
Compilers

Pierre Geurts

2014-2015

E-mail : p.geurts@ulg.ac.be
URL : http://www.montefiore.ulg.ac.be/

~geurts/compil.html
Bureau : I 141 (Montefiore)
Téléphone : 04.366.48.15 — 04.366.99.64

1

Contact information

Teacher: Pierre Geurts
I p.geurts@ulg.ac.be, I141 Montefiore, 04/3664815-9964

Teaching assistant: Cyril Soldani
I soldani@run.montefiore.ulg.ac.be, I.77b Montefiore,

04/3662699

Website:
I Course: http://www.montefiore.ulg.ac.be/~geurts/Cours/

compil/2014/compil2014_2015.html
I Project: http://www.montefiore.ulg.ac.be/~info0085

2

p.geurts@ulg.ac.be
soldani@run.montefiore.ulg.ac.be
http://www.montefiore.ulg.ac.be/~geurts/Cours/compil/2014/compil2014_2015.html
http://www.montefiore.ulg.ac.be/~geurts/Cours/compil/2014/compil2014_2015.html
http://www.montefiore.ulg.ac.be/~info0085

Course organization

“Theoretical” course
I Wednesday, 14h-16h, R18, Institut Montefiore
I About 6-7 lectures
I Slides online on the course web page (available before each lecture)
I Give you the basis to achieve the project (and a little more)

Project
I One (big) project
I Implementation of a compiler (from scratch) for a new language

designed by you.
I A few repetition lectures on Wednesday, 16h-18h (checkpoints for

your project).
I (more on this later)

Evaluation
I Almost exclusively on the basis of the project
I Written report, short presentation of your compiler (in front of the

class), oral exam

3

Tentative schedule

4/02: Introduction

11/02: Lexical analysis

17/02: deadline 1: group composition + project idea

18/02: Syntax analysis (I) + Project presentation (Cyril)

25/02: Syntax analysis (II)

4/03: Semantic analysis

6/03: deadline 2: language grammar

11/03: Intermediate code generation + Q&A on the project (Cyril)

18/03: Saint-Torê (?)

25/03: final code generation + Introduction to LLVM (Cyril)

31/03: deadline 3: lexical and syntax analyses

20/04: deadline 4: homework LLVM

6/05: deadline 5: full compiler and report

13/05: Oral presentations

4

References
Books:

I Compilers: Principles, Techniques, and Tools (2nd edition),
Aho, Lam, Sethi, Ullman, Prentice Hall, 2006
http://dragonbook.stanford.edu/

I Modern compiler implementation in Java/C/ML, Andrew W. Appel,
Cambridge University Press, 1998
http://www.cs.princeton.edu/~appel/modern/

I Engineering a compiler (2nd edition), Cooper and Torczon, Morgan
Kaufmann, 2012.

On the Web:
I Basics of compiler design, Torben Aegidius Mogensen,

Self-published, 2010
http:

//www.diku.dk/hjemmesider/ansatte/torbenm/Basics/index.html
I Compilation - Théorie des langages, Sophie Gire, Université de Brest

http://www.lisyc.univ-brest.fr/pages_perso/leparc/Etud/

Master/Compil/Doc/CoursCompilation.pdf
I Standford compilers course

http://www.stanford.edu/class/cs143/

5

http://dragonbook.stanford.edu/
http://www.cs.princeton.edu/~appel/modern/
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/index.html
http://www.diku.dk/hjemmesider/ansatte/torbenm/Basics/index.html
http://www.lisyc.univ-brest.fr/pages_perso/leparc/Etud/Master/Compil/Doc/CoursCompilation.pdf
http://www.lisyc.univ-brest.fr/pages_perso/leparc/Etud/Master/Compil/Doc/CoursCompilation.pdf
http://www.stanford.edu/class/cs143/

Course outline

Part 1: Introduction
Part 2: Lexical analysis
Part 3: Syntax analysis
Part 4: Semantic analysis
Part 5: Intermediate code generation
Part 6: Code generation
Part 7: Conclusion

6

Part 1

Introduction

Introduction 7

Outline

1. What is a compiler

2. Compiler structure

3. Course project

Introduction 8

Compilers

A compiler is a program (written in a language Lc) that:
I reads another program written in a given source language Ls

I and translates (compiles) it into an equivalent program written in a
second (target) language LO .

