Partie 3

Outils pour l'analyse d'algorithmes

Analyse d'algorithmes

Dans cette partie du cours, on va voir des outils permettant d'analyser des algorithmes :

c'est-à-dire d'évaluer leur coût, en termes de temps de calcul, nombres d'opérations, ou encore utilisation de la mémoire.

Matière :

- Sommations et notations asymptotiques
- Récurrences
- Fonctions génératrices (pour la résolution de récurrence et le dénombrement)

Sources:

- MCS
- R. Sedgewick et P. Flagolet, Analysis of Algorithms,
 Addison-Wesley, 1995. http://aofa.cs.princeton.edu/.
- ▶ J. L. Gross, *Combinatorial methods with computer applications*, Chapman & Hall, 2008.

Exemple introductif: quicksort

```
Partition(A, lo, hi)

1 i = lo; j = hi + 1; v = A[lo]

2 while (true)

3 repeat i = i + 1 until A[i] >= v

4 repeat j = j - 1 until A[j] <= v

5 if (i >= j)

6 break

7 swap(A[i], A[j])

8 swap(A[lo], A[j]);

9 return j
```

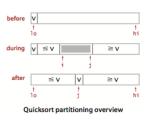
```
QUICKSORT(A, lo, hi)

1 if begin < end

2          q = Partition(A, lo, hi)

3          QUICKSORT(A, lo, q - 1)

4          QUICKSORT(A, q + 1, hi)
```



http://algs4.cs.princeton.edu

Approche scientifique pour l'analyse d'algorithmes

Pour analyser un algorithme :

Sur papier

- ▶ Identifier une *opération abstraite* au cœur de l'algorithme.
- ▶ Développer un *modèle des entrées* de l'algorithme.
- ▶ Déterminer la fréquence d'exécution C_N de l'opération pour une entrée de taille N.
- ▶ Faire l'hypothèse que le coût de l'algorithme est $\sim aC_N$ où a est une constante.

Validation du modèle :

Sur ordinateur

- Développer un générateur d'entrées selon le modèle
- ► Calculer *a* en exécutant l'algorithme pour des entrées larges
- Vérifier le résultat sur des entrées encore plus larges
- Valider le modèle d'entrée en testant l'algorithme sur une application réelle.

Quicksort

```
Partition(A, lo, hi)

1 i = lo; j = hi + 1; v = A[lo]

2 while (true)

3 repeat i = i + 1 until A[i] >= v

4 repeat j = j - 1 until A[j] <= v

5 if (i >= j)

6 break

7 swap(A[i], A[j])

8 swap(A[lo], A[j]);

9 return j
```

```
QUICKSORT(A, lo, hi)

1 if begin < end

2    q = PARTITION(A, lo, hi)

3    QUICKSORT(A, lo, q - 1)

4    QUICKSORT(A, q + 1, hi)
```

- Opération de base : comparaison
- ► Modèle d'entrée :
 - ► Tableau A ordonné aléatoirement
 - ► Toutes les valeurs de A sont différentes
- ▶ Hypothèse : temps de calcul est $\sim aC_N$ où a est une constante et C_N est le nombre de comparaisons.

Modèle mathématique

Etant donné le modèle :

- Nombre de comparaisons pour le partitionnement : N+1
- ▶ Probabilité que le pivot soit à la position k: 1/N
- ▶ Tailles des sous-tableaux dans ce cas-là : k-1 et N-k
- Les sous-tableaux sont aussi triés aléatoirement

Le nombre *moyen* de comparaisons utilisées par le quicksort est donné par la récurrence suivante :

$$C_N = N + 1 + \sum_{k=1}^{N} \frac{1}{N} (C_{k-1} + C_{N-k})$$

Essayons de dériver une formulation analytique de cette récurrence (voir *chapitre 7*).

