Compilers

Pierre Geurts

2013-2014
E-mail . p.geurts@ulg.ac.be
URL : http://www.montefiore.ulg.ac.be/
“geurts/compil.html
Bureau : 1141 (Montefiore)

Téléphone : 04.366.48.15 — 04.366.99.64



Contact information

m Teacher: Pierre Geurts
» p.geurts@ulg.ac.be, 1141 Montefiore, 04/3664815-9964
m Teaching assistant: Cyril Soldani

» soldani@run.montefiore.ulg.ac.be, |.77b Montefiore,
04/3662699

m Website:

» Course: http://www.montefiore.ulg.ac.be/~geurts/Cours/
compil/2013/compil2013_2014.html
» Project: http://www.montefiore.ulg.ac.be/~info0085


p.geurts@ulg.ac.be
soldani@run.montefiore.ulg.ac.be
http://www.montefiore.ulg.ac.be/~geurts/Cours/compil/2013/compil2013_2014.html
http://www.montefiore.ulg.ac.be/~geurts/Cours/compil/2013/compil2013_2014.html
http://www.montefiore.ulg.ac.be/~info0085

Course organization

m “Theoretical” course
» Wednesday, 14h-16h, R18, Institut Montefiore

» About 6-7 lectures
» Slides online on the course web page (available before each lecture)
» Give you the basis to achieve the project (and a little more)

m Project

» One (big) project

» Implementation of a compiler (from scratch) for a new language
designed by you.

» A few repetition lectures on Wednesday, 16h-18h (checkpoints for
your project).

» (more on this later)

m Evaluation

» Almost exclusively on the basis of the project

» Written report, short presentation of your compiler (in front of the
class), oral exam



Tentative schedule

m 5/02: Introduction
12/02: Lexical analysis

18/02: deadline 1: group composition

19/02: Syntax analysis (1) + Project presentation (Cyril)
26/02: Syntax analysis (I1)

m 5/03: Semantic analysis

m 7/03: deadline 2: language grammar

m 12/03: Intermediate code generation + Q&A on the project (Cyril)
m 19/03: Saint-Toré (?)

m 26/03: final code generation + Q&A on the project (Cyril)
m 2/04: Introduction to LLVM (1) (Cyril)

4/04: deadline 3: lexical and syntax analyses

20/04: deadline 4: homework LLVM

23/04: Introduction to LLVM (II) (Cyril)

7/05: deadline 5: full compiler and report

m 14/05: Oral presentations



References

m Books:

» Compilers: Principles, Techniques, and Tools (2nd edition),
Aho, Lam, Sethi, Ullman, Prentice Hall, 2006
http://dragonbook.stanford. edu/

» Modern compiler implementation in Java/C/ML, Andrew W. Appel,
Cambridge University Press, 1998
http://www.cs.princeton.edu/~appel/modern/

» Engineering a compiler (2nd edition), Cooper and Torczon, Morgan
Kaufmann, 2012.

m On the Web:

» Basics of compiler design, Torben Aegidius Mogensen,
Self-published, 2010
http:
//www.diku.dk/hjemmesider/ansatte/torbenm/Basics/index.html

» Compilation - Théorie des langages, Sophie Gire, Université de Brest
http://www.lisyc.univ-brest.fr/pages_perso/leparc/Etud/
Master/Compil/Doc/CoursCompilation.pdf

» Standford compilers course
http://www.stanford.edu/class/cs143/


http://dragonbook.stanford.edu/
http://www.cs.princeton.edu/~appel/modern/
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/index.html
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/index.html
http://www.lisyc.univ-brest.fr/pages_perso/leparc/Etud/Master/Compil/Doc/CoursCompilation.pdf
http://www.lisyc.univ-brest.fr/pages_perso/leparc/Etud/Master/Compil/Doc/CoursCompilation.pdf
http://www.stanford.edu/class/cs143/

Course outline

Part 1: Introduction

Part 2: Lexical analysis

Part 3: Syntax analysis

Part 4: Semantic analysis

Part 5: Intermediate code generation

Part 6: Code generation
Part 7: Conclusion



Part 1

Introduction



Outline

1. What is a compiler

2. Compiler structure

3. Course project



Compilers

m A compiler is a program (written in a language L.) that:
> reads another program written in a given source language L
» and translates (compiles) it into an equivalent program written in a
second (target) language Lo.