LS LO

LC

The compiler also returns all errors contained in the source program

Examples of combination:
I LC=C, LS =C, LO=Assembly (gcc)
I LC=C, LS =java, LO=C
I LC=java, LS =LATEX, LO=HTML
I ...

Bootstrapping: LC = LS

Introduction 9

Compiler

Introduction 10

Interpreter

An interpreter is a program that:
I executes directly the operations specified by the source program on

input data provided by the user

Usually slower at mapping inputs to outputs than compiled code
(but gives better error diagnostics)

Introduction 11

Hybrid solution

Hybrid solutions are possible

Example: Java combines compilation and interpretation
I Java source program is compiled into an intermediate form called

bytecodes
I Bytecodes are then interpreted by a java virtual machine (or compiled

into machine language by just-in-time compilers).

Main advantage is portability

Introduction 12

A broader picture

Preprocessor: include files,
macros... (small compiler).

Assembler: generate machine
code from assembly program
(small trivial compiler).

Linker: relocates relative
addresses and resolves external
references.

Loader: loads the executable file
in memory for execution.

Introduction 13

Why study compilers?

There is small chance that you will ever write a full compiler in your
professional carrier.

Then why study compilers?
I To improve your culture in computer science (not a very good reason)

I To get a better intuition about high-level languages and therefore
become a better coder

I Compilation is not restricted to the translation of computer programs
into assembly code

I Translation between two high-level languages (Java to C++, Lisp to
C, Python to C, etc.)

I Translation between two arbitrary languages, not necessarily
programming ones (word to html, pdf to ps, etc.), aka
source-to-source compilers or transcompilers

Introduction 14

Why study compilers?

I The techniques behind compilers are useful for other purposes as well
I Data structures, graph algorithms, parsing techniques, language

theory...

I There is a good chance that a computer scientist will need to write a
compiler or an interpreter for a domain-specific language

I Example: database query languages, text-formatting language, scene
description language for ray-tracers, search engine, sed/awk,
substitution in parameterized code...

I Very nice application of concepts learned in other courses
I Data structures and algorithms, introduction to the theory of

computation, computation structures...

Introduction 15

General structure of a compiler

Except in very rare cases, translation can not be done word by word

Compilers are (now) very structured programs

Typical structure of a compiler in two stages:
I Front-end/analysis:

I Breaks the source program into constituent pieces
I Detect syntaxic and semantic errors
I Produce an intermediate representation of the language
I Store in a symbol table information about procedures and variables of

the source program
I Back-end/synthesis:

I Construct the target program from the intermediate representation
and the symbol table

I Typically, the front end is independent of the target language, while
the back end is independent of the source language

I One can have a middle part that optimizes the intermediate
representation (and is thus independent of both the source and target
languages)

Introduction 16

General structure of a compiler

source program

Front-end

Intermediate representation

Back-end

LI

LO

LS

target program

Introduction 17

Intermediate representation
The intermediate representation:

Ensures portability (it’s easy to change the source or the target
language by adapting the front-end or back-end).

Should be at the same time easy to produce from the source
language and easy to translate into the target language

source program

Front-end

Intermediate representation

Back-end

LI

target program

Back-end

target program

Back-end

target program

source program

Front-end

source program

Front-end

L1
S L2

S L3
S

L1
O L2

O L3
O

Introduction 18

Detailed structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code

Introduction 19

Lexical analysis or scanning
Input: Character stream) Output: token streams

The lexical analyzer groups the characters into meaningful sequences
called lexemes.

I Example: “position = initial + rate * 60;” is broken into the
lexemes position, =, initial, +, rate, *, 60, and ;.

I (Non-significant blanks and comments are removed during scanning)

For each lexeme, the lexical analyzer produces as output a token of
the form: htoken-name, attribute-valuei

I The produced tokens for “position = initial + rate * 60” are
as follows

hid, 1i, hop, =i, hid, 2i, hop, +i, hid, 3i, hop, ⇤i, hnum, 60i

with the symbol table:
1 position . . .
2 initial . . .
3 rate . . .

(In modern compilers, the table is not built anymore during lexical analysis)

Introduction 20

Lexical analysis or scanning

In practice:

Each token is defined by a regular expression
I Example:

Letter = A � Z |a � z
Digit = 0 � 9
Identifier = Letter(Letter |Digit)⇤

Lexical analysis is implemented by
I building a non deterministic finite automaton from all token regular

expressions
I eliminating non determinism
I Simplifying it

There exist automatic tools to do that
I Examples: lex, flex...

