Part 6

Code generation

Structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l

Final code generation

m At this point, we have optimized intermediate code, from which we
would like to generate the final code

m By final code, we typically mean assembly language of the target
machine
m Goal of this stage:

» Choose the appropriate machine instructions to translate each
intermediate representation instruction

» Handle finite machine resources (registers, memory, etc.)

» Implement low-level details of the run-time environment

» Implement machine-specific code optimization

m This step is very machine-specific

m In this course, we will only mention some typical and general
problems

Short tour on machine code

m RISC (Reduced Instruction Set Computer)
» E.g.: PowerPC, Sparc, MIPS (embedded systems), ARM...
» Many registers, 3-address instructions, relatively simple instruction
sets
m CISC (Complex Instruction Set Computer)
» E.g.: x86, x86-64, amdb64...
» Few registers, 2-address instructions, complex instruction sets
m Stack-based computer:

» E.g.: Not really used anymore but Java's virtual machine is
stack-based
» No register, zero address instructions (operands on the stack)

m Accumulator-based computer:

» E.g.: First IBM computers were accumulator-based
» One special register (the accumulator), one address instructions,
other registers used in loops and address specification

Outline

1. Introduction
2. Instruction selection
3. Register allocation

4. Memory management

Instruction selection

m One needs to map one or several instructions of the intermediate
representation into one or several instructions of the machine
language

m Complexity of the task depends on:

> the level of the IR
» the nature of the instruction-set architecture
» the desired quality of the generated code
m Examples of problems:
» Conditional jumps
» Constants
» Complex instructions

Example: Conditional jumps

m Conditional jumps in our intermediate language are of the form:
IF id relop Atom THEN labelid ELSE labelid

m Conditional jumps might be different on some machines:
» One-way branch instead of two-way branches

branch_if ¢ |/,
IF ¢ THEN [ELSE [f .
jump I¢

» Condition such as “id relop Atom” might not be allowed. Then,
compute the condition and store it in a register

» There might exist special registers for conditions

> ..

Example: Constants

m IR allows arbitrary constants as operands to binary or unary
operators
m This is not always the case in machine code

» MIPS allows only 16-bit constants in operands (even though integers
are 32 bits)
» On the ARM, a constant can only be a 8-bit number positioned at
any even bit boundary (within a 32-bit word)
11

8 7 0

\ | rPti‘te.“ | immediate8 |

= pron

http://www.davespace.co.uk/arm/

m If a constant is too big, translation requires to build the constant
into some register

m If the constant is used within a loop, its computation should be
moved outside

Exploiting complex instructions

m If we do not care about efficiency, instruction selection is
straightforward:

» Write a code skeleton for every IR instruction
» Example in MIPS assembly:

=1t +116 = addir2,r1,116
(where r2 and rl are the registers chosen for t, and t;)

m Most processors (even RISC-based) have complex instructions that
can translate several IR instructions at once

» Examples in MIPS assembly:
=1t +116 = Iwr3, 116(rl)
t3 := M[t2]
(where r3 and rl are the registers chosen for t3 and t; resp. and
assuming that t, will not be used later)

m For efficiency reason, one should exploit them

Code generation principle

Determine for each variable whether it is dead after a particular use
(liveness analysis, see later)
th =1t +116
ts := M[t5*]
m Associate an address (register, memory location...) to each variable
(register allocation, see later)
m Define an instruction set description, i.e., a list of pairs of:
» pattern: a sequence of IR instructions

t:=r+k
re i= Mt/
» replacement: a sequence of machine-code instruction translating the
pattern
Iw re k(rs)

