
Part 6

Code generation

Code generation 328

Structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code

Code generation 329

Final code generation

At this point, we have optimized intermediate code, from which we
would like to generate the final code

By final code, we typically mean assembly language of the target
machine

Goal of this stage:
I Choose the appropriate machine instructions to translate each

intermediate representation instruction
I Handle finite machine resources (registers, memory, etc.)
I Implement low-level details of the run-time environment
I Implement machine-specific code optimization

This step is very machine-specific

In this course, we will only mention some typical and general
problems

Code generation 330

Short tour on machine code

RISC (Reduced Instruction Set Computer)
I E.g.: PowerPC, Sparc, MIPS (embedded systems), ARM...
I Many registers, 3-address instructions, relatively simple instruction

sets

CISC (Complex Instruction Set Computer)
I E.g.: x86, x86-64, amd64...
I Few registers, 2-address instructions, complex instruction sets

Stack-based computer:
I E.g.: Not really used anymore but Java’s virtual machine is

stack-based
I No register, zero address instructions (operands on the stack)

Accumulator-based computer:
I E.g.: First IBM computers were accumulator-based
I One special register (the accumulator), one address instructions,

other registers used in loops and address specification

Code generation 331

Outline

1. Introduction

2. Instruction selection

3. Register allocation

4. Memory management

Code generation 332

Instruction selection

One needs to map one or several instructions of the intermediate
representation into one or several instructions of the machine
language

Complexity of the task depends on:
I the level of the IR
I the nature of the instruction-set architecture
I the desired quality of the generated code

Examples of problems:
I Conditional jumps
I Constants
I Complex instructions

Code generation 333

Example: Conditional jumps

Conditional jumps in our intermediate language are of the form:
IF id relop Atom THEN labelid ELSE labelid

Conditional jumps might be di↵erent on some machines:
I One-way branch instead of two-way branches

IF c THEN lt ELSE lf
branch if c lr
jump lf

I Condition such as “id relop Atom” might not be allowed. Then,
compute the condition and store it in a register

I There might exist special registers for conditions
I . . .

Code generation 334

Example: Constants

IR allows arbitrary constants as operands to binary or unary
operators

This is not always the case in machine code
I MIPS allows only 16-bit constants in operands (even though integers

are 32 bits)
I On the ARM, a constant can only be a 8-bit number positioned at

any even bit boundary (within a 32-bit word)

http://www.davespace.co.uk/arm/

If a constant is too big, translation requires to build the constant
into some register

If the constant is used within a loop, its computation should be
moved outside

Code generation 335

Exploiting complex instructions

If we do not care about e�ciency, instruction selection is
straightforward:

I Write a code skeleton for every IR instruction
I Example in MIPS assembly:

t2 := t1 + 116) addi r2,r1,116

(where r2 and r1 are the registers chosen for t2 and t1)

Most processors (even RISC-based) have complex instructions that
can translate several IR instructions at once

I Examples in MIPS assembly:
t2 := t1 + 116) lw r3, 116(r1)
t3 := M[t2]

(where r3 and r1 are the registers chosen for t3 and t1 resp. and
assuming that t2 will not be used later)

For e�ciency reason, one should exploit them

Code generation 336

Code generation principle

Determine for each variable whether it is dead after a particular use
(liveness analysis, see later)

t2 := t1 + 116
t3 := M[t last

2]

Associate an address (register, memory location...) to each variable
(register allocation, see later)

Define an instruction set description, i.e., a list of pairs of:
I pattern: a sequence of IR instructions

t := rs + k
rt := M[t last]

I replacement: a sequence of machine-code instruction translating the
pattern

lw rt ,k(rs)

Use pattern matching to do the translation

Code generation 337

Illustration

Pattern/replacement pairs for a subset of the MIPS instruction set

8.4. EXPLOITING COMPLEX INSTRUCTIONS 185

t := rs + k, lw rt , k(rs)
rt := M[tlast]
rt := M[rs] lw rt , 0(rs)
rt := M[k] lw rt , k(R0)
t := rs + k, sw rt , k(rs)
M[tlast] := rt
M[rs] := rt sw rt , 0(rs)
M[k] := rt sw rt , k(R0)
rd := rs + rt add rd , rs, rt
rd := rt add rd , R0, rt
rd := rs + k addi rd , rs, k
rd := k addi rd , R0, k
GOTO label j label
IF rs = rt THEN labelt ELSE label f , beq rs, rt , labelt
LABEL label f label f :
IF rs = rt THEN labelt ELSE label f , bne rs, rt , label f
LABEL labelt labelt :
IF rs = rt THEN labelt ELSE label f beq rs, rt , labelt

j label f
IF rs < rt THEN labelt ELSE label f , slt rd , rs, rt
LABEL label f bne rd , R0, labelt

label f :
IF rs < rt THEN labelt ELSE label f , slt rd , rs, rt
LABEL labelt beq rd , R0, label f

labelt :
IF rs < rt THEN labelt ELSE label f slt rd , rs, rt

bne rd , R0, labelt
j label f

LABEL label label:

Figure 8.1: Pattern/replacement pairs for a subset of the MIPS instruction set

8.4. EXPLOITING COMPLEX INSTRUCTIONS 185

t := rs + k, lw rt , k(rs)
rt := M[tlast]
rt := M[rs] lw rt , 0(rs)
rt := M[k] lw rt , k(R0)
t := rs + k, sw rt , k(rs)
M[tlast] := rt
M[rs] := rt sw rt , 0(rs)
M[k] := rt sw rt , k(R0)
rd := rs + rt add rd , rs, rt
rd := rt add rd , R0, rt
rd := rs + k addi rd , rs, k
rd := k addi rd , R0, k
GOTO label j label
IF rs = rt THEN labelt ELSE label f , beq rs, rt , labelt
LABEL label f label f :
IF rs = rt THEN labelt ELSE label f , bne rs, rt , label f
LABEL labelt labelt :
IF rs = rt THEN labelt ELSE label f beq rs, rt , labelt

j label f
IF rs < rt THEN labelt ELSE label f , slt rd , rs, rt
LABEL label f bne rd , R0, labelt

label f :
IF rs < rt THEN labelt ELSE label f , slt rd , rs, rt
LABEL labelt beq rd , R0, label f

labelt :
IF rs < rt THEN labelt ELSE label f slt rd , rs, rt

bne rd , R0, labelt
j label f

LABEL label label:

Figure 8.1: Pattern/replacement pairs for a subset of the MIPS instruction set

8.4. EXPLOITING COMPLEX INSTRUCTIONS 185

t := rs + k, lw rt , k(rs)
rt := M[tlast]
rt := M[rs] lw rt , 0(rs)
rt := M[k] lw rt , k(R0)
t := rs + k, sw rt , k(rs)
M[tlast] := rt
M[rs] := rt sw rt , 0(rs)
M[k] := rt sw rt , k(R0)
rd := rs + rt add rd , rs, rt
rd := rt add rd , R0, rt
rd := rs + k addi rd , rs, k
rd := k addi rd , R0, k
GOTO label j label
IF rs = rt THEN labelt ELSE label f , beq rs, rt , labelt
LABEL label f label f :
IF rs = rt THEN labelt ELSE label f , bne rs, rt , label f
LABEL labelt labelt :
IF rs = rt THEN labelt ELSE label f beq rs, rt , labelt

j label f
IF rs < rt THEN labelt ELSE label f , slt rd , rs, rt
LABEL label f bne rd , R0, labelt

label f :
IF rs < rt THEN labelt ELSE label f , slt rd , rs, rt
LABEL labelt beq rd , R0, label f

labelt :
IF rs < rt THEN labelt ELSE label f slt rd , rs, rt

bne rd , R0, labelt
j label f

LABEL label label:

Figure 8.1: Pattern/replacement pairs for a subset of the MIPS instruction set

8.4. EXPLOITING COMPLEX INSTRUCTIONS 185

t := rs + k, lw rt , k(rs)
rt := M[tlast]
rt := M[rs] lw rt , 0(rs)
rt := M[k] lw rt , k(R0)
t := rs + k, sw rt , k(rs)
M[tlast] := rt
M[rs] := rt sw rt , 0(rs)
M[k] := rt sw rt , k(R0)
rd := rs + rt add rd , rs, rt
rd := rt add rd , R0, rt
rd := rs + k addi rd , rs, k
rd := k addi rd , R0, k
GOTO label j label
IF rs = rt THEN labelt ELSE label f , beq rs, rt , labelt
LABEL label f label f :
IF rs = rt THEN labelt ELSE label f , bne rs, rt , label f
LABEL labelt labelt :
IF rs = rt THEN labelt ELSE label f beq rs, rt , labelt

j label f
IF rs < rt THEN labelt ELSE label f , slt rd , rs, rt
LABEL label f bne rd , R0, labelt

label f :
IF rs < rt THEN labelt ELSE label f , slt rd , rs, rt
LABEL labelt beq rd , R0, label f

labelt :
IF rs < rt THEN labelt ELSE label f slt rd , rs, rt

bne rd , R0, labelt
j label f

LABEL label label:

Figure 8.1: Pattern/replacement pairs for a subset of the MIPS instruction set

MIPS instructions:

lw r,k(s): r = M[s + k]

sw r,k(s): M[s + k] = r

add r,s,t: r = s + t

addi r,s,k: r = s + k
where k is a constant

R0: a register containing
the constant 0

(Mogensen)

Code generation 338

Illustration

8.4. EXPLOITING COMPLEX INSTRUCTIONS 185

t := rs + k, lw rt , k(rs)
rt := M[tlast]
rt := M[rs] lw rt , 0(rs)
rt := M[k] lw rt , k(R0)
t := rs + k, sw rt , k(rs)
M[tlast] := rt
M[rs] := rt sw rt , 0(rs)
M[k] := rt sw rt , k(R0)
rd := rs + rt add rd , rs, rt
rd := rt add rd , R0, rt
rd := rs + k addi rd , rs, k
rd := k addi rd , R0, k
GOTO label j label
IF rs = rt THEN labelt ELSE label f , beq rs, rt , labelt
LABEL label f label f :
IF rs = rt THEN labelt ELSE label f , bne rs, rt , label f
LABEL labelt labelt :
IF rs = rt THEN labelt ELSE label f beq rs, rt , labelt

j label f
IF rs < rt THEN labelt ELSE label f , slt rd , rs, rt
LABEL label f bne rd , R0, labelt

label f :
IF rs < rt THEN labelt ELSE label f , slt rd , rs, rt
LABEL labelt beq rd , R0, label f

labelt :
IF rs < rt THEN labelt ELSE label f slt rd , rs, rt

bne rd , R0, labelt
j label f

LABEL label label:

Figure 8.1: Pattern/replacement pairs for a subset of the MIPS instruction set

MIPS instructions:

beq r,s,lab: branch to lab
if r=s

bne r,s,lab: branch to lab
if r 6=s

slt r,s,t: r = (s < t)

j l: unconditional jump

(Mogensen)

Code generation 339

Pattern matching

A pattern should be defined for every single IR instruction
(otherwise it would not be possible to translate some IR code)

A last in a pattern can only be matched by a last in the IR code

But any variable in a pattern can match a last in the IR code

If patterns overlap, there are potentially several translations for the
same IR code

One wants to find the best possible translation (e.g., the shortest or
the fastest)

Two approaches:
I Greedy: order the pairs so that longer patterns are listed before

shorter ones and at each step, use the first pattern that matches a
prefix of the IR code

I Optimal: associate a cost to each replacement and find the
translation that minimizes the total translation cost, e.g. using
dynamic programming

Code generation 340

Illustration

Using the greedy approach:

IR code MIPS code
a := a + blast add a, a, b
d := c + 8 sw a, 8(c)
M[d last] := a)
IF a = c THEN label1 ELSE label2 beq a, c , label1
LABEL label2 label2 :

Code generation 341

Outline

1. Introduction

2. Instruction selection

3. Register allocation

4. Memory management

Code generation 342

Register allocation

In the IR, we assumed an unlimited number of registers (to ease IR
code generation)

This is obviously not the case on a physical machine (typically, 5-10
general-purpose registers for a CISC architecture, >15 for a RISC
architecture)

Registers can be accessed quickly and operations can be performed
on them directly

Using registers intelligently is therefore a critical step in any
compiler (can make a di↵erence in orders of magnitude)

Register allocation is the process of assigning variables to registers
and managing data transfer in and out of the registers

Code generation 343

Challenges in register allocation

Registers are scarce
I Often substantially more IR variables than registers
I Need to find a way to reuse registers whenever possible

Register management is sometimes complicated
I Each register is made of several small registers (x86)
I There are specific registers which need to be used for some

instructions (x86)
I Some registers are reserved for the assembler or operating systems

(MIPS)
I Some registers must be reserved to handle function calls (all)

Here, we assume only some number of indivisible, general-purpose
registers (MIPS-style)

Code generation 344

A direct solution
Idea: store every value in main memory, loading values only when
they are needed.
To generate a code that performs some computation:

I Generate load instructions to retrieve the values from main memory
into registers

I Generate code to perform the computation on the registers
I Generate store instructions to store the result back into main memory

Example: (with a,b,c,d stored resp. at fp-8, fp-12, fp-16, fp-20)

a := b + c lw t0, �12(fp)
d := a) lw t1, �16(fp)
c := a + d add t2, t0, t1

sw t2, �8(fp)
lw t0, �8(fp)
sw t0, �20(fp)
lw t0, �8(fp)
lw t1, �20(fp)
add t2, t0, t1
sw t2, �16(fp)

Code generation 345

A direct solution

Advantage: very simple, translation is straighforward, never runout
of registers

Disadvantage: very ine�cient, waste space and time

Better allocator should:
I try to reduce memory load/store
I reduce total memory usage

Need to answer two questions:
I Which register do we put variables in?
I What do we do when we run out of registers?

Code generation 346

Liveness analysis

A variable is live at some point in the program if its value may be
read later before it is written. It is dead if there is no way its value
can be used in the future.

Two variables can share a register if there is no point in the program
where they are both live

Liveness analysis is the process of determining the live or dead
statuses of all variables throughout the (IR) program

Informally: For an instruction I and a variable t
I If t is used in I , then t is live at the start of I
I If t is assigned a value in I (and does not appear in the RHS of I),

then t is dead at the start of the I
I If t is live at the end of I and I does not assign a value to t, then t is

live at the start of I
I t is live at the end of I if it is live at the start of any of the

immediately succeding instructions

Code generation 347

Liveness analysis: control-flow graph

First step: construct the control-flow graph

For each instruction numbered i , one defines succ[i] as follows:
I If instruction j is just after i and j is neither a GOTO or

IF-THEN-ELSE instruction, then j is in succ[i]
I If i is of the form GOTO l , the instruction with label l is in succ[i].
I If i is IF p THEN lt ELSE lf , instructions with label lt and lf are both

in succ[i]

The third rule loosely assumes that both outcomes of the
IF-THEN-ELSE are possible, meaning that some variables will be
claimed live while they are dead (not really a problem)

Code generation 348

Liveness analysis: control-flow graph

Example (Computation of Fibonacci(n) in a)
9.3. LIVENESS ANALYSIS 195

1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body
7: t := a+b
8: a := b
9: b := t

10: n := n�1
11: z := 0
12: GOTO loop
13: LABEL end

Figure 9.2: Example program for liveness analysis and register allocation

it will be used after the program finishes, even if this is not visible in the code of
the program itself. So we must ensure that the analysis makes this variable live at
the end of the program.

Equation 9.2, similarly, is ill-defined if succ[i] is the empty set (which is, typ-
ically, the case for any instruction that ends the program), so we make a special
case: out[i], where i has no successor, is defined to be the set of all variables that
are live at the end of the program. This definition replaces (for these instructions
only) equation 9.2.

Figure 9.2 shows a small program that we will calculate liveness for. Figure 9.3
shows succ, gen and kill sets for the instructions in the program.