Introduction 21

Lexical analysis or scanning

Lexical analysis or scanning
Input: Character stream) Output: token streams

The lexical analyzer groups the characters into meaningful sequences
called lexemes.

I Example: “position = initial + rate * 60;” is broken into the
lexemes position, =, initial, +, rate, *, 60, and ;.

I (Non-significant blanks and comments are removed during scanning)

For each lexeme, the lexical analyzer produces as output a token of
the form: htoken-name, attribute-valuei

I The produced tokens for “position = initial + rate * 60” are
as follows

hid, 1i, hop, =i, hid, 2i, hop, +i, hid, 2i, hop, ⇤i, hnum, 60i

with the symbol table:
1 position . . .
2 initial . . .
3 rate . . .

Introduction 19

Introduction 22

Syntax analysis or parsing
Input: token stream) Output: syntax tree

Parsing groups tokens into grammatical phrases

The result is represented in a parse tree, ie. a tree-like
representation of the grammatical structure of the token stream.

Example:
I Grammar for assignement statement:

asst-stmt ! id = exp ;
exp ! number | id | expr + expr

I Example parse tree:

would be grouped into the lexemes x3, =, y, +, 3, and ;.

A token is a <token-name,attribute-value> pair. For example

1. The lexeme x3 would be mapped to a token such as <id,1>. The name id is short for identifier. The value 1 is
the index of the entry for x3 in the symbol table produced by the compiler. This table is used to pass
information to subsequent phases.

2. The lexeme = would be mapped to the token <=>. In reality it is probably mapped to a pair, whose second
component is ignored. The point is that there are many different identifiers so we need the second component,
but there is only one assignment symbol =.

3. The lexeme y is mapped to the token <id,2>
4. The lexeme + is mapped to the token <+>.
5. The lexeme 3 is somewhat interesting and is discussed further in subsequent chapters. It is mapped to

<number,something>, but what is the something. On the one hand there is only one 3 so we could just use the
token <number,3>. However, there can be a difference between how this should be printed (e.g., in an error
message produced by subsequent phases) and how it should be stored (fixed vs. float vs double). Perhaps the
token should point to the symbol table where an entry for "this kind of 3" is stored. Another possibility is to
have a separate "numbers table".

6. The lexeme ; is mapped to the token <;>.

Note that non-significant blanks are normally removed during scanning. In C, most blanks are non-significant.
Blanks inside strings are an exception.

Note that we can define identifiers, numbers, and the various symbols and punctuation without using recursion
(compare with parsing below).

1.2.2: Syntax Analysis (or Parsing)

Parsing involves a further grouping in which tokens are grouped
into grammatical phrases, which are often represented in a parse
tree. For example

 x3 = y + 3;

would be parsed into the tree on the right.

This parsing would result from a grammar containing rules such as

 asst-stmt ! id = expr ;
 expr ! number
 | id
 | expr + expr

Note the recursive definition of expression (expr). Note also the hierarchical decomposition in the figure on the right.

The division between scanning and parsing is somewhat arbitrary, but invariably if a recursive definition is involved,
it is considered parsing not scanning.

Often we utilize a simpler tree called the syntax tree with operators as interior nodes and
operands as the children of the operator. The syntax tree on the right corresponds to the parse
tree above it.

(Technical point.) The syntax tree represents an assignment expression not an assignment statement. In C an
assignment statement includes the trailing semicolon. That is, in C (unlike in Algol) the semicolon is a statement
terminator not a statement separator.

1.2.3: Semantic Analysis

There is more to a front end than simply syntax. The compiler needs semantic information, e.g., the types (integer,
real, pointer to array of integers, etc) of the objects involved. This enables checking for semantic errors and inserting

Introduction 23

Syntax analysis or parsing

The parse tree is often simplified into a (abstract) syntax tree:

would be grouped into the lexemes x3, =, y, +, 3, and ;.

A token is a <token-name,attribute-value> pair. For example

1. The lexeme x3 would be mapped to a token such as <id,1>. The name id is short for identifier. The value 1 is
the index of the entry for x3 in the symbol table produced by the compiler. This table is used to pass
information to subsequent phases.