Use pattern matching to do the translation

[[lustration

t:=rs+k, 1w re, k(rs)
1= Mt

rr = Mry] 1w ry, 0(ry)
ry = MIk] 1w r, k(RO)
t:=ry+k, sW 1y, k(ry)
M[t/ast} =r

Miry| :==r sw rs, 0(ry)
M[k] :=r, sw 1, k(RO)
rg:=rs+r | add Td, Vs, I't

Tg:=T1 add r4, RO, 1y
rg:=rs+k |addi rg, 15k

rqg =k addi rg, RO,k

Pattern/replacement pairs for a subset of the MIPS instruction set

MIPS instructions:
m lwrk(s): r=M[s+ K|
mswrk(s): M[s+k]l=r
maddrst: r=s+t
]

addirs,k: r=s+k
where k is a constant

m RO: a register containing
the constant 0

(Mogensen)

[[lustration

IF ry = r; THEN label; ELSE labely, beq 1y, 11, label;
LABEL [abely labely:
IF ry = r; THEN label; ELSE labely, bne rs, 11, label ¢
LABEL label, label,:
IF ry = r; THEN label; ELSE labely beq rs, 11, label,
j labely
IF ry < r; THEN label, ELSE labely, slt Tds Fsy 1y
LABEL labely bne rq, RO, label,
label:
IF ry < r; THEN [abel, ELSE labely, slt Fds s, It
LABEL label, beq 74, RO, labely
label,:
IF ry < r; THEN label; ELSE labely slt Fds Py 1y
bne ra, RO, label;
j labely
LABEL label label:

MIPS instructions:
m beq r,s,lab: branch to lab
if r=s
m bne r,s,lab: branch to lab
if r£s
msltrst r=(s<t)

m j |: unconditional jump

(Mogensen)

Pattern matching

m A pattern should be defined for every single IR instruction
(otherwise it would not be possible to translate some IR code)

A last in a pattern can only be matched by a /ast in the IR code

But any variable in a pattern can match a /ast in the IR code

If patterns overlap, there are potentially several translations for the
same IR code

One wants to find the best possible translation (e.g., the shortest or
the fastest)
Two approaches:

» Greedy: order the pairs so that longer patterns are listed before
shorter ones and at each step, use the first pattern that matches a
prefix of the IR code

» Optimal: associate a cost to each replacement and find the
translation that minimizes the total translation cost, e.g. using
dynamic programming

[[lustration

Using the greedy approach:

IR code MIPS code
a:=a-+ bPst add a,a, b
d:=c+38 sw a, 8(c
M[d"t] .= a N

IF a = c THEN /abel, ELSE label
LABEL /abel,

label :

beq a, c, label

Outline

3. Register allocation

Register allocation

m In the IR, we assumed an unlimited number of registers (to ease IR
code generation)

m This is obviously not the case on a physical machine (typically, 5-10
general-purpose registers for a CISC architecture, >15 for a RISC
architecture)

m Registers can be accessed quickly and operations can be performed
on them directly

m Using registers intelligently is therefore a critical step in any
compiler (can make a difference in orders of magnitude)

m Register allocation is the process of assigning variables to registers
and managing data transfer in and out of the registers

Challenges in register allocation

m Registers are scarce

» Often substantially more IR variables than registers
» Need to find a way to reuse registers whenever possible

m Register management is sometimes complicated

» Each register is made of several small registers (x86)

» There are specific registers which need to be used for some
instructions (x86)

» Some registers are reserved for the assembler or operating systems
(MIPS)

» Some registers must be reserved to handle function calls (all)

m Here, we assume only some number of indivisible, general-purpose
registers (MIPS-style)

A direct solution

m Idea: store every value in main memory, loading values only when
they are needed.
m To generate a code that performs some computation:
» Generate load instructions to retrieve the values from main memory
into registers
» Generate code to perform the computation on the registers
» Generate store instructions to store the result back into main memory

[| Example: (with a,b,c,d stored resp. at fp-8, fp-12, fp-16, fp-20)
ar=b+c lw to, —12(fp)
d:=a = lw t;, —16(fp)
c:=a+d add t, ty, ty
sw tp, —8(fp)
Iw to, —8(fp)
sw to, —20(fp)
Iw to, —8(fp)
lw t1, —20(fp)
add t, tg, t1

sw tr, —16(fp)

A direct solution

m Advantage: very simple, translation is straighforward, never runout
of registers

m Disadvantage: very inefficient, waste space and time

m Better allocator should:

> try to reduce memory load/store
» reduce total memory usage

m Need to answer two questions:

» Which register do we put variables in?
» What do we do when we run out of registers?

