
Part 3

Syntax analysis

Syntax analysis 101

Outline

1. Introduction

2. Context-free grammar

3. Top-down parsing

4. Bottom-up parsing

5. Conclusion and some practical considerations

Syntax analysis 102

Structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code

Syntax analysis 103

Syntax analysis

Goals:
I recombine the tokens provided by the lexical analysis into a structure

(called a syntax tree)
I Reject invalid texts by reporting syntax errors.

Like lexical analysis, syntax analysis is based on
I the definition of valid programs based on some formal languages,
I the derivation of an algorithm to detect valid words (programs) from

this language

Formal language: context-free grammars

Two main algorithm families: Top-down parsing and Bottom-up
parsing

Syntax analysis 104

Example

w h i l e (i < z) \n \t + i p ;

while (ip < z)
 ++ip;

p + +

T_While (T_Ident < T_Ident) ++ T_Ident

ip z ip

(Keith Schwarz)

Syntax analysis 105

Example

w h i l e (i < z) \n \t + i p ;

while (ip < z)
 ++ip;

p + +

T_While (T_Ident < T_Ident) ++ T_Ident

ip z ip

While

++

Ident

<

Ident Ident

ip z ip

(Keith Schwarz)

Syntax analysis 106

Reminder: grammar
A grammar is a 4-tuple G = (V , ⌃, R , S), where:

I V is an alphabet,
I ⌃ ✓ V is the set of terminal symbols (V � ⌃ is the set of

nonterminal symbols),
I R ✓ (V + ⇥ V ⇤) is a finite set of production rules
I S 2 V � ⌃ is the start symbol.

Notations:
I Nonterminal symbols are represented by uppercase letters: A,B ,. . .
I Terminal symbols are represented by lowercase letters: a,b,. . .
I Start symbol written as S
I Empty word: ✏
I A rule (↵, �) 2 R : ↵ ! �
I Rule combination: A ! ↵|�

Example: ⌃ = {a, b, c}, V � ⌃ = {S , R}, R =

S ! R

S ! aSc

R ! ✏

R ! RbR

Syntax analysis 107

Reminder: derivation and language

Definitions:

v can be derived in one step from u by G (noted v) u) i↵
u = xu0y , v = xv 0y , and u0 ! v 0

v can be derived in several steps from u by G (noted v
⇤) u) i↵

9k � 0 and v0 . . . vk 2 V + such that u = v0, v = vk , vi) vi+1 for
0  i < k

The language generated by a grammar G is the set of words that
can be derived from the start symbol:

L = {w 2 ⌃⇤|S ⇤) w}

Example: derivation of aabcc from the previous grammar

S) aSc) aaScc) aaRcc) aaRbRcc) aabRcc) aabcc

Syntax analysis 108

Reminder: type of grammars

Chomsky’s grammar hierarchy:

Type 0: free or unrestricted grammars

Type 1: context sensitive grammars
I productions of the form uXw ! uvw , where u, v , w are arbitrary

strings of symbols in V , with v non-null, and X a single nonterminal

Type 2: context-free grammars (CFG)
I productions of the form X ! v where v is an arbitrary string of

symbols in V , and X a single nonterminal.

Type 3: regular grammars
I Productions of the form X ! a, X ! aY or X ! ✏ where X and Y

are nonterminals and a is a terminal (equivalent to regular expressions
and finite state automata)

Syntax analysis 109

Context-free grammars

Regular languages are too limited for representing programming
languages.

Examples of languages not representable by a regular expression:
I L = {anbn|n � 0}
I Balanced parentheses

L = {✏, (), (()), ()(), ((())), (())() . . .}
I Scheme programs

L = {1, 2, 3, . . . , (lambda(x)(+x1))}

Context-free grammars are typically used for describing
programming language syntaxes.