Formulation analytique

$$C_N = N + 1 + \sum_{k=1}^{N} \frac{1}{N} (C_{k-1} + C_{N-k})$$

Par symétrie :

$$C_N = N + 1 + \frac{2}{N} \sum_{k=1}^{N} C_{k-1}$$

En multipliant par N:

$$NC_N = N(N+1) + 2\sum_{k=1}^{N} C_{k-1}$$

En soustrayant la même formule pour N-1 :

$$NC_N - (N-1)C_{N-1} = 2N + 2C_{N-1}$$

En rassemblant les termes :

$$NC_N = (N+1)C_{N-1} + 2N$$

On divise par N(N+1):

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1}$$

Téléscopage:

$$\frac{C_N}{N+1} = \frac{C_{N-1}}{N} + \frac{2}{N+1} = \frac{C_{N-2}}{N-1} + \frac{2}{N} + \frac{2}{N+1}$$
$$= \frac{C_1}{2} + \frac{2}{3} + \dots + \frac{2}{N} + \frac{2}{N+1}$$

Simplification:

$$C_N = 2(N+1)\sum_{k=1}^N \frac{1}{k} - 2N$$

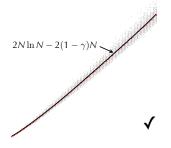
Approximation de la somme (voir chapitre 6)

$$C_N \sim 2N \ln N - 2(1-\gamma)N$$

où $\gamma = 0.57721$.

Validation du résultat

Comparaison du modèle avec les valeurs réelles mesurées :



http://aofa.cs.princeton.edu/

- ▶ 1 point gris= 1 essai sur un tableau aléatoire
- ▶ 1 point rouge=moyenne pour chaque *N*

Limitations de l'approche scientifique

Le modèle peut ne pas être réaliste

 Pour le quicksort, on peut randomiser le tableau d'entrée avant d'appliquer l'algorithme pour se mettre dans les conditions du modèle d'entrée

Les maths peuvent être trop difficiles

L'objectif des prochains cours est de vous donner quelques outils de base pour faire ce genre d'analyse.

Chapitre 6

Sommations et comportements asymptotiques

Plan

1. Sommations

Définitions

Preuve d'une solution analytique

Trouver une solution analytique

Approximation par intégration

2. Notations asymptotiques

 \sim , o, et w

 $O, \Omega \text{ et } \Theta$

Démonstrations et remarques

Sources: MCS (chapitre 13), Gross (chapitre 3).

Sommations

Définition : Soit une suite $x_i (i \in \mathbb{Z})$. La sommation $\sum_{i=a}^b x_i$ pour $a, b \in \mathbb{Z}$ est définie récursivement par :

- $ightharpoonup \sum_{i=a}^b x_i = \left(\sum_{i=a}^{b-1} x_i\right) + x_b \text{ si } b > a \text{ (cas inductif)}$

Définition : Soit une suite de réels x_i , $i \in \mathbb{N}$, la série de terme général x_i est la suite de sommes partielles

$$\sum_{i=0}^n x_i \ (n \in \mathbb{N}).$$

Etant donné une série, on notera S_n la n-ème somme partielle $\sum_{i=0}^n x_i$. La suite des sommes partielles peut être définie récursivement :

- ► $S_0 = x_0$
- ► $S_n = S_{n-1} + x_n$ pour n > 0

Sommations

Les sommations apparaissent fréquemment dans le cadre de l'analyse d'algorithme et de la résolution de récurrences.

Objectif de ce chapitre : dériver des solutions analytiques à des sommations, et en particulier aux éléments d'une suite de somme partielle.

Définition: Une solution analytique est une expression mathématique qui peut être évaluée à l'aide d'un nombre constant d'opérations de base (addition, multiplication, exponentiation, etc.).

But : simplifier l'évaluation des sommations pour prédire/étudier les performances d'un algorithme.

Preuve d'une solution analytique

Une solution analytique se prouve généralement facilement par induction.

Exemple : Série géométrique :

Théorème : Pour tous $n \ge 1$ et $z \ne 1$, on a

$$\sum_{i=0}^{n-1} z^i = \frac{1-z^n}{1-z}.$$

Démonstration : La preuve fonctionne par induction.

$$P(n) = \sum_{i=0}^{n-1} z^i = \frac{1-z^n}{1-z}$$

Cas de base (n = 1) : P(1) est vérifié

Cas inductif (n > 1): Si P(n) est vérifié, on peut écrire :

$$\sum_{i=0}^{n} z^{i} = \sum_{i=0}^{n-1} z^{i} + z^{n} = \frac{1-z^{n}}{1-z} + z^{n} = \frac{1-z^{n}+z^{n}-z^{n+1}}{1-z} = \frac{1-z^{n+1}}{1-z}$$

(Exercice: montrer que
$$\sum_{i=0}^{n} i^2 = \frac{(2n+1)(n+1)n}{6}$$
)

Sommes infinies

Définition :
$$\sum_{i=0}^{\infty} z_i = \lim_{n \to \infty} \sum_{i=0}^{n} z_i.$$

Théorème : Si
$$|z| < 1$$
, alors $\sum_{i=0}^{\infty} z^i = \frac{1}{1-z}$.

