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» recombine the tokens provided by the lexical analysis into a structure
(called a syntax tree)
» Reject invalid texts by reporting syntax errors.

m Like lexical analysis, syntax analysis is based on
> the definition of valid programs based on some formal languages,
» the derivation of an algorithm to detect valid words (programs) from
this language

Formal language: context-free grammars

m Two main algorithm families: Top-down parsing and Bottom-up

parsing



Example

T While

il

T Ident

T Ident

]

++

T Ident
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ip

(win[i1]e] [(]ifp[ [<[ [z Nop\e[+[+]1]p]:]

while (ip < z)

++ip;

(Keith Schwarz)



Example

T While E T Ident T_Ident D ++ T Ident

ip z ip

winlifife] [(i]p[ [<] [z[)\ap\t[+][+]i]p[/]

while (ip < z)
++ip;

(Keith Schwarz)



Reminder: grammar

m A grammar is a 4-tuple G = (V,X,R,S), where:
» V is an alphabet,
» Y C V is the set of terminal symbols (V — X is the set of
nonterminal symbols),
» RC (V' x V*)is a finite set of production rules
» S €V — X is the start symbol.
m Notations:

» Nonterminal symbols are represented by uppercase letters: A,B,...

Terminal symbols are represented by lowercase letters: a,b,. ..
Start symbol written as S

Empty word: €

Arule (a,5) e R:aa— f

Rule combination: A — «|f

m Example: ¥ ={a,b,c}, V-X={S,R}, R=

>
>
>
>

v

S - R

S — aSc
R — ¢

R — RbR



Reminder: derivation and language

Definitions:

m v can be derived in one step from u by G (noted v = u) iff
u=xuy, v=xvy, and v — Vv

m v can be derived in several steps from u by G (noted v = u) iff
Jk>0and vg... vk € VT such that u = vg, v = v, v; = vj 1 for
0<i<k

m The language generated by a grammar G is the set of words that
can be derived from the start symbol:

L={wex*S>w}
Example: derivation of aabcc from the previous grammar

S = aSc = aaScc = aaRcc = aaRbRcc = aabRcc = aabcc



Reminder: type of grammars

Chomsky's grammar hierarchy:

m Type O: free or unrestricted grammars
m Type 1: context sensitive grammars
» productions of the form uXw — uvw, where u, v, w are arbitrary
strings of symbols in V/, with v non-null, and X a single nonterminal
m Type 2: context-free grammars (CFG)
» productions of the form X — v where v is an arbitrary string of
symbols in V/, and X a single nonterminal.
m Type 3: regular grammars

» Productions of the form X — a, X — aY or X — ¢ where X and Y
are nonterminals and a is a terminal (equivalent to regular expressions
and finite state automata)



Context-free grammars

m Regular languages are too limited for representing programming
languages.
m Examples of languages not representable by a regular expression:
» L={a"b"|n >0}
» Balanced parentheses

L={e0,(0), 00, (0N (D)0 ---}

» Scheme programs
L=1{1,2,3,...,(lambda(x)(+x1))}

m Context-free grammars are typically used for describing
programming language syntaxes.
» They are sufficient for most languages
» They lead to efficient parsing algorithms



Context-free grammars for programming languages

m Nonterminals of the grammars are typically the tokens derived by
the lexical analysis (in bold in rules)

m Divide the language into several syntactic categories (sub-languages)

m Common syntactic categories

» Expressions: calculation of values
» Statements: express actions that occur in a particular sequence
» Declarations: express properties of names used in other parts of the

program
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Exp — Exp
Exp x Exp
Exp/Exp
num

id

(Exp)

Stat
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id := Exp
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if Exp then Stat Else Stat
if Exp then Stat



Derivation for context-free grammar

m Like for a general grammar

m Because there is only one nonterminal in the LHS of each rule, their
order of application does not matter
m Two particular derivations

> left-most: always expand first the left-most nonterminal
(important for parsing)