I They are su�cient for most languages
I They lead to e�cient parsing algorithms

Syntax analysis 110

Context-free grammars for programming languages

Nonterminals of the grammars are typically the tokens derived by
the lexical analysis (in bold in rules)

Divide the language into several syntactic categories (sub-languages)
Common syntactic categories

I Expressions: calculation of values
I Statements: express actions that occur in a particular sequence
I Declarations: express properties of names used in other parts of the

program

Exp ! Exp + Exp

Exp ! Exp � Exp

Exp ! Exp ⇤ Exp

Exp ! Exp/Exp

Exp ! num

Exp ! id

Exp ! (Exp)

Stat ! id := Exp

Stat ! Stat; Stat

Stat ! if Exp then Stat Else Stat

Stat ! if Exp then Stat

Syntax analysis 111

Derivation for context-free grammar

Like for a general grammar

Because there is only one nonterminal in the LHS of each rule, their
order of application does not matter

Two particular derivations
I left-most: always expand first the left-most nonterminal

(important for parsing)
I right-most: always expand first the right-most nonterminal

(canonical derivation)

Examples

S ! aTb|c
T ! cSS |S

w = accacbb

Left-most derivation:
S) aTb) acSSb) accSb)
accaTbb) accaSbb) accacbb

Right-most derivation:
S) aTb) acSSb) acSaTbb)
acSaSbb) acSacbb) accacbb

Syntax analysis 112

Parse tree

A parse tree abstracts the order of application of the rules
I Each interior node represents the application of a production
I For a rule A ! X1X2 . . . Xk , the interior node is labeled by A and the

children from left to right by X1, X2, . . . , Xk .
I Leaves are labeled by nonterminals or terminals and read from left to

right represent a string generated by the grammar

A derivation encodes how to produce the input

A parse tree encodes the structure of the input

Syntax analysis = recovering the parse tree from the tokens

Syntax analysis 113

Parse trees

S ! aTb|c
T ! cSS |S

w = accacbb

Left-most derivation:
S) aTb) acSSb) accSb)
accaTbb) accaSbb) accacbb

Right-most derivation:
S) aTb) acSSb) acSaTbb)
acSaSbb) acSacbb) accacbb

S

a T b

c S S

c a T b

S

c

instr instr

if (expr) instr if (expr) instr else instr

y<10 a=1 a=0 y<10 a=1

x>10 if (expr) instr else instr if (expr) instr a=0x>10

Syntax analysis 114

Parse tree

T ! R

T ! aTc

R ! ✏

R ! RbR

3.3. DERIVATION 61

T
�

�
�
�

a T
�

�
�
�

c

a T c

R
�

�
�
�

R
�

�
�
�

b R

R b R
�

�
�
�

�

� R b R

� �

Figure 3.7: Syntax tree for the string aabbbcc using grammar 3.4

T
�

�
�
�

a T
�

�
�
�

c

a T c

R
�

�
�
�

R b R
�

�
�
�

� R b R
�

�
�
�

� R b R

� �

Figure 3.8: Alternative syntax tree for the string aabbbcc using grammar 3.4

3.3. DERIVATION 61

T
�

�
�
�

a T
�

�
�
�

c

a T c

R
�

�
�
�

R
�

�
�
�

b R

R b R
�

�
�
�

�

� R b R

� �

Figure 3.7: Syntax tree for the string aabbbcc using grammar 3.4

T
�

�
�
�

a T
�

�
�
�

c

a T c

R
�

�
�
�

R b R
�

�
�
�

� R b R
�

�
�
�

� R b R

� �

Figure 3.8: Alternative syntax tree for the string aabbbcc using grammar 3.4
Syntax analysis 115

Ambiguity

The order of derivation does not matter but the chosen production
rules do

Definition: A CFG is ambiguous if there is at least one string with
two or more parse trees

Ambiguity is not problematic when dealing with flat strings. It is
when dealing with language semantics

Exp

2 3

4

⇤

+

ExpExp

ExpExp

Exp

2

3 4

⇤

+ ExpExp

ExpExp

6=

Syntax analysis 116

Detecting and solving Ambiguity

There is no mechanical way to determine if a grammar is
(un)ambiguous (this is an undecidable problem)

In most practical cases however, it is easy to detect and prove
ambiguity.
E.g., any grammar containing N ! N↵N is ambiguous (two parse
trees for N↵N↵N).