Démonstration :

$$\sum_{i=0}^{\infty} z^{i} = \lim_{n \to \infty} \sum_{i=0}^{n} z^{i}$$

$$= \lim_{n \to \infty} \frac{1 - z^{n+1}}{1 - z}$$

$$= \frac{1}{1 - z}.$$

Trouver une solution analytique

Si prouver une solution analytique est aisé, imaginer cette solution l'est moins.

Différentes techniques génériques existent :

- ▶ Dériver cette solution de la solution analytique d'une autre série (par exemple par dérivation ou intégration),
- Méthode de perturbation,
- ▶ Par identification paramétrique.
- **.**..

Variantes des séries géométriques

Théorème : Pour tous $n \ge 0$ et $z \ne 1$, on a

$$\sum_{i=0}^{n} iz^{i} = \frac{z - (n+1)z^{n+1} + nz^{n+2}}{(1-z)^{2}}.$$

Démonstration : On a

$$\sum_{i=0}^{n} iz^{i} = z \cdot \sum_{i=0}^{n} iz^{i-1} = z \cdot \left(\frac{d}{dz} \sum_{i=0}^{n} z^{i} \right) = z \cdot \left(\frac{d}{dz} \frac{1 - z^{n+1}}{1 - z} \right).$$

En développant, on obtient

$$z \cdot \left(\frac{d}{dz} \frac{1 - z^{n+1}}{1 - z}\right)$$

$$= z \cdot \left(\frac{-(n+1)z^{n}(1-z) - (-1)(1-z^{n+1})}{(1-z)^{2}}\right)$$

$$= z \cdot \left(\frac{-(n+1)z^n + (n+1)z^{n+1} + 1 - z^{n+1}}{(1-z)^2} \right)$$

$$= z \cdot \left(\frac{1 - (n+1)z^n + nz^{n+1}}{(1-z)^2} \right)$$

$$= \frac{z - (n+1)z^{n+1} + nz^{n+2}}{(1-z)^2}.$$

Corollaire : Si
$$|z| < 1$$
, alors $\sum_{i=0}^{\infty} iz^i = \frac{z}{(1-z)^2}$.

Autre variante : En intégrant les deux côtés de $\sum_{i=0}^{\infty} z^i = \frac{1}{1-z}$ (de 0 à x), on peut obtenir :

$$\sum_{i=1}^{\infty} \frac{x^j}{j} = -\ln(1-x).$$

Méthode de perturbation

Soit S_n la n-ème somme partielle de la série de terme général x_i . Par définition, on a

$$S_n + x_{n+1} = x_0 + \sum_{i=1}^{n+1} x_k \ (= S_{n+1})$$

Si on peut exprimer le membre de droite comme une fonction de S_n , on peut obtenir une solution analytique en résolvant l'équation pour S_n .

Exemple : Pour la série géométrique $S_n = \sum_{i=0}^{n-1} z^i$:

$$S_{n+1} = S_n + z^n = z^0 + \sum_{i=1}^n z^i = 1 + z \sum_{i=0}^{n-1} z^i = 1 + z S_n$$

D'où, on tire immédiatement :

$$S_n = \frac{1 - z^n}{1 - z}$$

Un autre exemple

Problème⁶: Dériver une solution analytique de $S_n = \sum_{k=0}^n k2^k$.