2. The lexeme = would be mapped to the token <=>. In reality it is probably mapped to a pair, whose second
component is ignored. The point is that there are many different identifiers so we need the second component,
but there is only one assignment symbol =.

3. The lexeme y is mapped to the token <id,2>
4. The lexeme + is mapped to the token <+>.
5. The lexeme 3 is somewhat interesting and is discussed further in subsequent chapters. It is mapped to

<number,something>, but what is the something. On the one hand there is only one 3 so we could just use the
token <number,3>. However, there can be a difference between how this should be printed (e.g., in an error
message produced by subsequent phases) and how it should be stored (fixed vs. float vs double). Perhaps the
token should point to the symbol table where an entry for "this kind of 3" is stored. Another possibility is to
have a separate "numbers table".

6. The lexeme ; is mapped to the token <;>.

Note that non-significant blanks are normally removed during scanning. In C, most blanks are non-significant.
Blanks inside strings are an exception.

Note that we can define identifiers, numbers, and the various symbols and punctuation without using recursion
(compare with parsing below).

1.2.2: Syntax Analysis (or Parsing)

Parsing involves a further grouping in which tokens are grouped
into grammatical phrases, which are often represented in a parse
tree. For example

 x3 = y + 3;

would be parsed into the tree on the right.

This parsing would result from a grammar containing rules such as

 asst-stmt ! id = expr ;
 expr ! number
 | id
 | expr + expr

Note the recursive definition of expression (expr). Note also the hierarchical decomposition in the figure on the right.

The division between scanning and parsing is somewhat arbitrary, but invariably if a recursive definition is involved,
it is considered parsing not scanning.

Often we utilize a simpler tree called the syntax tree with operators as interior nodes and
operands as the children of the operator. The syntax tree on the right corresponds to the parse
tree above it.

(Technical point.) The syntax tree represents an assignment expression not an assignment statement. In C an
assignment statement includes the trailing semicolon. That is, in C (unlike in Algol) the semicolon is a statement
terminator not a statement separator.

1.2.3: Semantic Analysis

There is more to a front end than simply syntax. The compiler needs semantic information, e.g., the types (integer,
real, pointer to array of integers, etc) of the objects involved. This enables checking for semantic errors and inserting

This tree is used as a base structure for all subsequent phases

On parsing algorithms:
I Languages are defined by context-free grammars
I Parse and syntax trees are constructed by building automatically a

(kind of) pushdown automaton from the grammar
I Typically, these algorithms only work for a (large) subclass of

context-free grammars

Introduction 24

Lexical versus syntax analysis

The division between scanning and parsing is somewhat arbitrary.

Regular expressions could be represented by context-free grammars

Mathematical expression grammar:

EXPRESSION ! EXPRESSION OP2 EXPRESSION
Syntax EXPRESSION ! NUMBER

EXPRESSION ! (EXPRESSION)
OP2 ! +| � | ⇤ |/

Lexical NUMBER ! DIGIT | DIGIT NUMBER
DIGIT ! 0|1|2|3|4|5|6|7|8|9

The main goal of lexical analysis is to simplify the syntax analysis
(and the syntax tree).

Introduction 25

Syntax analysis or parsing

Lexical analysis or scanning
Input: Character stream) Output: token streams

The lexical analyzer groups the characters into meaningful sequences
called lexemes.

I Example: “position = initial + rate * 60;” is broken into the
lexemes position, =, initial, +, rate, *, 60, and ;.

I (Non-significant blanks and comments are removed during scanning)

For each lexeme, the lexical analyzer produces as output a token of
the form: htoken-name, attribute-valuei

I The produced tokens for “position = initial + rate * 60” are
as follows

hid, 1i, hop, =i, hid, 2i, hop, +i, hid, 2i, hop, ⇤i, hnum, 60i

with the symbol table:
1 position . . .
2 initial . . .
3 rate . . .

Introduction 19

Introduction 26

Semantic analysis

Input: syntax tree) Output: (augmented) syntax tree

Context-free grammar can not represent all language constraints,
e.g. non local/context-dependent relations.

Semantic/contextual analysis checks the source program for
semantic consistency with the language definition.

I A variable can not be used without having been defined
I The same variable can not be defined twice
I The number of arguments of a function should match its definition
I One can not multiply a number and a string
I . . .