How to deal with ambiguities?
I Modify the grammar to make it unambiguous
I Handle these ambiguities in the parsing algorithm

Two common sources of ambiguity in programming languages
I Expression syntax (operator precedences)
I Dangling else

Syntax analysis 117

Operator precedence

This expression grammar is ambiguous

Exp ! Exp + Exp

Exp ! Exp � Exp

Exp ! Exp ⇤ Exp

Exp ! Exp/Exp

Exp ! num

Exp ! (Exp)

(it contains N ! N↵N)

Parsing of 2 + 3 ⇤ 4

Exp

2 3

4

⇤

+

ExpExp

ExpExp

Exp

2

3 4

⇤

+ ExpExp

ExpExp

Syntax analysis 118

Operator associativity

Types of operator associativity:
I An operator � is left-associative if a � b � c must be evaluated from

left to right, i.e., as (a � b) � c
I An operator � is right-associative if a � b � c must be evaluated

from right to left, i.e., as a � (b � c)
I An operator � is non-associative if expressions of the form a � b � c

are not allowed

Examples:
I � and / are typically left-associative
I + and ⇤ are mathematically associative (left or right). By convention,

we take them left-associative as well
I List construction in functional languages is right-associative
I Arrows operator in C is right-associative (a->b->c is equivalent to

a->(b->c))
I In Pascal, comparison operators are non-associative (you can not

write 2 < 3 < 4)

Syntax analysis 119

Rewriting ambiguous expression grammars

Let’s consider the following ambiguous grammar:

E ! E � E

E ! num

If � is left-associative, we rewrite it as a left-recursive (a recursive
reference only to the left). If � is right-associative, we rewrite it as
a right-recursive (a recursive reference only to the right).

� left-associative

E ! E � E 0

E ! E 0

E 0 ! num

� right-associative

E ! E 0 � E

E ! E 0

E 0 ! num

Syntax analysis 120

Mixing operators of di↵erent precedence levels

Introduce a di↵erent nonterminal for each precedence level

Ambiguous

Exp ! Exp + Exp

Exp ! Exp � Exp

Exp ! Exp ⇤ Exp

Exp ! Exp/Exp

Exp ! num

Exp ! (Exp)

Non-ambiguous

Exp ! Exp + Exp2

Exp ! Exp � Exp2

Exp ! Exp2

Exp2 ! Exp2 ⇤ Exp3

Exp2 ! Exp2/Exp3

Exp2 ! Exp3

Exp3 ! num

Exp3 ! (Exp)

Parse tree for 2 + 3 ⇤ 4
3.5. OTHER SOURCES OF AMBIGUITY 67

Exp
�

�
�
�

Exp + Exp2
�

�
�
�

Exp2 Exp2 * Exp3

Exp3 Exp3 4

2 3

Figure 3.12: Syntax tree for 2+3*4 using grammar 3.11

parse, for example,

if p then if q then s1 else s2

According to the grammar, the else can equally well match either if. The usual
convention is that an else matches the closest not previously matched if, which,
in the example, will make the else match the second if.

How do we make this clear in the grammar? We can treat if, then and else
as a kind of right-associative operators, as this would make them group to the right,
making an if-then match the closest else. However, the grammar transforma-
tions shown in section 3.4 can not directly be applied to grammar 3.3, as the pro-
ductions for conditionals do not have the right form.

Instead we use the following observation: When an if and an else match, all
ifs that occur between these must have matching elses. This can easily be proven
by assuming otherwise and concluding that this leads to a contradiction.

Hence, we make two nonterminals: One for matched (i.e. with else-part)
conditionals and one for unmatched (i.e. without else-part) conditionals. The
result is shown in grammar 3.13. This grammar also resolves the associativity of
semicolon (right) and the precedence of if over semicolon.

An alternative to rewriting grammars to resolve ambiguity is to use an ambigu-
ous grammar and resolve conflicts by using precedence rules during parsing. We
shall look into this in section 3.16.

All cases of ambiguity must be treated carefully: It is not enough that we elim-
inate ambiguity, we must do so in a way that results in the desired structure: The
structure of arithmetic expressions is significant, and it makes a difference to which
if an else is matched.

Suggested exercises: 3.3 (focusing now on making the grammar unambiguous).

Syntax analysis 121

Dangling else

Else part of a condition is typically optional

Stat ! if Exp then Stat Else Stat

Stat ! if Exp then Stat

How to match if p then if q then s1 else s2?

Convention: else matches the closest not previously matched if.

Unambiguous grammar:

Stat ! Matched |Unmatched

Matched ! if Exp then Matched else Matched

Matched ! ”Any other statement”

Unmatched ! if Exp then Stat

Unmatched ! if Exp then Matched else Unmatched

Syntax analysis 122

End-of-file marker
Parsers must read not only terminal symbols such as +,�, num ,
but also the end-of-file
We typically use $ to represent end of file
If S is the start symbol of the grammar, then a new start symbol S 0

is added with the following rules S 0 ! S$.