The program in figure 9.2 calculates the Nth Fibonacci number (where N is
given as input by initialising n to N prior to execution). When the program ends
(by reaching instruction 13), a will hold the Nth fibonacci number, so a is live at
the end of the program. Instruction 13 has no successors (succ[13] = /0), so we set
out[13] = {a}. The other out sets are defined by equation 9.2 and all in sets are
defined by equation 9.1. We initialise all in and out sets to the empty set and iterate
until we reach a fixed point.

The order in which we treat the instructions does not matter for the final result
of the iteration, but it may influence how quickly we reach the fixed-point. Since
the information in equations 9.1 and 9.2 flow backwards through the program, it is
a good idea to do the evaluation in reverse instruction order and to calculate out[i]
before in[i]. In the example, this means that we will in each iteration calculate the
sets in the order

196 CHAPTER 9. REGISTER ALLOCATION

i succ[i] gen[i] kill[i]
1 2 a
2 3 b
3 4 z
4 5
5 6,13 n,z
6 7
7 8 a,b t
8 9 b a
9 10 t b

10 11 n n
11 12 z
12 4
13

Figure 9.3: succ, gen and kill for the program in figure 9.2

out[13], in[13], out[12], in[12], . . . ,out[1], in[1]

Figure 9.4 shows the fixed-point iteration using this backwards evaluation order.
Note that the most recent values are used when calculating the right-hand sides of
equations 9.1 and 9.2, so, when a value comes from a higher instruction number,
the value from the same column in figure 9.4 is used.

We see that the result after iteration 3 is the same as after iteration 2, so we have
reached a fixed point. We note that n is live at the start of the program, which is to be
expected, as n is expected to hold the input to the program. If a variable that is not
expected to hold input is live at the start of a program, it might in some executions
of the program be used before it is initialised, which is generally considered an error
(since it can lead to unpredictable results and even security holes). Some compilers
issue warnings about uninitialised variables and some compilers add instructions to
initialise such variables to a default value (usually 0).

Suggested exercises: 9.1(a,b).

9.4 Interference

We can now define precisely the condition needed for two variables to share a
register. We first define interference:

Code generation 349

Liveness analysis: gen and kill

For each IR instruction, we define two functions:

gen[i]: set of variables that may be read by instruction i
kill [i]: set of variables that may be assigned a value by instruction i

194 CHAPTER 9. REGISTER ALLOCATION

Instruction i gen[i] kill[i]
LABEL l /0 /0
x := y {y} {x}
x := k /0 {x}
x := unop y {y} {x}
x := unop k /0 {x}
x := y binop z {y,z} {x}
x := y binop k {y} {x}
x := M[y] {y} {x}
x := M[k] /0 {x}
M[x] := y {x,y} /0
M[k] := y {y} /0
GOTO l /0 /0
IF x relop y THEN lt ELSE l f {x,y} /0
x := CALL f (args) args {x}

Figure 9.1: Gen and kill sets

For each instruction i, we use two sets to hold the actual liveness information:
in[i] holds the variables that are live at the start of i, and out[i] holds the variables
that are live at the end of i. We define these by the following equations:

in[i] = gen[i][(out[i]\ kill[i]) (9.1)
out[i] =

[

j2succ[i]

in[j] (9.2)

These equations are recursive. We solve these by fixed-point iteration, as shown
in appendix A: We initialise all in[i] and out[i] to be empty sets and repeatedly
calculate new values for these until no changes occur. This will eventually happen,
since we work with sets with finite support (i.e., a finite number of possible values)
and because adding elements to the sets out[i] or in[j] on the right-hand sides of the
equations can not reduce the number of elements in the sets on the left-hand sides.
Hence, each iteration will either add elements to some set (which we can do only
a finite number of times) or leave all sets unchanged (in which case we are done).
It is also easy to see that the resulting sets form a solution to the equation – the last
iteration essentially verifies that all equations hold. This is a simple extension of
the reasoning used in section 2.6.1.

The equations work under the assumption that all uses of a variable are visible
in the code that is analysed. If a variable contains, e.g., the output of the program,

Code generation 350

Liveness analysis: in and out

For each program instruction i , we use two sets to hold liveness
information:

I in[i]: the variables that are live before instruction i
I out[i]: the variables that are live at the end of i

in and out are defined by these two equations:

in[i] = gen[i] [(out[i] \ kill [i])

out[i] =
[

j2succ[i]

in[j]

These equations can be solved by fixed-point iterations:
I Initialize in[i] and out[i] to empty sets
I Iterate over instructions (in reverse order, evaluating out first) until

convergence (i.e., no change)

For the last instruction (succ[i] = ;), out[i] is a set of variables that
are live at the end of the program (i.e., used subsequently)

Code generation 351

Illustration9.3. LIVENESS ANALYSIS 195

1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body
7: t := a+b
8: a := b
9: b := t

10: n := n�1
11: z := 0
12: GOTO loop
13: LABEL end

Figure 9.2: Example program for liveness analysis and register allocation

it will be used after the program finishes, even if this is not visible in the code of
the program itself. So we must ensure that the analysis makes this variable live at
the end of the program.

Equation 9.2, similarly, is ill-defined if succ[i] is the empty set (which is, typ-
ically, the case for any instruction that ends the program), so we make a special
case: out[i], where i has no successor, is defined to be the set of all variables that
are live at the end of the program. This definition replaces (for these instructions
only) equation 9.2.

Figure 9.2 shows a small program that we will calculate liveness for. Figure 9.3
shows succ, gen and kill sets for the instructions in the program.