Solution : Par la méthode de perturbation :

$$S_n + (n+1)2^{n+1} = 0 \cdot 2^0 + \sum_{k=1}^{n+1} k 2^k = \sum_{k=1}^{n+1} k 2^k$$

$$= \sum_{k=0}^{n} (k+1)2^{k+1}$$

$$= \sum_{k=0}^{n} k 2^{k+1} + \sum_{k=0}^{n} 2^{k+1}$$

$$= 2\sum_{k=0}^{n} k 2^k + 2\sum_{k=0}^{n} 2^k$$

$$= 2S_n + 2(2^{n+1} - 1)$$

$$\Rightarrow S_n = (n-1)2^{n+1} + 2$$

⁶Cette somme apparaît dans l'analyse du tri par tas (voir INFO0902).

Perturbation indirecte

Parfois, ça ne marche pas directement.

Exemple:
$$S_n = \sum_{k=0}^n k^2$$

$$S_n + (n+1)^2 = 0^2 + \sum_{k=1}^{n+1} k^2$$

$$= \sum_{k=0}^{n} (k+1)^2 = \sum_{k=0}^{n} (k^2 + 2k + 1)$$

$$= \sum_{k=0}^{n} k^2 + 2 \sum_{k=0}^{n} k + \sum_{k=0}^{n} 1$$

$$= S_n + 2 \sum_{k=0}^{n} k + (n+1)$$

$$\Rightarrow \sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$

C'est correct mais ce n'est pas ce qu'on voulait calculer.

Perturbation indirecte

Dans ce cas, appliquer la perturbation à la suite $n \cdot x_n$ peut fonctionner :

Exemple:
$$S_n = \sum_{k=0}^n k \cdot k^2 = \sum_{k=0}^n k^3$$

$$S_n + (n+1)^3 = 0^3 + \sum_{k=1}^{n+1} k^3$$

$$= \sum_{k=0}^n (k+1)^3 = \sum_{k=0}^n (k^3 + 3k^2 + 3k + 1)$$

$$= \sum_{k=0}^n k^3 + 3 \sum_{k=0}^n k^2 + 3 \sum_{k=0}^n k + \sum_{k=0}^n 1$$

$$= S_n + 3 \sum_{k=0}^n k^2 + 3 \frac{n(n+1)}{2} + (n+1)$$

$$\Rightarrow \sum_{k=0}^n k^2 = \frac{2(n+1)^3 - 3n(n+1) - 2(n+1)}{6} = \frac{(2n+1)(n+1)n}{6}$$

Par identification

On fait une hypothèse sur la forme de la solution et on identifie les paramètres en prenant quelques valeurs.

Exemple:
$$\sum_{i=1}^{n} i^2 = \frac{(2n+1)(n+1)n}{6}$$
.

➤ Supposer que la somme est un polynôme de degré 3 (car somme~intégration)

$$\sum_{i=1}^{n} i^2 = an^3 + bn^2 + cn + d$$

- ▶ Identifier les constantes *a*, *b*, *c*, *d* à partir de quelques valeurs de la somme
- ▶ Prouver sa validité par induction (!)

Série harmonique

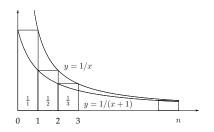
Complexité moyenne du quicksort (voir transp. 302) :

$$C_N = 2(N+1)\sum_{k=1}^N \frac{1}{k} - 2N$$

Définition : $H_n = \frac{1}{1} + \frac{1}{2} + \ldots + \frac{1}{n}$ est la *série harmonique*. H_n est le n-ème nombre harmonique.

La série harmonique n'a pas de solution analytique (connue). Des bornes inférieures et supérieures peuvent cependant être déterminées par intégration.

Approximation par intégration



$$\int_{0}^{n} \frac{1}{x+1} dx \leq H_{n} \leq 1 + \int_{1}^{n} \frac{1}{x} dx$$

$$[\ln(x+1)]_{0}^{n} \leq H_{n} \leq 1 + [\ln x]_{1}^{n}$$

$$\ln(n+1) \leq H_{n} \leq 1 + \ln(n)$$

Définition : Soient deux fonctions $f,g:\mathbb{R}\to\mathbb{R}$. On écrit $f(x)\sim g(x)$ ssi $\lim_{x\to\infty}f(x)/g(x)=1$ (f et g sont asymptotiquement équivalents).

$$\ln(n+1) \le H_n \le 1 + \ln(n)$$
$$\Rightarrow H_n \sim \ln n$$

Nombres harmoniques

Une meilleure approximation existe :

$$H_n = \ln(n) + \gamma + \frac{1}{2n} + \frac{1}{12n^2} + \frac{\epsilon(n)}{120n^4},$$

où γ est la constante d'Euler (0.57721...) et $0 \le \epsilon(n) \le 1$.