S ! Exp$

Exp ! Exp + Exp2

Exp ! Exp � Exp2

Exp ! Exp2

Exp2 ! Exp2 ⇤ Exp3

Exp2 ! Exp2/Exp3

Exp2 ! Exp3

Exp3 ! num

Exp3 ! (Exp)

Syntax analysis 123

Non-context free languages

Some syntactic constructs from typical programming languages
cannot be specified with CFG

Example 1: ensuring that a variable is declared before its use
I L1 = {wcw |w is in (a|b)⇤} is not context-free
I In C and Java, there is one token for all identifiers

Example 2: checking that a function is called with the right number
of arguments

I L2 = {anbmcndm|n � 1 and m � 1} is not context-free
I In C, the grammar does not count the number of function arguments

stmt ! id (expr list)

expr list ! expr list, expr

| expr

These constructs are typically dealt with during semantic analysis

Syntax analysis 124

Backus-Naur Form

A text format for describing context-free languages

We ask you to provide the source grammar for your project in this
format

Example:

More information:
http://en.wikipedia.org/wiki/Backus-Naur_form

Syntax analysis 125

http://en.wikipedia.org/wiki/Backus-Naur_form

Outline

1. Introduction

2. Context-free grammar

3. Top-down parsing

4. Bottom-up parsing

5. Conclusion and some practical considerations

Syntax analysis 126

Syntax analysis

Goals:
I Checking that a program is accepted by the context-free grammar
I Building the parse tree
I Reporting syntax errors

Two ways:
I Top-down: from the start symbol to the word
I Bottom-up: from the word to the start symbol

Syntax analysis 127

Top-down and bottom-up: example

Grammar:

S ! AB

A ! aA|✏
B ! b|bB

Top-down parsing of aaab
S
AB S ! AB
aAB A ! aA
aaAB A ! aA
aaaAB A ! aA
aaa✏B A ! ✏
aaab B ! b

Bottom-up parsing of aaab
aaab
aaa✏b (insert ✏)
aaaAb A ! ✏
aaAb A ! aA
aAb A ! aA
Ab A ! aA
AB B ! b
S S ! AB

Syntax analysis 128

A naive top-down parser

A very naive parsing algorithm:
I Generate all possible parse trees until you get one that matches your

input
I To generate all parse trees:

1. Start with the root of the parse tree (the start symbol of the
grammar)

2. Choose a non-terminal A at one leaf of the current parse tree
3. Choose a production having that non-terminal as LHS, eg.,

A ! X1X2 . . . Xk

4. Expand the tree by making X1,X2,. . . ,Xk , the children of A.
5. Repeat at step 2 until all leaves are terminals
6. Repeat the whole procedure by changing the productions chosen at

step 3

(Note: the choice of the non-terminal in Step 2 is irrevelant for a
context-free grammar)

This algorithm is very ine�cient, does not always terminate, etc.

Syntax analysis 129

Top-down parsing with backtracking

Modifications of the previous algorithm:
1. Depth-first development of the parse tree (corresponding to a

left-most derivation)
2. Process the terminals in the RHS during the development of the tree,

checking that they match the input
3. If they don’t at some step, stop expansion and restart at the previous

non-terminal with another production rules (backtracking)

Depth-first can be implemented by storing the unprocessed symbols
on a stack

Because of the left-most derivation, the inputs can be processed
from left to right

Syntax analysis 130

Backtracking example

S ! bab

S ! bA

A ! d

A ! cA

w = bcd

Stack Inputs Action
S bcd Try S ! bab

bab bcd match b
ab cd dead-end, backtrack
S bcd Try S ! bA

bA bcd match b
A cd Try A ! d
d cd dead-end, backtrack
A cd Try A ! cA

cA cd match c
A d Try A ! d
d d match d

Success!