» right-most: always expand first the right-most nonterminal
(canonical derivation)

m Examples

Left-most derivation:
S = aTb = acS5b = accSb =
S — aTblc accaTbb = accaSbb = accacbb

T — cS5|S Right-most derivation:

S = aTb = acS5Sb = acSaTbb =

= bb
w = accac acSaSbb = acSacbb = accacbb



Parse tree

A parse tree abstracts the order of application of the rules
» Each interior node represents the application of a production
» For arule A— X1 X5... Xk, the interior node is labeled by A and the
children from left to right by Xi, X5, ..., Xk.
» Leaves are labeled by nonterminals or terminals and read from left to
right represent a string generated by the grammar

A derivation encodes how to produce the input

A parse tree encodes the structure of the input

Syntax analysis = recovering the parse tree from the tokens



Parse trees

S — aTb|c
T — cS5|S

w = accacbb

Left-most derivation:
S = aTb = acSSb = accSb =
accaTbb = accaSbb = accacbb

Right-most derivation:
S= aTb = acSSb = acSaTbb =
acSaSbb = acSacbb = accacbb



Parse tree

aTc

T —

R —

R — RbR



Ambiguity

m The order of derivation does not matter but the chosen production
rules do

m Definition: A CFG is ambiguous if there is at least one string with
two or more parse trees

m Ambiguity is not problematic when dealing with flat strings. It is
when dealing with language semantics




Detecting and solving Ambiguity

m There is no mechanical way to determine if a grammar is
(un)ambiguous (this is an undecidable problem)

m In most practical cases however, it is easy to detect and prove
ambiguity.
E.g., any grammar containing N — NaN is ambiguous (two parse
trees for NaNaN).
m How to deal with ambiguities?
» Modify the grammar to make it unambiguous
» Handle these ambiguities in the parsing algorithm
m Two common sources of ambiguity in programming languages

» Expression syntax (operator precedences)
» Dangling else



Operator precedence

m This expression grammar is ambiguous

(it contains N — NaN)

m Parsing of 2+ 3 x4
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Operator associativity

m Types of operator associativity:
» An operator @ is left-associative if a@® b @ ¢ must be evaluated from
left to right, i.e., as (a® b) ® ¢
» An operator & is right-associative if a® b & ¢ must be evaluated
from right to left, i.e., as a® (b P ¢)
» An operator @ is non-associative if expressions of the form a® b @ ¢
are not allowed
m Examples:
» — and / are typically left-associative
» + and * are mathematically associative (left or right). By convention,
we take them left-associative as well
» List construction in functional languages is right-associative
» Arrows operator in C is right-associative (a->b->c is equivalent to
a->(b->c))
» In Pascal, comparison operators are non-associative (you can not
write 2 < 3 < 4)



Rewriting ambiguous expression grammars

m Let's consider the following ambiguous grammar:

E - E®E
E — num

m If @ is left-associative, we rewrite it as a left-recursive (a recursive
reference only to the left). If & is right-associative, we rewrite it as
a right-recursive (a recursive reference only to the right).

@ left-associative @ right-associative
E - EoF E —- E'@E
E — F E — F

E' = num E' — num



Mixing operators of different precedence levels

m Introduce a different nonterminal for each precedence level
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Dangling else
m Else part of a condition is typically optional

Stat — if Exp then Stat Else Stat
Stat — if Exp then Stat

m How to match if p then if q then s1 else s27
m Convention: else matches the closest not previously matched if.
m Unambiguous grammar:

Stat — Matched|Unmatched

Matched — if Exp then Matched else Matched
Matched — " Any other statement”

Unmatched — if Exp then Stat

Unmatched — if Exp then Matched else Unmatched



End-of-file marker

m Parsers must read not only terminal symbols such as +,—, num ,
but also the end-of-file

m We typically use $ to represent end of file

m If S is the start symbol of the grammar, then a new start symbol S’
is added with the following rules S’ — S$.