Lg Lo

L¢c

m The compiler also returns all errors contained in the source program

m Examples of combination:

» Lc=C, Ls =C, Lo=Assembly (gcc)
Lc=C, Ls =java, Lpo=C
Le=java, Ls =ITEX, Lo=HTML

v vyy

m Bootstrapping: L¢c = Ls



Compiler

source program

f

Compiler

'

target program

input —

Target Program

h output




Interpreter

source program
Interpreter output
input

m An interpreter is a program that:
» executes directly the operations specified by the source program on
input data provided by the user
m Usually slower at mapping inputs to outputs than compiled code
(but gives better error diagnostics)



Hybrid solution

source program

Translator

intermediate program Virtual

Machine [ OUutPut

input

m Hybrid solutions are possible
m Example: Java combines compilation and interpretation

» Java source program is compiled into an intermediate form called
bytecodes

» Bytecodes are then interpreted by a java virtual machine (or compiled
into machine language by just-in-time compilers).

m Main advantage is portability



A broader picture

source program
m Preprocessor: include files,
macros... (small compiler).

Preprocessor

m Assembler: generate machine maodificd source program
code from assembly program
(small trivial compiler).

Compiler

1

target assembly program

m Linker: relocates relative
addresses and resolves external Assembler
references.

relocatable machine code

m Loader: loads the executable file

. . library files
In memory for execution.

Linker/Loader relocatable object files

target machine code



Why study compilers?

m There is small chance that you will ever write a full compiler in your
professional carrier.
m Then why study compilers?
» To improve your culture in computer science (not a very good reason)

» To get a better intuition about high-level languages and therefore
become a better coder

» Compilation is not restricted to the translation of computer programs
into assembly code
> Translation between two high-level languages (Java to C++, Lisp to
C, Python to C, etc.)
> Translation between two arbitrary languages, not necessarily
programming ones (word to html, pdf to ps, etc.), aka
source-to-source compilers or transcompilers



Why study compilers?

» The techniques behind compilers are useful for other purposes as well

» Data structures, graph algorithms, parsing techniques, language
theory...

» There is a good chance that a computer scientist will need to write a
compiler or an interpreter for a domain-specific language
» Example: database query languages, text-formatting language, scene
description language for ray-tracers, search engine, sed/awk,
substitution in parameterized code...

» Very nice application of concepts learned in other courses

» Data structures and algorithms, introduction to the theory of
computation, computation structures...



General structure of a compiler

m Except in very rare cases, translation can not be done word by word

m Compilers are (now) very structured programs

m Typical structure of a compiler in two stages:
» Front-end/analysis:
Breaks the source program into constituent pieces
Detect syntaxic and semantic errors
Produce an intermediate representation of the language
Store in a symbol table information about procedures and variables of
the source program
» Back-end/synthesis:
» Construct the target program from the intermediate representation
and the symbol table
» Typically, the front end is independent of the target language, while
the back end is independent of the source language
» One can have a middle part that optimizes the intermediate
representation (and is thus independent of both the source and target
languages)

>
>
>
>



General structure of a compiler

source program

Lg

Intermediate representation
Ly

|

target program
Lo



Intermediate representation

The intermediate representation:

m Ensures portability (it's easy to change the source or the target
language by adapting the front-end or back-end).

m Should be at the same time easy to produce from the source
language and easy to translate into the target language

source program source program source program
1 2 3
LS LS LS

| Front-end | | Front-end | | Front-end |

!

Intermediate representation

| Back-end | | Back-end | | Back-end |
|
target program target program target program

Lo L3 L}



Detailed structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l



Lexical analysis or scanning
Input: Character stream = Qutput: token streams
m The lexical analyzer groups the characters into meaningful sequences
called lexemes.
» Example: “position = initial + rate * 60;" is broken into the
lexemes position, =, initial, +, rate, *, 60, and ;.
» (Non-significant blanks and comments are removed during scanning)

m For each lexeme, the lexical analyzer produces as output a token of
the form: (token-name, attribute-value)
» The produced tokens for “position = initial + rate * 60" are
as follows

(id, 1), (op, =), (id, 2), (op, +), (id, 3), (op, *), (num, 60)
with the symbol table:

1 | position
2 | initial
3 | rate

(In modern compilers, the table is not built anymore during lexical analysis)



Lexical analysis or scanning

In practice:
m Each token is defined by a regular expression
» Example:
Letter = A—Z]la—z
Digit =0 — 9

Identifier = Letter(Letter|Digit)*

m Lexical analysis is implemented by

> building a non deterministic finite automaton from all token regular
expressions

> eliminating non determinism

» Simplifying it

m There exist automatic tools to do that
» Examples: lex, flex...