Syntax analysis 131

Top-down parsing with backtracking

General algorithm (to match a word w):
Create a stack with the start symbol
X = pop()
a = getnexttoken()
while (True)

if (X is a nonterminal)
Pick next rule to expand X ! Y1Y2 . . . Yk

Push Yk , Yk�1, . . . , Y1 on the stack
X = pop()

elseif (X == $ and a == $)
Accept the input

elseif (X == a)
a = getnexttoken()
X = pop()

else
Backtrack

Ok for small grammars but still untractable and very slow for large
grammars

Worst-case exponential time in case of syntax error

Syntax analysis 132

Another example

S ! aSbT

S ! cT

S ! d

T ! aT

T ! bS

T ! c

w = accbbadbc

Stack Inputs Action
S accbbadbc Try S ! aSbT

aSbT accbbadbc match a
SbT accbbadbc Try S ! aSbT

aSbTbT accbbadbc match a
SbTbT ccbbadbc Try S ! cT

cTbTbT ccbbadbc match c
TbTbT cbbadbc Try T ! c
cbTbT cbbadbc match cb

TbT badbc Try T ! bS
bSbT badbc match b
SbT adbc Try S ! aSbT

aSbT adbc match a
.

c c match c
Success!

Syntax analysis 133

Predictive parsing

Predictive parser:
I In the previous example, the production rule to apply can be predicted

based solely on the next input symbol and the current nonterminal
I Much faster than backtracking but this trick works only for some

specific grammars

Grammars for which top-down predictive parsing is possible by
looking at the next symbol are called LL(1) grammars:

I L: left-to-right scan of the tokens
I L: leftmost derivation
I (1): One token of lookahead

Predicted rules are stored in a parsing table M:
I M[X , a] stores the rule to apply when the nonterminal X is on the

stack and the next input terminal is a

Syntax analysis 134

Example: parse table

LL(1) Parse Tables
S → E$
E → int
E → (E Op E)
Op → +
Op → *

int () + * $

S

E

Op

E$ E$

int (E Op E)

*+

(Keith Schwarz)

Syntax analysis 135

Example: successfull parsing

1. S → E$
2. E → int
3. E → (E Op E)
4. Op → +
5. Op → -

(int + (int * int))$

(int + (int * int))$

(int + (int * int))$

int + (int * int))$

int + (int * int))$

+ (int * int))$

+ (int * int))$

(int * int))$

(int * int))$

int * int))$

int * int))$int * int))$

* int))$

* int))$

int))$

int))$

))$

)$

$

S
E$

(E Op E)$
E Op E)$
int Op E)$

Op E)$
+ E)$
E)$

(E Op E))$
E Op E))$
int Op E))$

Op E))$
* E))$
E))$
int))$

))$

)$

$

int () + * $

S

E

Op

1 1

2 3

54

Predictive Top-Down Parsing

(Keith Schwarz)

Syntax analysis 136

Example: erroneous parsing

1. S → E$
2. E → int
3. E → (E Op E)
4. Op → +
5. Op → -

(int (int))$

(int (int))$

(int (int))$

int (int))$

int (int))$

(int))$

S
E$

(E Op E)$
E Op E)$
int Op E)$

Op E)$

int () + * $

S

E

Op

1 1

2 3

54

Error Detection II

(Keith Schwarz)

Syntax analysis 137

Table-driven predictive parser

(Dragonbook)

Syntax analysis 138

Table-driven predictive parser

Create a stack with the start symbol
X = pop()
a = getnexttoken()
while (True)

if (X is a nonterminal)
if (M[X , a] == NULL)

Error
elseif (M[X , a] == X ! Y1Y2 . . . Yk)

Push Yk , Yk�1, . . . , Y1 on the stack
X = pop()

elseif (X == $ and a == $)
Accept the input

elseif (X == a)
a = getnexttoken()
X = pop()

else
Error

Syntax analysis 139

LL(1) grammars and parsing

Three questions we need to address:

How to build the table for a given grammar?

How to know if a grammar is LL(1)?

How to change a grammar to make it LL(1)?