Liveness analysis

m A variable is live at some point in the program if its value may be
read later before it is written. It is dead if there is no way its value
can be used in the future.

m Two variables can share a register if there is no point in the program
where they are both live

m Liveness analysis is the process of determining the live or dead
statuses of all variables throughout the (IR) program

m Informally: For an instruction / and a variable t

> If tis used in /, then t is live at the start of /

» If t is assigned a value in / (and does not appear in the RHS of /),
then t is dead at the start of the /

» If t is live at the end of / and / does not assign a value to t, then t is
live at the start of /

» tis live at the end of / if it is live at the start of any of the
immediately succeding instructions

Liveness analysis: control-flow graph

First step: construct the control-flow graph
m For each instruction numbered 7, one defines succ|i] as follows:

» If instruction j is just after i and j is neither a GOTO or
IF-THEN-ELSE instruction, then j is in succ[i]

» If i is of the form GOTO /, the instruction with label / is in succ]i].

» If i is IF p THEN /; ELSE /¢, instructions with label /; and /s are both
in succli]

m The third rule loosely assumes that both outcomes of the
IF-THEN-ELSE are possible, meaning that some variables will be
claimed live while they are dead (not really a problem)

Liveness analysis: control-flow graph

Example (Computation of Fibonacci(n) in a)

1 a:=0 succli]
2 b:=1 1 2
3 7:=0 2| 3
4 LABEL loop 3] 4
5. IF n =z THEN end ELSE body ;_L 6513
6: LABEL body T
7. t:=a+b 7]
8: a:=b g 9
9: b:=t 9 10
10 n:=n—1 10| 11
1: z:=0 1| 12
122 GOTO loop 12] 4
13 LABEL end 13

Liveness analysis: gen and kill
For each IR instruction, we define two functions:
m gen[i]: set of variables that may be read by instruction i
m kill[i]: set of variables that may be assigned a value by instruction i

‘ Instruction i ‘ genli] ‘ killli] ‘
LABEL / 0 0
X:=y) {x}
x:=k 0 {x}
x = unopy DERG
X :=unop k 0 {x}
x :=y binop z {nzt | {x}
x :=y binop k {»} {x}
x:=My] oy | {x}
x:=MI[k| 0 {x}
Mlx| =y fryt| ©
Mk] =y) 0
GOTO [0 0
IF x relop y THEN /; ELSE I | {x,y} 0
x:=CALL f(args) args | {x}

Liveness analysis: in and out

m For each program instruction /i, we use two sets to hold liveness
information:

> in[i]: the variables that are live before instruction i
» out[i]: the variables that are live at the end of i

m in and out are defined by these two equations:

in[i] = gen[i]U (out[i] \ kill[i])

out[i] = U in[j]

Jj€succli]

m These equations can be solved by fixed-point iterations:
» Initialize in[i] and out[i] to empty sets
> lterate over instructions (in reverse order, evaluating out first) until
convergence (i.e., no change)
m For the last instruction (succ[i] = 0)), out[i] is a set of variables that
are live at the end of the program (i.e., used subsequently)

[[lustration

. a:=0

2 b:=1

3 z:=0

4: LABEL loop
5. IF n =z THEN end ELSE body
6: LABEL body
7. t:=a+b

8: a:=b

9 b:=t

100 n:=n—1
1: z:=0

12: GOTO loop
13: LABEL end

(We can assume that out[13] = {a})

i ‘ succli ‘ genli ‘ kill[i]
1 2 a
2 3 b
3 4 z
4 5

5] 6,13 n,z

6 7

7 8 a,b t
8 9 b a
9 10 t b
10 11 n n
11 12 z
12 4
13

(Mogensen)