Lexical analysis or scanning

position = initial + rate * 60

Lexical Analyzer

(id,1), (op, =), (id, 2), (op, +), (id, 2), (op, +), (num, 60)



Syntax analysis or parsing

Input: token stream = QOutput: syntax tree

m Parsing groups tokens into grammatical phrases

m The result is represented in a parse tree, ie. a tree-like
representation of the grammatical structure of the token stream.
m Example:

» Grammar for assignement statement:
asst-stmt — id = exp ;
exp — number | id | expr 4+ expr

» Example parse tree:

assignment
/ Statement \
identifier expression H
1
3 / I ™~
expression + expression
! 1

identifier number
I |
y 3



Syntax analysis or parsing

m The parse tree is often simplified into a (abstract) syntax tree:
X3 +
y 3

m This tree is used as a base structure for all subsequent phases

m On parsing algorithms:
» Languages are defined by context-free grammars
» Parse and syntax trees are constructed by building automatically a
(kind of) pushdown automaton from the grammar
» Typically, these algorithms only work for a (large) subclass of
context-free grammars



Lexical versus syntax analysis

m The division between scanning and parsing is somewhat arbitrary.
m Regular expressions could be represented by context-free grammars

m Mathematical expression grammar:

EXPRESSION — EXPRESSION OP2 EXPRESSION
Syntax EXPRESSION — NUMBER

EXPRESSION — (EXPRESSION)

OoP2 — =]/
Lexical NUMBER — DIGIT | DIGIT NUMBER

DIGIT 5 0[1/2/3/4/5/6]7/8[9

m The main goal of lexical analysis is to simplify the syntax analysis
(and the syntax tree).



Syntax analysis or parsing

position = initial + rate * 60

[ Lexical Analyzer ]

(id, 1), (op, =), (id, 2), (op, +), (id, 2), (op, =), (num, 60)

I Syntax Analyzer 1




Semantic analysis

Input: syntax tree = Output: (augmented) syntax tree

m Context-free grammar can not represent all language constraints,
e.g. non local/context-dependent relations.

m Semantic/contextual analysis checks the source program for
semantic consistency with the language definition.
» A variable can not be used without having been defined
The same variable can not be defined twice
The number of arguments of a function should match its definition
One can not multiply a number and a string

vV vy vy

(none of these constraints can be represented in a context-free
grammar)



Semantic analysis

m Semantic analysis also carries out type checking:

» Each operator should have matching operands
» In some cases, type conversions (coercions) might be possible (e.g.,

for numbers)
m Example: position = initial + rate * 60
If the variables position, initial, and rate are defined as
floating-point variables and 60 was read as an integer, it may be
converted into a floating-point number.

. _— = ~
(id, 1) +
. / \
(id, 2) DL
id, 3) inttofloat

|
60



Semantic analysis

position = initial + rate * 60

¥
l Lexical Analyzer 4'

(id. 1), (op, =), (id.2), (op, +). (id, 2), (op, ), (num, 60)

‘ Syntax Analyzer \

) = ~_
(id, 1) +
(d2y” e
Gid,37 60

v
L Semantic Analyzer
i

. = ~_
(d, 15 +
(4,2 e
(id, 3y inttofloat
|
60




Intermediate code generation

Input: syntax tree = Qutput: Intermediate representation

m A compiler typically uses one or more intermediate representations

» Syntax trees are a form of intermediate representation used for syntax
and semantic analysis

m After syntax and semantic analysis, many compilers generate a
low-level or machine-like intermediate representation

m Two important properties of this intermediate representation:

» Easy to produce
» Easy to translate into the target machine code



Intermediate code generation

m Example: Three-address code with instructions of the form
X =y op 2.
» Assembly-like instructions with three operands (at most) per
instruction
» Assumes an unlimited number of registers

m Translation of the syntax tree

. _— = \
(id, 1) +
Gd,2y” T
(id, 3) inttofloat
|

60

t1 = inttofloat (60)
t2 id3 * t1

t3 = id2 + t2

idl = t3



Intermediate code generation

position = initial + rate * 60

| Lexical Analyzer ‘

(id, 1), (op, =), (id. 2), (op, +), (id, 2). (op, ). (num, 60)

| Syntax Analyzer ‘

(id,1y" T~
' (d2y” e
(id, 35 60
¥

‘ Semantic Analyzer —|

Gd,1y7 S
(d,2y e
(id,Sr inttofloat
|
] 60
‘Etermediate Code Generator

t1 = inttofloat(60)
£2 = id3 * t1
t3 = id2 + t2

idl = t3



Intermediate code optimization
Input: Intermediate representation = Output: (better) intermediate
representation
m Goal: improve the intermediate code (to get better target code at
the end)