Syntax analysis 140

Building the table

It is useful to define three functions
(with A a nonterminal and ↵ any sequence of grammar symbols):

I Nullable(↵) is true if ↵
⇤) ✏

I First(↵) returns the set of terminals c such that ↵
⇤) c� for some

(possibly empty) sequence � of grammar symbols
I Follow(A) returns the set of terminals a such that S

⇤) ↵Aa�, where
↵ and � are (possibly empty) sequences of grammar symbols

(c 2 First(A) and a 2 Follow(A))

Syntax analysis 141

Building the table from First, Follow , and Nullable

To construct the table:

Start with the empty table

For each production A ! ↵:
I add A ! ↵ to M[A, a] for each terminal a in First(↵)
I If Nullable(↵), add A ! ↵ to M[A, a] for each a in Follow(A)

First rule is obvious. Illustration of the second rule:

S ! Ab

A ! c

A ! ✏

Nullable(A) = True

First(A) = {c}
Follow(A) = {b}

M[A, b] = A ! ✏

Syntax analysis 142

LL(1) grammars

Three situations:
I M[A, a] is empty: no production is appropriate. We can not parse the

sentence and have to report a syntax error
I M[A, a] contains one entry: perfect !
I M[A, a] contains two entries: the grammar is not appropriate for

predictive parsing (with one token lookahead)

Definition: A grammar is LL(1) if its parsing table contains at most
one entry in each cell or, equivalently, if for all production pairs
A ! ↵|�

I First(↵) \ First(�) = ;,
I Nullable(↵) and Nullable(�) are not both true,
I if Nullable(�), then First(↵) \ Follow(A) = ;

Example of a non LL(1) grammar:

S ! Ab

A ! b

A ! ✏

Syntax analysis 143

Computing Nullable

Algorithm to compute Nullable for all grammar symbols

Initialize Nullable to False.
repeat

for each production X ! Y1Y2 . . . Yk

if Y1 . . . Yk are all nullable (or if k = 0)
Nullable(X) = True

until Nullable did not change in this iteration.

Algorithm to compute Nullable for any string ↵ = X1X2 . . . Xk :

if (X1 . . . Xk are all nullable)
Nullable(↵) = True

else
Nullable(↵) = False

Syntax analysis 144

Computing First

Algorithm to compute First for all grammar symbols

Initialize First to empty sets. for each terminal Z
First(Z) = {Z}

repeat
for each production X ! Y1Y2 . . . Yk

for i = 1 to k
if Y1. . . Yi�1 are all nullable (or i = 1)

First(X) = First(X) [First(Yi)
until First did not change in this iteration.

Algorithm to compute First for any string ↵ = X1X2 . . . Xk :

Initialize First(↵) = ;
for i = 1 to k

if X1. . . Xi�1 are all nullable (or i = 1)
First(↵) = First(↵) [First(Xi)

Syntax analysis 145

Computing Follow

To compute Follow for all nonterminal symbols

Initialize Follow to empty sets.
repeat

for each production X ! Y1Y2 . . . Yk

for i = 1 to k , for j = i + 1 to k
if Yi+1. . . Yk are all nullable (or i = k)

Follow(Yi) = Follow(Yi) [Follow(X)
if Yi+1. . . Yj�1 are all nullable (or i + 1 = j)

Follow(Yi) = Follow(Yi) [First(Yj)
until Follow did not change in this iteration.

Syntax analysis 146

Example
Compute the parsing table for the following grammar:

S ! E$

E ! TE 0

E 0 ! +TE 0

E 0 ! �TE 0

E 0 ! ✏

T ! FT 0

T 0 ! ⇤FT 0

T 0 ! /FT 0

T 0 ! ✏

F ! id

F ! num

F ! (E)

Syntax analysis 147

Example

Nonterminals Nullable First Follow

S False {(, id , num } ;
E False {(, id , num } {), $}
E’ True {+, �} {), $}
T False {(, id , num } {), +, �, $}
T’ True {⇤, /} {), +, �, $}
F False {(, id , num } {), ⇤, /, +, �, $}

+ ⇤ id () $
S S ! E$ S ! E$
E E ! TE 0 E ! TE 0

E’ E 0 ! +TE 0 E 0 ! ✏ E 0 ! ✏
T T ! FT 0 T ! FT 0

T’ T 0 ! ✏ T 0 ! ⇤FT 0 T 0 ! ✏ T 0 ! ✏
F F ! id F ! (E)

(�,/, and num are treated similarly)

Syntax analysis 148

LL(1) parsing summary so far

Construction of a LL(1) parser from a CFG grammar

Eliminate ambiguity

Add an extra start production S 0 ! S$ to the grammar

Calculate First for every production and Follow for every
nonterminal

Calculate the parsing table

Check that the grammar is LL(1)

Next course:

Transformations of a grammar to make it LL(1)

Recursive implementation of the predictive parser

Bottom-up parsing techniques

Syntax analysis 149