(none of these constraints can be represented in a context-free
grammar)

Introduction 27

Semantic analysis

Semantic analysis also carries out type checking:
I Each operator should have matching operands
I In some cases, type conversions (coercions) might be possible (e.g.,

for numbers)

Example: position = initial + rate * 60

If the variables position, initial, and rate are defined as
floating-point variables and 60 was read as an integer, it may be
converted into a floating-point number.

Introduction 28

Semantic analysis

Lexical analysis or scanning
Input: Character stream) Output: token streams

The lexical analyzer groups the characters into meaningful sequences
called lexemes.

I Example: “position = initial + rate * 60;” is broken into the
lexemes position, =, initial, +, rate, *, 60, and ;.

I (Non-significant blanks and comments are removed during scanning)

For each lexeme, the lexical analyzer produces as output a token of
the form: htoken-name, attribute-valuei

I The produced tokens for “position = initial + rate * 60” are
as follows

hid, 1i, hop, =i, hid, 2i, hop, +i, hid, 2i, hop, ⇤i, hnum, 60i

with the symbol table:
1 position . . .
2 initial . . .
3 rate . . .

Introduction 19

Introduction 29

Intermediate code generation

Input: syntax tree) Output: Intermediate representation

A compiler typically uses one or more intermediate representations
I Syntax trees are a form of intermediate representation used for syntax

and semantic analysis

After syntax and semantic analysis, many compilers generate a
low-level or machine-like intermediate representation

Two important properties of this intermediate representation:
I Easy to produce
I Easy to translate into the target machine code

Introduction 30

Intermediate code generation
Example: Three-address code with instructions of the form
x = y op z.

I Assembly-like instructions with three operands (at most) per
instruction

I Assumes an unlimited number of registers

Translation of the syntax tree

t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

Introduction 31

Intermediate code generation

Lexical analysis or scanning
Input: Character stream) Output: token streams

The lexical analyzer groups the characters into meaningful sequences
called lexemes.

I Example: “position = initial + rate * 60;” is broken into the
lexemes position, =, initial, +, rate, *, 60, and ;.

I (Non-significant blanks and comments are removed during scanning)

For each lexeme, the lexical analyzer produces as output a token of
the form: htoken-name, attribute-valuei

I The produced tokens for “position = initial + rate * 60” are
as follows

hid, 1i, hop, =i, hid, 2i, hop, +i, hid, 2i, hop, ⇤i, hnum, 60i

with the symbol table:
1 position . . .
2 initial . . .
3 rate . . .

Introduction 19

Introduction 32

Intermediate code optimization
Input: Intermediate representation) Output: (better) intermediate
representation

Goal: improve the intermediate code (to get better target code at
the end)

Machine-independent optimization (versus machine-dependent
optimization of the final code)

Di↵erent criteria: e�ciency, code simplicity, power consumption. . .

Example:
t1 = inttofloat(60)

t2 = id3 * t1

t3 = id2 + t2

id1 = t3

) t1 = id3 * 60.0

id1 = id2 + t1

Optimization is complex and very time consuming

Very important step in modern compilers

Introduction 33

Intermediate code optimization

Lexical analysis or scanning
Input: Character stream) Output: token streams

The lexical analyzer groups the characters into meaningful sequences
called lexemes.

I Example: “position = initial + rate * 60;” is broken into the
lexemes position, =, initial, +, rate, *, 60, and ;.

I (Non-significant blanks and comments are removed during scanning)

For each lexeme, the lexical analyzer produces as output a token of
the form: htoken-name, attribute-valuei

I The produced tokens for “position = initial + rate * 60” are
as follows

hid, 1i, hop, =i, hid, 2i, hop, +i, hid, 2i, hop, ⇤i, hnum, 60i

with the symbol table:
1 position . . .
2 initial . . .
3 rate . . .

Introduction 19

Introduction 34

Code generation
Input: Intermediate representation) Output: target machine code

From the intermediate code to real assembly code for the target
machine

Needs to take into account specifities of the target machine, eg.,
number of registers, operators in instruction, memory management.

One crucial aspect is register allocation

For our example:

t1 = id3 * 60.0

id1 = id2 + t1

)
LDF R2, id3

MULF R2, R2, #60.0

LDF R1, id2

ADDF R1, R1, R2

STF id1,R1

Introduction 35

Final code generation

Lexical analysis or scanning
Input: Character stream) Output: token streams

The lexical analyzer groups the characters into meaningful sequences
called lexemes.

