces redundancy

» To compensate for laziness of programmers

Improvement rather than optimization since optimization is
undecidable
Challenges in optimization:

» Correctness: should not change the semantic of the program
» Efficiency: should produce IR code as efficient as possible
» Computing times: should not take too much time to optimize

m What to optimize?
» Computing times
» Memory usage
» Power consumption
>

Control-flow graph

m A basic block is a series of IR
instructions where:

» there is one entry point into
the basic block, and
» there is one exit point out of
the basic block.
m Control-flow graph: nodes are
basic blocks and edges are
jumps between blocks

=3
t1:=4%i
t2:=a[tl]
ji=2

|

labl: j:=j+1
if j>100 then lab4

!

lab2: if t2<b then lab3

!

t2:=t2+3
GOTO lab2

lab3: b:=b-j
GOTO labl

lab4: a[t1]:=t2

Control-flow graph and SSA

m The control-flow graph (CFG) can be used to determine where to
introduce ® functions when deriving a SSA form:
» A node A (basic block) of the CFG strictly dominates a node B if it is
impossible to reach B without going through A. A dominates B if A
stricly dominates B or A = B.
» B is in the dominance frontier of A if A does not strictly dominate B,
but dominates some immediate predecessor of B.
» Whenever node A contains a definition of a variable x, any node B in
the dominance frontier of A needs a ® function for x.
m There exist an efficient algorithm to find the dominance frontier of a

node

4,5,12,13 are in the
dominance frontier of 5
(Appel)

Local optimizations

Local optimization: optimization within a single basic block

Examples:
m Constant folding: evaluation at compile-time of expressions whose
operands are constant
» 10+2*3 — 16
» [If 1 then Labl Else Lab2] — [GOTO Lab1]

m Constant propagation: if a variable is assigned a constant, then
propagate the constant into each use of the variable

> [xi=4;t:=y*x;] can be transformed into [t:=y*4;] if x is not used later

Local optimizations

Examples:

m Copy propagation: similar to constant propagation but generalized
to non constant values

tmp2 = tmpl,;

tmp3 = tmp2 * tmpl, tmp3 = tmpl * tmpl;
tmp4 = tmp3; tmp5 = tmp3 * tmpl;
tmp5 = tmp3 * tmp2; ¢ = tmp5 + tmp3;

c = tmpb + tmp4;

m Dead code elimination: remove instructions whose result is never
used

» Example: Remove [tmpl=tmp2+tmp3;] if tmpl is never used

Local optimizations

Examples:

m Common subexpression elimination: if two operations produce the
same results, compute the result once and reference it the second
time

» Example: in a[i]=a[i]+2, the address of a[i] is computed twice.
When translating, do it once and store the result in a temporary
variable

m Code moving/hoisting: move outside of a loop all computations
independent of the variables that are changing inside the loop
» Example: part of the computation of the address for a[i] [j] can be
removed from this loop
while (j<k) {
sum = sum + alil[j];
jt+;

}

IR code optimization

m Local optimizations can be interleaved in different ways and applied
several times each

m Optimal optimization order is very difficult to determine

m Global optimization: optimization across basic blocks
» Implies performing data-flow analysis, i.e., determine how values

propagate through the control-flow graph
» More complicated than local optimization

	Introduction
	What is a compiler
	Compiler structure
	Course project

	Lexical analysis
	Principle
	Regular expressions
	Analysis with non-deterministic finite automata
	Analysis with deterministic finite automata
	Implementing a lexical analyzer

	Syntax analysis
	Introduction
	Context-free grammar
	Top-down parsing
	Bottom-up parsing
	Shift/reduce parsing
	LR parsers
	Operator precedence parsing
	Using ambiguous grammars

	Conclusion and some practical considerations

	Semantic analysis
	Syntax-directed translation
	Abstract syntax tree
	Type and scope checking

	Intermediate code generation
	Intermediate representations
	Illustration
	Optimization

	Code generation
	Introduction
	Instruction selection
	Register allocation
	Memory management

	Conclusion