Complexité du quicksort :

$$C_N = 2(N+1)H_N - 2N$$

$$\sim 2N \ln N - 2(1-\gamma)N$$

Méthode d'intégration

La méthode d'intégration peut être appliquée pour approximer beaucoup d'autres séries.

Définition : Une fonction $f: \mathbb{R}^+ \to \mathbb{R}^+$ est *strictement croissante* si x < y implique f(x) < f(y) et est *monotone croissante* si x < y implique $f(x) \le f(y)$.

Théorème : Soit une fonction $f: \mathbb{R}^+ \to \mathbb{R}^+$ monotone croissante. On a :

$$\int_{1}^{n} f(x)dx + f(1) \leq \sum_{i=1}^{n} f(i) \leq \int_{1}^{n} f(x)dx + f(n).$$

Le théorème peut être adapté trivialement aux fonctions décroissantes.

Exercice : montrez que
$$\frac{2}{3}n^{3/2} + \frac{1}{3} \le \sum_{i=1}^n \sqrt{i} \le \frac{2}{3}n^{3/2} + \sqrt{n} - \frac{2}{3}$$
.

Sommes doubles

Généralement, il suffit d'évaluer la somme intérieure et puis la somme extérieure.

Exercice : montrez que
$$\sum_{n=0}^{\infty} (y^n \sum_{i=0}^n x^i) = \frac{1}{(1-y)(1-xy)}$$

Quand la somme intérieure n'a pas de solution analytique, échanger les deux sommes peut aider.

Exemple:

$$\sum_{k=1}^{n} H_{k} = \sum_{k=1}^{n} \sum_{j=1}^{k} \frac{1}{j}$$

$$= \sum_{j=1}^{n} \sum_{k=j}^{n} \frac{1}{j}$$

$$= \sum_{j=1}^{n} \sum_{k=j}^{n} \frac{1}{j}$$

$$= \dots$$

$$= (n+1)H_{n} - n$$

$$\begin{vmatrix} j \\ 1 & 2 & 3 & 4 & 5 & \dots & n \\ 2 & 1 & 1/2 \\ 3 & 1 & 1/2 & 1/3 \\ 4 & 1 & 1/2 & 1/3 & 1/4 \\ \dots & & & & & \\ n & 1 & 1/2 & \dots & & 1/n \end{vmatrix}$$

Remarque sur les produits

Les mêmes techniques peuvent être utilisées pour calculer des produits en utilisant le logarithme :

$$\prod f(n) = \exp\left(\ln\left(\prod f(n)\right)\right) = \exp\left(\sum \ln f(n)\right).$$

Permet de borner $n! = 1 \cdot 2 \cdot 3 \dots (n-1) \cdot n$. Par la méthode d'intégration, on a :

$$n \ln(n) - n + 1 \le \sum_{i=1}^{n} \ln(i) \le n \ln(n) - n + 1 + \ln(n).$$

En prenant l'exponentielle :

$$\frac{n^n}{e^n} \le n! \le \frac{(n+1)^{(n+1)}}{e^n}$$

Stirling's formula:

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{a}\right)^n$$
.

Plan

1. Sommations

Définitions

Preuve d'une solution analytique Trouver une solution analytique

Approximation par intégration

2. Notations asymptotiques

 \sim , o, et w

O, Ω et Θ

Démonstrations et remarques

Notations asymptotiques

Les notations asymptotiques permettent de caractériser une fonction f(x) lorsque x est très grand.

On a déjà vu la notion d'équivalence asymptotique (\sim) : Définition : Soient deux fonctions $f,g:\mathbb{R}\to\mathbb{R}$. On écrit $f(x)\sim g(x)$ ssi $\lim_{x\to\infty}f(x)/g(x)=1$ (f et g sont asymptotiquement équivalents).

On peut définir deux notations supplémentaires :

Définitions : Soient deux fonctions $f, g : \mathbb{R} \to \mathbb{R}$.