Machine-independent optimization (versus machine-dependent
optimization of the final code)

m Different criteria: efficiency, code simplicity, power consumption. . .
m Example:

tl = inttofloat(60)

t2 = id3 * t1

t3 = id2 + t2

idl = t3

tl = id3 * 60.0
idl = id2 + t1
Optimization is complex and very time consuming

Very important step in modern compilers



Intermediate code optimization

position = initial + rate * 60

Lexical Analyzer

(id. 1), (op, =), (id.2). (op, +), {id. 2). (op. +), (num, 60)

Syntax Analyzer

G,y T
T e
(id, 37 60

Semantic Analyzer

id, 1y 4
G2 e
(id,3  inttofloat

I

Intermediate Code Generator

t1 = inttofloat (60)
t2 = id3 * t1

t3 = id2 + t2

idl = t3

i

Code Optimizer

;

t1 = id3 * 60.0
idl = id2 + t1



Code generation
Input: Intermediate representation = Qutput: target machine code

m From the intermediate code to real assembly code for the target
machine

m Needs to take into account specifities of the target machine, eg.,
number of registers, operators in instruction, memory management.

m One crucial aspect is register allocation

m For our example:

tl = id3 * 60.0
idl = id2 + t1

=

LDF R2, id3

MULF R2, R2, #60.0
LDF R1, id2

ADDF R1, R1, R2
STF id1,R1



Final

code generation

position = initial + rate * 60

Lexical Analyzer

(id, 1), (op.

Semantic Analyzer

=).(id.2). {op. +). {id. 2). (op. ). (num, 60)

Syntax Analyzer

(id,1y

Intermediate Code Generator

(id, ,2)/ TS

(id, 3) ‘nttofloat
|
60

t1 = inttofloat (60)
2 = id3 * t1

€3 = id2 + £2

idl = t3

Code Optimizer
S

Code Generator

1= id3 + 60.0
idl = id2 + t1

LDF R2, id3

MULF R2, R2, #60.0
LDF Ri, id2

ADDF R1, R1, R2
STF id1, Rl



Symbol table

1 | position
initial
3 | rate

m Records all variable names used in the source program
m Collects information about each symbol:
Type information

v

» Storage location (of the variable in the compiled program)

» Scope

» For function symbol: number and types of arguments and the type
returned

m Built during lexical analysis (old way) or in a separate phase
(modern way).

m Needs to allow quick retrieval and storage of a symbol and its
attached information in the table

m Implementation by a dictionary structure (binary search tree,
hash-table,...).



Error handling

m Each phase may produce errors.

m A good compiler should report them and provide as much
information as possible to the user.

» Not only “syntax error”.

m ldeally, the compiler should not stop after the first error but should
continue and detect several errors at once (to ease debugging).



Phases and Passes

m The description of the different phases makes them look sequential

m In practice, one can combine several phases into one pass (i.e., one
complete reading of an input file or traversal of the intermediate
structures).

m For example:

» One pass through the initial code for lexical analysis, syntax analysis,
semantic analysis, and intermediate code generation (front-end).

» One or several passes through the intermediate representation for
code optimization (optional)

» One pass through the intermediate representation for the machine
code generation (back-end)



Compiler-construction tools

m First compilers were written from scratch, and considered as very
difficult programs to write.
» The first fortran compiler (IBM, 1957) required 18 man-years of work

m There exist now several theoretical tools and softwares to automate
several phases of the compiler.

» Lexical analysis: regular expressions and finite state automata
(Software: (f)lex)

» Syntax analysis: grammars and pushdown automata (Softwares:
bison /yacc, ANTLR)

» Semantic analysis and intermediate code generation: syntax directed
translation

» Code optimization: data flow analysis



This course

m Although the back-end is more and more important in modern
compilers, we will insist more on the front-end and general principles

m Outline;

> Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation (syntax directed translation)
Some notions about code generation and optimization

vV vYyVvyy



Compiler project

Implement a “complete” compiler

By group of 1, 2, or 3 students

You will be asked to invent a new programming language
» Constraint: you should be able to implement quicksort in this
language
» Otherwise, you are totally free (be creative! but also carefull)

The destination language will be LLVM, a popular modern
intermediate language

» http://llvm.org/

Implementation language L. can be chosen among ¢, c++, java,
python, javascript, ocaml, scheme, and lisp.


http://llvm.org/

Compiler project

Deadlines (tentative):

Tuesday 18/02: send group composition

Friday 7/03: language description, quicksort, and grammar
Friday 4/04: lexical and syntax analysis

Sunday 20/04: homework LLVM

Wednesday 7/05: full compiler and report

Wednesday 14/05: oral presentation of the compiler

Try to be ahead of the deadlines!