The program in figure 9.2 calculates the Nth Fibonacci number (where N is
given as input by initialising n to N prior to execution). When the program ends
(by reaching instruction 13), a will hold the Nth fibonacci number, so a is live at
the end of the program. Instruction 13 has no successors (succ[13] = /0), so we set
out[13] = {a}. The other out sets are defined by equation 9.2 and all in sets are
defined by equation 9.1. We initialise all in and out sets to the empty set and iterate
until we reach a fixed point.

The order in which we treat the instructions does not matter for the final result
of the iteration, but it may influence how quickly we reach the fixed-point. Since
the information in equations 9.1 and 9.2 flow backwards through the program, it is
a good idea to do the evaluation in reverse instruction order and to calculate out[i]
before in[i]. In the example, this means that we will in each iteration calculate the
sets in the order

196 CHAPTER 9. REGISTER ALLOCATION

i succ[i] gen[i] kill[i]
1 2 a
2 3 b
3 4 z
4 5
5 6,13 n,z
6 7
7 8 a,b t
8 9 b a
9 10 t b

10 11 n n
11 12 z
12 4
13

Figure 9.3: succ, gen and kill for the program in figure 9.2

out[13], in[13], out[12], in[12], . . . ,out[1], in[1]

Figure 9.4 shows the fixed-point iteration using this backwards evaluation order.
Note that the most recent values are used when calculating the right-hand sides of
equations 9.1 and 9.2, so, when a value comes from a higher instruction number,
the value from the same column in figure 9.4 is used.

We see that the result after iteration 3 is the same as after iteration 2, so we have
reached a fixed point. We note that n is live at the start of the program, which is to be
expected, as n is expected to hold the input to the program. If a variable that is not
expected to hold input is live at the start of a program, it might in some executions
of the program be used before it is initialised, which is generally considered an error
(since it can lead to unpredictable results and even security holes). Some compilers
issue warnings about uninitialised variables and some compilers add instructions to
initialise such variables to a default value (usually 0).

Suggested exercises: 9.1(a,b).

9.4 Interference

We can now define precisely the condition needed for two variables to share a
register. We first define interference:

(Mogensen)

(We can assume that out[13] = {a})

Code generation 352

Illustration
9.4. INTERFERENCE 197

Initial Iteration 1 Iteration 2 Iteration 3
i out[i] in[i] out[i] in[i] out[i] in[i] out[i] in[i]
1 n,a n n,a n n,a n
2 n,a,b n,a n,a,b n,a n,a,b n,a
3 n,z,a,b n,a,b n,z,a,b n,a,b n,z,a,b n,a,b
4 n,z,a,b n,z,a,b n,z,a,b n,z,a,b n,z,a,b n,z,a,b
5 a,b,n n,z,a,b a,b,n n,z,a,b a,b,n n,z,a,b
6 a,b,n a,b,n a,b,n a,b,n a,b,n a,b,n
7 b, t,n a,b,n b, t,n a,b,n b, t,n a,b,n
8 t,n b, t,n t,n,a b, t,n t,n,a b, t,n
9 n t,n n,a,b t,n,a n,a,b t,n,a

10 n n,a,b n,a,b n,a,b n,a,b
11 n,z,a,b n,a,b n,z,a,b n,a,b
12 n,z,a,b n,z,a,b n,z,a,b n,z,a,b
13 a a a a a a

Figure 9.4: Fixed-point iteration for liveness analysis

Definition 9.2 A variable x interferes with a variable y if x 6= y and there is an
instruction i such that x 2 kill[i], y 2 out[i] and instruction i is not x := y.

Two different variables can share a register precisely if neither interferes with the
other. This is almost the same as saying that they should not be live at the same
time, but there are small differences:

• After x := y, x and y may be live simultaneously, but as they contain the same
value, they can still share a register.

• It may happen that x is not in out[i] even if x is in kill[i], which means that
we have assigned to x a value that is definitely not read from x later on. In
this case, x is not technically live after instruction i, but it still interferes with
any y in out[i]. This interference prevents an assignment to x overwriting a
live variable y.

The first of these differences is essentially an optimisation that allows more sharing
than otherwise, but the latter is important for preserving correctness. In some cases,
assignments to dead variables can be eliminated, but in other cases the instruction
may have another visible effect (e.g., setting condition flags or accessing memory)
and hence can not be eliminated without changing program behaviour.

(Mogensen)

(From instruction 13 to instruction 1)

Code generation 353

Interference

A variable x interferes with another variable y if there is an
instruction i such that x 2 kill [i], y 2 out[i] and instruction i is not
x := y

Two variables can share a register precisely if neither interferes with
the other.

Note: This is di↵erent from x 2 out[i] and y 2 out[i] (ie., x and y
live simultaneously)

I if x is in kill [i] and not in out[i] (because x is never used after an
assignment), then it should interfere with y 2 out[i], otherwise if x
and y share the same register, an assignment to x will overwrite the
live variable y .

Interference graph: undirected graph where each node is a variable
and two variables are connected if they interfere

Code generation 354

Illustration

198 CHAPTER 9. REGISTER ALLOCATION

a
����

�
�

�
�

�
��

�
�
�
�

b
�

�
�

�
�

��

����
�
�
�
�
�
��

n
�

�
�

�

�
�

�
�

�
��

z t

Figure 9.5: Interference graph for the program in figure 9.2

We can use definition 9.2 to generate interference for each assignment state-
ment in the program in figure 9.2:

Instruction Left-hand side Interferes with
1 a n
2 b n,a
3 z n,a,b
7 t b,n
8 a t,n
9 b n,a

10 n a,b
11 z n,a,b

We will do global register allocation, i.e., find for each variable a register that it can
stay in at all points in the program (procedure, actually, since a “program” in terms
of our intermediate language corresponds to a procedure in a high-level language).
This means that, for the purpose of register allocation, two variables interfere if
they do so at any point in the program. Also, even though interference is defined in
an assymetric way in definition 9.2, the conclusion that the two involved variables
cannot share a register is symmetric, so interference defines a symmetric relation
between variables. A variable can never interfere with itself, so the relation is not
reflective.