I Example: “position = initial + rate * 60;” is broken into the
lexemes position, =, initial, +, rate, *, 60, and ;.

I (Non-significant blanks and comments are removed during scanning)

For each lexeme, the lexical analyzer produces as output a token of
the form: htoken-name, attribute-valuei

I The produced tokens for “position = initial + rate * 60” are
as follows

hid, 1i, hop, =i, hid, 2i, hop, +i, hid, 2i, hop, ⇤i, hnum, 60i

with the symbol table:
1 position . . .
2 initial . . .
3 rate . . .

Introduction 19

Introduction 36

Symbol table
1 position . . .
2 initial . . .
3 rate . . .

Records all variable names used in the source program
Collects information about each symbol:

I Type information
I Storage location (of the variable in the compiled program)
I Scope
I For function symbol: number and types of arguments and the type

returned

Built during lexical analysis (old way) or in a separate phase
(modern way).
Needs to allow quick retrieval and storage of a symbol and its
attached information in the table
Implementation by a dictionary structure (binary search tree,
hash-table,...).

Introduction 37

Error handling

Each phase may produce errors.

A good compiler should report them and provide as much
information as possible to the user.

I Not only “syntax error”.

Ideally, the compiler should not stop after the first error but should
continue and detect several errors at once (to ease debugging).

Introduction 38

Phases and Passes

The description of the di↵erent phases makes them look sequential

In practice, one can combine several phases into one pass (i.e., one
complete reading of an input file or traversal of the intermediate
structures).

For example:
I One pass through the initial code for lexical analysis, syntax analysis,

semantic analysis, and intermediate code generation (front-end).
I One or several passes through the intermediate representation for

code optimization (optional)
I One pass through the intermediate representation for the machine

code generation (back-end)

Introduction 39

Compiler-construction tools

First compilers were written from scratch, and considered as very
di�cult programs to write.

I The first fortran compiler (IBM, 1957) required 18 man-years of work

There exist now several theoretical tools and softwares to automate
several phases of the compiler.

I Lexical analysis: regular expressions and finite state automata
(Software: (f)lex)

I Syntax analysis: grammars and pushdown automata (Softwares:
bison/yacc, ANTLR)

I Semantic analysis and intermediate code generation: syntax directed
translation

I Code optimization: data flow analysis

Introduction 40

This course

Although the back-end is more and more important in modern
compilers, we will insist more on the front-end and general principles

Outline:
I Lexical analysis
I Syntax analysis
I Semantic analysis
I Intermediate code generation (syntax directed translation)
I Some notions about code generation and optimization

Introduction 41

Compiler project

Implement a “complete” compiler

By group of 1, 2, or 3 students

You will be asked to invent a new programming language
I Constraint: you should be able to implement quicksort in this

language
I Otherwise, you are totally free (be creative! but also carefull)

The destination language will be LLVM, a popular modern
intermediate language

I http://llvm.org/

Implementation language Lc can be chosen among c, c++, java,
python, javascript, ocaml, scheme, and lisp.

Introduction 42

http://llvm.org/

Compiler project

Deadlines (tentative):

Tuesday 17/02: send group composition

Friday 6/03: language description, quicksort, and grammar

Tuesday 31/03: lexical and syntax analysis

Monday 20/04: homework LLVM

Thursday 7/05: full compiler and report

Wednesday 13/05: oral presentation of the compiler

Try to be ahead of the deadlines!

Introduction 43

	Introduction
	What is a compiler
	Compiler structure
	Course project

	Lexical analysis
	Principle
	Regular expressions
	Analysis with non-deterministic finite automata
	Analysis with deterministic finite automata
	Implementing a lexical analyzer

	Syntax analysis
	Introduction
	Context-free grammar
	Top-down parsing
	Bottom-up parsing
	Shift/reduce parsing
	LR parsers
	Operator precedence parsing
	Using ambiguous grammars

	Conclusion and some practical considerations

	Semantic analysis
	Syntax-directed translation
	Abstract syntax tree
	Type and scope checking

	Intermediate code generation
	Intermediate representations
	Illustration
	Optimization

	Code generation
	Introduction
	Instruction selection
	Register allocation
	Memory management

	Conclusion