[[lustration

Initial Iteration 1 Iteration 2 Iteration 3
i || owt[i] |in[i] | out[i] | inli] outli] | inli] outli] | ini]
1 n,a n n,a n n,a n
2 n,a,b n,a n,a,b n,a n,a,b n,a
3 n,z,a,b| n,a,b \|\n,z,a,b| n,a,b |n,z,a,b| n,a,b
4 n,z,a,b|n,z,a,b\\n,z,a,b\n,z,a,b||n,z,a,b|n,z,a,b
5 a,b,n |n,z,a,b| a,b,n |n,z,a,b|| a,b,n |n,z,a,b
6 a,b,n | a,b,n || a,b,n | a,b,n || a,b,n | a,b,n
7 b,t,n | a,b,n || b,t,n | a,b,n || b,t,n | a,b,n
8 t,n b,t,n t,n,a | b,t,n t,n,a | b,t,n
9 n t,n n,a,b | t,n,a || n,a,b | t,n,a
10 n n,a,b | n,a,b || n,a,b | n,a,b
11 n,z,a,b| n,a,b \|n,z,a,b| n,a,b
12 n,z,a,b|n,z,a,b\|n,z,a,b|\n,z,a,b
13 a a a a a a

(Mogensen)
(From instruction 13 to instruction 1)

Interference

m A variable x interferes with another variable y if there is an
instruction i such that x € kill[i], y € out[i] and instruction i is not
X:=y

m Two variables can share a register precisely if neither interferes with
the other.

m Note: This is different from x € out[i] and y € out|i] (ie., x and y
live simultaneously)

» if x is in kill[i] and not in out[i] (because x is never used after an
assignment), then it should interfere with y € out[i], otherwise if x
and y share the same register, an assignment to x will overwrite the
live variable y.

m Interference graph: undirected graph where each node is a variable
and two variables are connected if they interfere

[[lustration

Instruction | Left-hand side | Interferes with

1 a n
2 b n,a
3 z n,a,b
7 t b,n
8 a t,n
9 b n,a

10 n a,b

11 z n,a,b

a\\b//n

(Mogensen)

Register allocation

m Global register allocation: we assign to a variable the same register
throughout the program (or procedure)
m How to do it? Assign a register number (among N) to each node of
the interference graph such that
» Two nodes that are connected have different register numbers
» The total number of different registers is no higher than the number
of available registers
m This is a problem of graph coloring (where color number = register
number), which is known to be NP-complete

m Several heuristics have been proposed

Chaitin’s algorithm

A heuristic linear algorithm for k-coloring a graph

Algorithm:
» Select a node with fewer than k outgoing edges
Remove it from the graph
Recursively color the rest of the graph
Add the node back in
Assign it a valid color

vV vy VvVYyy

Last step is always possible since the removed node has less than k
neighbors in the graph

Implementation: nodes are pushed on a stack as soon as they are
selected

[[lustration

Stack of nodes

Chaitin’s algorithm

m What if we can not find a node with less than k neighbors?
m Choose and remove an arbitrary node, marking it as “troublesome”

m When adding node back in, it may still be possible to find a valid
color
m Otherwise, we will have to store it in memory.
» This is called spilling.

[[lustration

Stack of nodes

b
o
e’ . (spilled)

) (&)

| @mio @ rors

Registers

R, [R, I

(Keith Schwarz)

Spilling

m A spilled variable is stored in memory

m When we need a register for a spilled variable v, temporarily evict a
register to memory (since registers are supposed to be exhausted)

m When done with that register, write its value to the storage spot for
v (if necessary) and load the old value back

m Heuristics to choose the variable/node to spill:
» Pick one with close to N neighbors (increasing the chance to color it)
» Choose a node with many neighbors with close to N neighbors
(increase the chance of less spilling afterwards)
» Choose a variable that's not costly to spill (by looking at the program)

Register allocation

m We only scratched the surface of register allocation

m Many heuristics exist as well as different approaches (not using
graph coloring)

m GCC uses a variant of Chaitin’s algorithm

Outline

4. Memory management

Memory organization

Stack

gt
i)