S —  Exp$
Exp — Exp+ Exp2
Exp — Exp— Exp2
Exp — Exp2
Exp2 — Exp2x Exp3
Exp2 — Exp2/Exp3
Exp2 — Exp3
Exp3 — num
Exp3 — (Exp)



Non-context free languages

m Some syntactic constructs from typical programming languages
cannot be specified with CFG
m Example 1: ensuring that a variable is declared before its use
» Ly = {wew|w is in (a|b)*} is not context-free
» In C and Java, there is one token for all identifiers
m Example 2: checking that a function is called with the right number
of arguments
» L, ={a"b"c"d™|n > 1 and m > 1} is not context-free
» In C, the grammar does not count the number of function arguments

stmt — id (expr_list)
expr_list — expr_list, expr

| expr

m These constructs are typically dealt with during semantic analysis



Backus-Naur Form

m A text format for describing context-free languages

m We ask you to provide the source grammar for your project in this

format

m Example:
<expression> ::= <term> | <term> "+" <expression>
<term> := <factor> | <factor> "*" <term>
<factor> := <constant> | <variable> | "(" <expression> ")"
<variable> = "x" | "y" | "z"
<constant> = <digit> | <digit> <constant>
<digit> = "g" | t1v | "2" | "3" | "4" | "5" | "6" | "7" | "8"

= More information:
http://en.wikipedia.org/wiki/Backus-Naur_form

ngn


http://en.wikipedia.org/wiki/Backus-Naur_form
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3. Top-down parsing



Syntax analysis

m Goals:
» Checking that a program is accepted by the context-free grammar
» Building the parse tree
» Reporting syntax errors

m Two ways:

» Top-down: from the start symbol to the word
» Bottom-up: from the word to the start symbol



Top-down and bottom-up: example

Grammar:

S —» AB
A — aAle
B — b|bB

Top-down parsing of aaab

S

AB
aAB
aaAB
aaaAB
aaaeB
aaab

S — AB
A — aA
A — aA
A — aA
A—e
B—b

Bottom-up parsing of aaab

aaab
aaaeb
aaaAb
aaAb
aAb
Ab
AB

S

(insert €)
A— e

A — aA
A — aA
A — aA
B—b

S —+ AB



A naive top-down parser

m A very naive parsing algorithm:

» Generate all possible parse trees until you get one that matches your
input
» To generate all parse trees:
1. Start with the root of the parse tree (the start symbol of the
grammar)
2. Choose a non-terminal A at one leaf of the current parse tree
3. Choose a production having that non-terminal as LHS, eg.,
A — X1X2 AN X/(
4. Expand the tree by making Xi,Xz,...,Xk, the children of A.
Repeat at step 2 until all leaves are terminals
6. Repeat the whole procedure by changing the productions chosen at
step 3

@

( Note: the choice of the non-terminal in Step 2 is irrevelant for a
context-free grammar)

m This algorithm is very inefficient, does not always terminate, etc.



Top-down parsing with backtracking

m Modifications of the previous algorithm:

1. Depth-first development of the parse tree (corresponding to a
left-most derivation)

2. Process the terminals in the RHS during the development of the tree,
checking that they match the input

3. If they don't at some step, stop expansion and restart at the previous
non-terminal with another production rules (backtracking)

m Depth-first can be implemented by storing the unprocessed symbols
on a stack

m Because of the left-most derivation, the inputs can be processed
from left to right



Backtracking example

> > 0 On

Stack Inputs Action
S becd Try S — bab
bab bcd match b
—  bab ab cd dead-end, backtrack
5 bA S bcd Try S — bA
o od bA bcd match b
A cd TryA—d
— CA d cd dead-end, backtrack
A cd Try A— CcA
cA cd match ¢
w = bed A d TryA—d
d d match d

Success!