We can draw interference as an undirected graph, where each node in the graph
is a variable, and there is an edge between nodes x and y if x interferes with y (or
vice versa, as the relation is symmetric). The interference graph for the program in
figure 9.2 is shown in figure 9.5.

198 CHAPTER 9. REGISTER ALLOCATION

a
����

�
�

�
�

�
��

�
�
�
�

b
�

�
�

�
�

��

����
�
�
�
�
�
��

n
�

�
�

�

�
�

�
�

�
��

z t

Figure 9.5: Interference graph for the program in figure 9.2

We can use definition 9.2 to generate interference for each assignment state-
ment in the program in figure 9.2:

Instruction Left-hand side Interferes with
1 a n
2 b n,a
3 z n,a,b
7 t b,n
8 a t,n
9 b n,a

10 n a,b
11 z n,a,b

We will do global register allocation, i.e., find for each variable a register that it can
stay in at all points in the program (procedure, actually, since a “program” in terms
of our intermediate language corresponds to a procedure in a high-level language).
This means that, for the purpose of register allocation, two variables interfere if
they do so at any point in the program. Also, even though interference is defined in
an assymetric way in definition 9.2, the conclusion that the two involved variables
cannot share a register is symmetric, so interference defines a symmetric relation
between variables. A variable can never interfere with itself, so the relation is not
reflective.

We can draw interference as an undirected graph, where each node in the graph
is a variable, and there is an edge between nodes x and y if x interferes with y (or
vice versa, as the relation is symmetric). The interference graph for the program in
figure 9.2 is shown in figure 9.5.

(Mogensen)

Code generation 355

Register allocation

Global register allocation: we assign to a variable the same register
throughout the program (or procedure)

How to do it? Assign a register number (among N) to each node of
the interference graph such that

I Two nodes that are connected have di↵erent register numbers
I The total number of di↵erent registers is no higher than the number

of available registers

This is a problem of graph coloring (where color number = register
number), which is known to be NP-complete

Several heuristics have been proposed

Code generation 356

Chaitin’s algorithm

A heuristic linear algorithm for k-coloring a graph

Algorithm:
I Select a node with fewer than k outgoing edges
I Remove it from the graph
I Recursively color the rest of the graph
I Add the node back in
I Assign it a valid color

Last step is always possible since the removed node has less than k
neighbors in the graph

Implementation: nodes are pushed on a stack as soon as they are
selected

Code generation 357

Illustration

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

c

b

d

e

a

Chaitin's Algorithm

a

b c

d e

g f

R
0

R
1

R
2

R
0

R
1

R
2

Registers

R
3

Stack of nodes

(Keith Schwarz)

Code generation 358

Chaitin’s algorithm

What if we can not find a node with less than k neighbors?

Choose and remove an arbitrary node, marking it as “troublesome”

When adding node back in, it may still be possible to find a valid
color

Otherwise, we will have to store it in memory.
I This is called spilling.

Code generation 359

Illustration

d

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

d

c

(spilled)

e

Stack of nodes

c

d

e

f

Chaitin's Algorithm Reloaded

a

b

R
0

R
1

R
2

R
0

R
1

R
2

Registers

g

g f

e

d

c

b

a

(Keith Schwarz)

Code generation 360

Spilling

A spilled variable is stored in memory

When we need a register for a spilled variable v , temporarily evict a
register to memory (since registers are supposed to be exhausted)

When done with that register, write its value to the storage spot for
v (if necessary) and load the old value back

Heuristics to choose the variable/node to spill:
I Pick one with close to N neighbors (increasing the chance to color it)
I Choose a node with many neighbors with close to N neighbors

(increase the chance of less spilling afterwards)
I Choose a variable that’s not costly to spill (by looking at the program)

Code generation 361

Register allocation

We only scratched the surface of register allocation

Many heuristics exist as well as di↵erent approaches (not using
graph coloring)

GCC uses a variant of Chaitin’s algorithm

Code generation 362

Outline

1. Introduction

2. Instruction selection

3. Register allocation

4. Memory management

Code generation 363

Memory organization

 5

segment than the program code, global/static, or stack. Such memory is called the
heap.

Here’s a map depicting the address space of an executing program:

Stack

Heap

Global/static data

Code

Runtime Stack
Each active function call has its own unique stack frame. In a stack frame (activation
record) we hold the following information:

1) frame pointer: pointer value of the previous stack frame so we can reset the top

of stack when we exit this function. This is also sometimes called the dynamic
link.

2) static link: in languages (like Pascal but not C or Decaf) that allow nested
function declarations, a function may be able to access the variables of the
function(s) within which it is declared. In the static link, we hold the pointer
value of the stack frame in which the current function was declared.

3) return address: point in the code to which we return at the end of execution of
the current function.

4) values of arguments passed to the function and locals and temporaries used in
the function.