Heap

Global/static data

Code

Memory is generally divided into four main parts:
m Code: contains the code of the program
m Static data: contains static data allocated at compile-time
m Stack: used for function calls and local variables
m Heap: for the rest (e.g., data allocated at run-time)

Computers have registers that contain addresses that delimit these
different parts

Static data

m Contains data allocated at compile-time
m Address of such data is then hardwired in the generated code

m Used e.g. in C to allocate global variables
m There are facilities in assemblers to allocate such space:
» Example to allocate an array of 4000 bytes

.data # go to data area for allocation

baseofA: # label for array A
.space 4000 # move current-address pointer up 4000 bytes
.text # go back to text area for code generation

m Limitations:

» size of the data must be known at compile-time
> Never freed even if the data is only used a fraction of time

Stack

Next activation records

Space for storing local variables for spill
and for storing live variables allocated to
caller-saves registers across function calls
Space for storing callee-saves registers that
are used in the body

Incoming parameters in excess of four
Return address

FP — | Static link (SL)

Previous activation records

m Mainly used to store activation records for function calls

m But can be used to allocate arrays and other data structures (e.g., in
C, to allocate local arrays)

m Allocation is quick and easy

m But sizes of arrays need to be known at compile-time and can only
be used for local variables (space is freed when the function returns)

Heap

m Used for dynamic memory allocations
m Size of arrays or structures need not to be known at compile-time
m Array sizes can be increased dynamically

m Two ways to manage data allocation/deallocation:

» Manual memory management
» Automatic memory management (or garbage collection)

Manual memory management

m The user is responsible for both data allocation and deallocation
» In C: malloc and free
> In object oriented languages: object constructors and destructors
m Advantages:
» Easier to implement than garbage collection

» The programmer can exercise precise control over memory usage
(allows better performances)

m Limitations
» The programmer has to exercise precise control over memory usage
(tedious)

» Easily leads to troublesome bugs: memory leaks, double frees,
use-after-frees...

A simple implementation
m Space is allocated by the operating system and then managed by the
program (through library functions such as malloc and free in C)

m A free list is maintained with all current free memory blocks
(initially, one big block)

— 12 28 20
>< ><

m Malloc:
» Search through the free list for a block of sufficient size
» If found, it is possibly split in two with one removed from free list
» If not found, ask operating system for a new chunk of memory

m Free:
» Insert the block back into the free list

Allocation is linear in the size of the free list, deallocation is done in
constant time

A simple implementation

m Block splitting leads to memory fragmentation

» The free list will eventually accumulate many small blocks
» Can be solved by joining consecutive freed blocks
» Makes free linear in free list size

m Complexity of malloc can be reduced

Limit block sizes to power of 2 and have a free list for each size
Look for a block of the power of 2 just greater than searched size.
If not available, take the next bigger block available and split it in
two repetitively until size is correct.

Makes malloc logarithmic in heap size in the worst case.

v

v

v

v

m Array resizing can be allowed by using indirection nodes

» When array is resized, it is copied into a new (bigger) block
» Indirection node address is updated accordingly

Garbage collection

m Allocation is still done with malloc or object constructors but
memory is automatically reclaimed

» Data/Objects that won't be used again are called garbage
» Reclaiming garbage objects automatically is called garbage collection

m Advantages:
» Programmer does not have to worry about freeing unused resources
m Limitations:

» Programmer can't reclaim unused resources
» Difficult to implement and add a significant overhead

Implementation 1: reference counting

m Idea: if no pointer to a block exists, the block can safely be freed

m Add an extra field in each memory block (of the free list) with a
count of the incoming pointers
» When creating an object, set its counter to 0
When creating a reference to an object, increment its counter
When removing a reference, decrement its counter.
If zero, remove all outgoing references from that object and reclaim
the memory

v vYyy

Reference counting: illustration

class LinkedList {
LinkedList next; head 1
}

mid
int main() { i

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList; tail - 2
LinkedList tail = new LinkedList;

head.next = mid; i
mid.next = tail;

..................................... 2

head.next.next = null;

head = null;

(Keith Schwarz)

Reference counting

m Straightforward to implement and can be combined with manual
memory management

m Significant overhead when doing assignments for incrementing
counters
m Impose constraints on the language
» No pointer to the middle of an object, should be able to distinguish
pointers from integers...
m Circular data structures are problematic
» Counters will never be zero
» E.g., doubly-linked lists
» Algorithmic solutions exist but they are complex and costly.