Top-down parsing with backtracking

m General algorithm (to match a word w):
Create a stack with the start symbol

X = PopP()
a = GETNEXTTOKEN()
while (True)

if (X is a nonterminal)
Pick next rule to expand X — Y1Ya2... Yk
Push Yk, Yk—1,..., Y1 on the stack
X = pop()
elseif (X ==% and a==9)
Accept the input
elseif (X == a)
a = GETNEXTTOKEN()
X = pop()
else
Backtrack

m Ok for small grammars but still untractable and very slow for large
grammars
m Worst-case exponential time in case of syntax error



Another example

aSbT

=N 4 4 0 1 n
A
Q

w = accbbadbc

Stack Inputs  Action
S accbbadbc Try S — aSbT
aSbT  accbbadbc match a
SbT  accbbadbc Try S — aSbT
aSbTbT accbbadbc match a
SbTbT  ccbbadbc Try S — ¢cT
cTbTbT ccbbadbc  match ¢
TbTbT cbbadbc Try T — ¢
cbTbT cbbadbc  match cb
TbT badbc Try T — bS
bSbT badbc match b
SbT adbc Try S — aSbT
aSbT adbc match a
c ¢ match ¢
Success!



Predictive parsing

m Predictive parser:
> In the previous example, the production rule to apply can be predicted
based solely on the next input symbol and the current nonterminal
» Much faster than backtracking but this trick works only for some
specific grammars

m Grammars for which top-down predictive parsing is possible by
looking at the next symbol are called LL(1) grammars:
> L: left-to-right scan of the tokens
» L: leftmost derivation
» (1): One token of lookahead
m Predicted rules are stored in a parsing table M:

» M[X, a] stores the rule to apply when the nonterminal X is on the
stack and the next input terminal is a



Example: parse table

S >ES$
E — int
E— (EOpE)
Op — +
Op — *

int

( ) +

ES

ES

int

(EOpE)

Op

(Keith Schwarz)



Example: successfull parsing

S (int + (int * int))$

1.8 —>E$ ES (int + (int * int))$
2.E - int (EOpE)$ (int + (int * int))s$
3.E— (EOpE) EOpE)$ int + (int * int))$
4.0 + int OpE)$ int + (int * int))$

9P = OpE)$ + (int * int))$
5.0p— - +E)S + (int * int))$
E)$ (int * int))$

int| (| ) |+ | * | $ (EOpE))S$ (int * int))$
EOpE))$ int * int))$

S 1 int OpE))$ int * int))$
E|2|3 OpE))$ * int))$
*E))$ * int))$

Op 415 E))S$ int))$
int))$ int))$

))$ ))$

)$ )$

$ $

(Keith Schwarz)



Example: erroneous parsing

1.S—>ES$
2.E — int
4.0p— +
5 0p— -

S (int (int))$

ES$ (int (int))$
(EOpE)$ (int (int))$
EOpE)$ int (int))$
int OpE) $ int (int))$
OpE)$ (int))$

int ) |+ | *

1

2

Op

(

;

3
| HBE

(Keith Schwarz)



Table-driven predictive parser

Predictive
Parsing
Program

I Output

l

Parsing
Table

(Dragonbook)



Table-driven predictive parser

Create a stack with the start symbol

X = Pop()
a = GETNEXTTOKEN()
while (True)

if (X is a nonterminal)
if (M[X,a] == NULL)
Error
elseif (M[X,a] ==X — Y1Y2...Y))
Push Yk, Yi—1,..., Y1 on the stack
X = pop()
elseif (X ==% and a==19)
Accept the input

elseif (X == a)
a = GETNEXTTOKEN()
X = pop()

else

Error



LL(1) grammars and parsing

Three questions we need to address:
m How to build the table for a given grammar?
m How to know if a grammar is LL(1)?

m How to change a grammar to make it LL(1)?