Memory is generally divided into four main parts:

Code: contains the code of the program

Static data: contains static data allocated at compile-time

Stack: used for function calls and local variables

Heap: for the rest (e.g., data allocated at run-time)

Computers have registers that contain addresses that delimit these
di↵erent parts

Code generation 364

Static data

Contains data allocated at compile-time

Address of such data is then hardwired in the generated code

Used e.g. in C to allocate global variables

There are facilities in assemblers to allocate such space:
I Example to allocate an array of 4000 bytes

Chapter 12

Memory management

12.1 Introduction

In chapter 7, we mentioned that arrays, records and other multi-word objects could
be allocated either statically, on the stack or in the heap. We will now look into
more detail of how these three kinds of allocation can be implemented and what
their relative merits are.

12.2 Static allocation

Static allocation means that the data is allocated at a place in memory that has both
known size and address at compile time. Furthermore, the allocated memory stays
allocated throughout the execution of the program.

Most modern computers divide their logical address space into a text section
(used for code) and a data section (used for data). Assemblers (programs that con-
vert symbolic machine code into binary machine code) usually maintain “current
address” pointers to both the text area and the data area. They also have pseudo-
instructions (directives) that can place labels at these addresses and move them. So
you can allocate space for, say, an array in the data space by placing a label at the
current-address pointer in the data space and then move the current-address pointer
up by the size of the array. The code can use the label to access the array. Alloca-
tion of space for an array A of 1000 32-bit integers (i.e., 4000 bytes) can look like
this in symbolic code:

.data # go to data area for allocation
baseofA: # label for array A

.space 4000 # move current-address pointer up 4000 bytes

.text # go back to text area for code generation

The base address of the array A is at the label baseofA.

257

Limitations:
I size of the data must be known at compile-time
I Never freed even if the data is only used a fraction of time

Code generation 365

Stack
10.7. ACCESSING NON-LOCAL VARIABLES 225

· · ·
Next activation records
Space for storing local variables for spill
and for storing live variables allocated to
caller-saves registers across function calls
Space for storing callee-saves registers that
are used in the body
Incoming parameters in excess of four
Return address

FP �! Static link (SL)
Previous activation records
· · ·

Figure 10.13: Activation record with static link

f:

· · ·
y
x
Return address

FP ! SL (null)
· · ·

g:

· · ·
q
p
Return address

FP ! SL (to f)
· · ·

Figure 10.14: Activation records for f and g from figure 10.11

Static links

If there are more than two nested scopes, pointers to all outer scopes need to be
passed as parameters to locally declared functions. If, for example, g declared a lo-
cal function h, h would need pointers to both f’s and g’s activation records. If there
are many nested scopes, this list of extra parameters can be quite long. Typically,
a single parameter is instead used to hold a linked list of the frame pointers for the
outer scopes. This is normally implemented by putting the links in the activation
records themselves. Hence, the first field of an activation record (the field that FP
points to) will point to the activation record of the next outer scope. This is shown
in figure 10.13. The pointer to the next outer scope is called the static link, as
the scope-nesting is static as opposed to the actual sequence of run-time calls that
determine the stacking-order of activation records1. The layout of the activation
records for f and g from figure 10.11 is shown in figure 10.14.

g’s static link will point to the most recent activation record for f. To read y, g
will use the code

1Sometimes, the return address is referred to as the dynamic link.

Mainly used to store activation records for function calls

But can be used to allocate arrays and other data structures (e.g., in
C, to allocate local arrays)

Allocation is quick and easy

But sizes of arrays need to be known at compile-time and can only
be used for local variables (space is freed when the function returns)

Code generation 366

Heap

Used for dynamic memory allocations

Size of arrays or structures need not to be known at compile-time

Array sizes can be increased dynamically

Two ways to manage data allocation/deallocation:
I Manual memory management
I Automatic memory management (or garbage collection)

Code generation 367

Manual memory management

The user is responsible for both data allocation and deallocation
I In C: malloc and free
I In object oriented languages: object constructors and destructors

Advantages:
I Easier to implement than garbage collection
I The programmer can exercise precise control over memory usage

(allows better performances)

Limitations
I The programmer has to exercise precise control over memory usage

(tedious)
I Easily leads to troublesome bugs: memory leaks, double frees,

use-after-frees...

Code generation 368

A simple implementation

Space is allocated by the operating system and then managed by the
program (through library functions such as malloc and free in C)

A free list is maintained with all current free memory blocks
(initially, one big block)

12.5. MANUAL MEMORY MANAGEMENT 261

� 12
������

���

28
������

�
�

�
��� 20

���

�
�

�
���

(a) The initial free list.

� 12
������

���

12
������

�
�

�
���

�
16

20
���

�
�

�
���

(b) After allocating 12 bytes.

12
������

������

12
������

�
�

�
���

� 16

���

�
20

���

�
�

�
���

(c) After freeing the same 12 bytes.

Figure 12.1: Operations on a free list

Malloc:
I Search through the free list for a block of su�cient size
I If found, it is possibly split in two with one removed from free list
I If not found, ask operating system for a new chunk of memory

Free:
I Insert the block back into the free list

Allocation is linear in the size of the free list, deallocation is done in
constant time

Code generation 369

A simple implementation

Block splitting leads to memory fragmentation
I The free list will eventually accumulate many small blocks
I Can be solved by joining consecutive freed blocks
I Makes free linear in free list size

Complexity of malloc can be reduced
I Limit block sizes to power of 2 and have a free list for each size
I Look for a block of the power of 2 just greater than searched size.
I If not available, take the next bigger block available and split it in

two repetitively until size is correct.
I Makes malloc logarithmic in heap size in the worst case.