Implementation 2: tracing garbage collectors

m Idea: find all reachable blocks from the knowledge of what is
immediately accessible (the root set) and free all other blocks

m The root set is the set of memory locations that are known to be
reachable

> all variables in the program: registers, stack-allocated, global
variables. ..

m Any objects (resp. not) reachable from the root set are (resp. not)

reachable

Root Set

Tracing garbage collection: mark-and-sweep

m Mark-and-sweep garbage collection:
» Add a flag to each block
» Marking phase: go through the graph, e.g., depth-first, setting the
flag for all reached blocks
» Sweeping phase: go through the list of blocks and free all unflagged
ones
m Implementation of the mark stage with a stack:
» Initialized to the root set
» Retaining reachable blocks that have not yet been visited
m Tracing GC is typically called only when a malloc fails to avoid
pauses in the program

m Problem: stack requires memory (and a malloc has just failed)
» Marking phase can be implemented without a stack (at the expense
of computing times)
» Typically by adding descriptors within blocks and using pointer
reversal

Implementation: tracing garbage collection

m Advantage:
» More precise than reference counting
» No problem with circular references
» Run time can be made proportional to the number of reachable
objects (typically much lower than number of free blocks)
m Disadvantages:

» Introduce huge pause times
» Consume lots of memory

Garbage collection

Other garbage collection methods:
m Two-space collection (stop-and-copying):
» Avoid fragmentation and makes collection time proportional only to
reachable nodes.
» Two allocation spaces of same size are maintained
» Blocks are always allocated in one space until full
» Garbage collection then copies all live objects to the other space and
swap their roles
m Generational collection:
» Maintain several spaces for different generations of objects, with
these spaces of increasing sizes
» Optimized according to the “objects die young” principle
m Concurrent and incremental collectors
» Perform collection incrementally or concurrently during execution of
the program
» Avoid long pauses but can reduce the total throughput

Part 7

Conclusion

Structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l

Summary

m Part 1, Introduction:
» Overview and motivation...
m Part 2, Lexical analysis:
» Regular expression, finite automata, implementation, Flex...

Part 3, Syntax analysis:

» Context-free grammar, top-down (predictive) parsing, bottom-up
parsing (SLR and operator precedence parsing)...

m Part 4, Semantic analysis:

» Syntax-directed translation, abstract syntax tree, type and scope
checking...

m Part 5, Intermediate code generation and optimization:
> Intermediate representations, IR code generation, optimization...
m Part 6, Code generation:

» Instruction selection, register allocation, liveliness analysis, memory
management...

More on compilers

m Our treatment of each compiler stage was superficial

m See reference books for more details (Transp. 5)

m Some things we have not discussed at all:

Specificities of object-oriented or functional programming languages
Machine dependent code optimization

Parallelism

vV vy vy

m Related topics:
» Natural language processing
» Domain-specific languages
L

	Introduction
	What is a compiler
	Compiler structure
	Course project

	Lexical analysis
	Principle
	Regular expressions
	Analysis with non-deterministic finite automata
	Analysis with deterministic finite automata
	Implementing a lexical analyzer

	Syntax analysis
	Introduction
	Context-free grammar
	Top-down parsing
	Bottom-up parsing
	Shift/reduce parsing
	LR parsers
	Operator precedence parsing
	Using ambiguous grammars

	Conclusion and some practical considerations

	Semantic analysis
	Syntax-directed translation
	Abstract syntax tree
	Type and scope checking

	Intermediate code generation
	Intermediate representations
	Illustration
	Optimization

	Code generation
	Introduction
	Instruction selection
	Register allocation
	Memory management

	Conclusion