Building the table

m It is useful to define three functions
(with A a nonterminal and « any sequence of grammar symbols):
> Nullable(a) is true if & = €

> First(c) returns the set of terminals ¢ such that a = cv for some
(possibly empty) sequence v of grammar symbols

> Follow(A) returns the set of terminals a such that S = a/Aaf3, where
« and 8 are (possibly empty) sequences of grammar symbols

//\\
a C/A B

(c € First(A) and a € Follow(A))



Building the table from First, Follow, and Nullable

To construct the table:

m Start with the empty table

m For each production A — a:
» add A — a to M[A, a] for each terminal a in First(«)
> If Nullable(e), add A — « to MJ[A, a] for each a in Follow(A)

First rule is obvious. lllustration of the second rule:

Ab Nullable(A) = True
First(A) = {c} M[A,b] = A—e¢
Follow(A) = {b}

C

> > 0»
AN

e



LL(1) grammars

m Three situations:
» MI[A, a] is empty: no production is appropriate. We can not parse the
sentence and have to report a syntax error
» MIJA, a] contains one entry: perfect !
» MIJA, a] contains two entries: the grammar is not appropriate for
predictive parsing (with one token lookahead)
m Definition: A grammar is LL(1) if its parsing table contains at most

one entry in each cell or, equivalently, if for all production pairs
A—alf

> First(a) N First(3) = 0,
» Nullable(«) and Nullable(8) are not both true,
» if Nullable(B), then First(ca)) N Follow(A) =

m Example of a non LL(1) grammar:

S — Ab
A — b
A — €



Computing Nullable

Algorithm to compute Nullable for all grammar symbols

Initialize Nullable to False.
repeat
for each production X — Y1Ys... Yk
if Y1...Y are all nullable (or if kK =0)
Nullable(X) = True
until Nullable did not change in this iteration.

Algorithm to compute Nullable for any string aa = X1 X5 ...

if (X1...Xk are all nullable)
Nullable(«) = True
else
Nullable(«) = False



Computing First

Algorithm to compute First for all grammar symbols

Initialize First to empty sets. for each terminal Z

First(Z) = {Z}
repeat

for each production X — Y1Y5... Yk

fori =1to k
if Yi...Y;_y are all nullable (or i =1)
First(X) = First(X) U First(Y;)

until First did not change in this iteration.

Algorithm to compute First for any string a = X1 .X5.. ..

Initialize First(a) =0
for i = 1to k
if Xi...X;_1 are all nullable (or i = 1)
First(a)) = First(a) U First(X;)



Computing Follow

To compute Follow for all nonterminal symbols

Initialize Follow to empty sets.
repeat
for each production X = Y1Yso... Yk
fori=1to k, forj=i+1tok
if Yii1... Yk are all nullable (or i = k)
Follow(Y;) = Follow(Y;) U Follow(X)
if Yit1...Yj_1 are all nullable (or i+ 1 =)
Follow(Y;) = Follow(Y;) U First(Y;)
until Follow did not change in this iteration.



Example
Compute the parsing table for the following grammar:

S — E$

E — TFE
E' — +TF
El — —-TFE
E — ¢

T — FT
T — xFT’
T — JFT'
T — ¢

F —- id

F — num
F — (E)



Example

Nonterminals | Nullable First Follow

S False {(, id , num } 0

E False {(, id , num } {).$}

E True {+,—} 0).8}

T False {(, id , num } 0,+,—,%}

T True {*7/} {)7+7_7$}

F False {(; id, num} {),*/,+,—,%}

+ * id ( ) $

S S— E$ S— E$
E E—-TE E—>TE
E | El - 4+TE E' ¢ E —e¢
T T—FT' T—FT
T T —e¢ T — xFT’ T —e T —e
F F— id F — (E)

(=./, and num are treated similarly)



LL(1) parsing summary so far

Construction of a LL(1) parser from a CFG grammar
m Eliminate ambiguity
m Add an extra start production S’ — S$ to the grammar

m Calculate First for every production and Follow for every
nonterminal

Calculate the parsing table
Check that the grammar is LL(1)

Next course:
m Transformations of a grammar to make it LL(1)
m Recursive implementation of the predictive parser

m Bottom-up parsing techniques