Array resizing can be allowed by using indirection nodes
I When array is resized, it is copied into a new (bigger) block
I Indirection node address is updated accordingly

Code generation 370

Garbage collection

Allocation is still done with malloc or object constructors but
memory is automatically reclaimed

I Data/Objects that won’t be used again are called garbage
I Reclaiming garbage objects automatically is called garbage collection

Advantages:
I Programmer does not have to worry about freeing unused resources

Limitations:
I Programmer can’t reclaim unused resources
I Di�cult to implement and add a significant overhead

Code generation 371

Implementation 1: reference counting

Idea: if no pointer to a block exists, the block can safely be freed

Add an extra field in each memory block (of the free list) with a
count of the incoming pointers

I When creating an object, set its counter to 0
I When creating a reference to an object, increment its counter
I When removing a reference, decrement its counter.
I If zero, remove all outgoing references from that object and reclaim

the memory

Code generation 372

Reference counting: illustration

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

head 1

mid

2tail

2

Reference Counting in Action

class LinkedList {

 LinkedList next;

}

int main() {

 LinkedList head = new LinkedList;

 LinkedList mid = new LinkedList;

 LinkedList tail = new LinkedList;

 head.next = mid;

 mid.next = tail;

 mid = tail = null;

 head.next.next = null;

 head = null;

}

(Keith Schwarz)

Code generation 373

Reference counting

Straightforward to implement and can be combined with manual
memory management

Significant overhead when doing assignments for incrementing
counters

Impose constraints on the language
I No pointer to the middle of an object, should be able to distinguish

pointers from integers...

Circular data structures are problematic
I Counters will never be zero
I E.g., doubly-linked lists
I Algorithmic solutions exist but they are complex and costly.

Code generation 374

Implementation 2: tracing garbage collectors

Idea: find all reachable blocks from the knowledge of what is
immediately accessible (the root set) and free all other blocks

The root set is the set of memory locations that are known to be
reachable

I all variables in the program: registers, stack-allocated, global
variables. . .

Any objects (resp. not) reachable from the root set are (resp. not)
reachable

Mark-and-Sweep In Action

Root Set

Code generation 375

Tracing garbage collection: mark-and-sweep

Mark-and-sweep garbage collection:
I Add a flag to each block
I Marking phase: go through the graph, e.g., depth-first, setting the

flag for all reached blocks
I Sweeping phase: go through the list of blocks and free all unflagged

ones

Implementation of the mark stage with a stack:
I Initialized to the root set
I Retaining reachable blocks that have not yet been visited

Tracing GC is typically called only when a malloc fails to avoid
pauses in the program

Problem: stack requires memory (and a malloc has just failed)
I Marking phase can be implemented without a stack (at the expense

of computing times)
I Typically by adding descriptors within blocks and using pointer

reversal

Code generation 376

Implementation: tracing garbage collection

Advantage:
I More precise than reference counting
I No problem with circular references
I Run time can be made proportional to the number of reachable

objects (typically much lower than number of free blocks)

Disadvantages:
I Introduce huge pause times
I Consume lots of memory

Code generation 377

Garbage collection

Other garbage collection methods:

Two-space collection (stop-and-copying):
I Avoid fragmentation and makes collection time proportional only to

reachable nodes.
I Two allocation spaces of same size are maintained
I Blocks are always allocated in one space until full
I Garbage collection then copies all live objects to the other space and

swap their roles

Generational collection:
I Maintain several spaces for di↵erent generations of objects, with

these spaces of increasing sizes
I Optimized according to the “objects die young” principle

Concurrent and incremental collectors
I Perform collection incrementally or concurrently during execution of

the program
I Avoid long pauses but can reduce the total throughput

Code generation 378

Part 7

Conclusion

Conclusion 379

Structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code

Conclusion 380

Summary

Part 1, Introduction:
I Overview and motivation...

Part 2, Lexical analysis:
I Regular expression, finite automata, implementation, Flex...

Part 3, Syntax analysis:
I Context-free grammar, top-down (predictive) parsing, bottom-up

parsing (SLR and operator precedence parsing)...

Part 4, Semantic analysis:
I Syntax-directed translation, abstract syntax tree, type and scope

checking...

Part 5, Intermediate code generation and optimization:
I Intermediate representations, IR code generation, optimization...

Part 6, Code generation:
I Instruction selection, register allocation, liveliness analysis, memory

management...

Conclusion 381

More on compilers

Our treatment of each compiler stage was superficial

See reference books for more details (Transp. 5)

Some things we have not discussed at all:
I Specificities of object-oriented or functional programming languages
I Machine dependent code optimization
I Parallelism
I . . .

Related topics:
I Natural language processing
I Domain-specific languages
I . . .

Conclusion 382

	Introduction
	What is a compiler
	Compiler structure
	Course project

	Lexical analysis
	Principle
	Regular expressions
	Analysis with non-deterministic finite automata
	Analysis with deterministic finite automata
	Implementing a lexical analyzer

	Syntax analysis
	Introduction
	Context-free grammar
	Top-down parsing
	Bottom-up parsing
	Shift/reduce parsing
	LR parsers
	Operator precedence parsing
	Using ambiguous grammars

	Conclusion and some practical considerations

	Semantic analysis
	Syntax-directed translation
	Abstract syntax tree
	Type and scope checking

	Intermediate code generation
	Intermediate representations
	Illustration
	Optimization

	Code generation
	Introduction
	Instruction selection
	Register allocation
	Memory management

	Conclusion