- ▶ On écrit f(x) = o(g(x)) ssi $\lim_{x\to\infty} f(x)/g(x) = 0$. On dira que f est négligeable devant g asymptotiquement.
- ▶ On écrit f(x) = w(g(x)) ssi $\lim_{x\to\infty} g(x)/f(x) = 0$. On dira que f domine g asymptotiquement.

Exemples:

- $ightharpoonup 2n = o(n^2), \ 2n^2 \neq o(n^2)$
- $n^2/2 = w(n), n^2/2 \neq w(n^2)$

Quelques propriétés des notations \sim , o et w

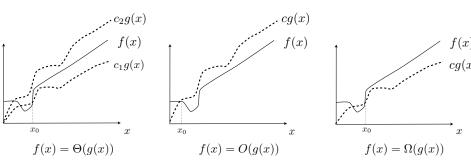
- 1. f(x) = o(g(x)) ssi **pour tout** c > 0, il existe un $x_0 \in \mathbb{R}$ tel que pour tout $x \ge x_0$, $|f(x)| \le c|g(x)|$.
- 2. f(x) = w(g(x)) ssi **pour tout** c > 0, il existe un $x_0 \in \mathbb{R}$ tel que pour tout $x \ge x_0$, $|f(x)| \ge c|g(x)|$.
- 3. f(x) = w(g(x)) ssi g(x) = o(f(x)).
- 4. $f(x) \sim g(x)$ ssi f(x) g(x) = o(g(x)).
- 5. $f(x) \sim g(x)$ ssi f(x) = g(x) + h(x) pour une fonction h(x) = o(g(x)).
- 6. $x^a = o(x^b)$ pour tout a < b
- 7. $\log x = o(x^{\epsilon})$ pour tout $\epsilon > 0$

(Exercices : démontrez ces propriétés)

Notations asymptotiques : O, Ω et Θ

Définitions : Soient $f : \mathbb{R} \to \mathbb{R}$ et $g : \mathbb{R} \to \mathbb{R}$ deux fonctions :

- ▶ On écrit f(x) = O(g(x)) s'il existe des constantes x_0 et c > 0 telles que $|f(x)| \le c \cdot |g(x)|$ pour tout $x \ge x_0$.
- ▶ $f(x) = \Omega(g(x))$ s'il existe des constantes x_0 et c > 0 telles que $|f(x)| \ge c.|g(x)|$ pour tout $x \ge x_0$.
- ▶ $f(x) = \Theta(g(x))$ s'il existe des constantes x_0 , c_1 et $c_2 > 0$ telles que $c_1|g(x)| \le |f(x)| \le c_2|g(x)|$ pour tout $x \ge x_0$.



Quelques propriétés

- 1. $f(x) = \Omega(g(x)) \Leftrightarrow g(x) = O(f(x))$
- 2. $f(x) = \Theta(g(x)) \Leftrightarrow f(x) = O(g(x))$ et $f(x) = \Omega(g(x))$
- 3. $f(x) = \Theta(g(x)) \Leftrightarrow f(x) = O(g(x))$ et $g(x) = \Omega(f(x))$
- 4. f(x) = o(g(x)) ou $f \sim g \Rightarrow f(x) = O(g(x))$
- 5. f(x) = O(g(x)) et $g(x) = o(h(x)) \Rightarrow f(x) = o(h(x))$
- 6. f(x) = O(g(x)) et $g(x) = O(h(x)) \Rightarrow f(x) = O(h(x))$ (transitivité)
- 7. Si $f_1(x) = O(g_1(x))$ et $f_2(x) = O(g_2(x))$, alors $f_1(x) + f_2(x) = O(g_1(x) + g_2(x)) = O(\max\{g_1(x), g_2(x)\}.$
- 8. Si $f_1(x) = O(g_1(x))$ et $f_2(x) = O(g_2(x))$, alors $f_1(x)f_2(x) = O(g_1(x)g_2(x))$.

Les propriétés 6, 7 et 8 sont valable pour Θ , Ω , o et w.

NB : On peut faire une analogie entre ces notations et les comparateurs sur les réels : $o \rightarrow <$, $O \rightarrow \le$, $O \rightarrow =$, $O \rightarrow \ge$, $w \rightarrow >$.

Démonstrations d'une relation asymptotique

Propriété : On a 5x + 100 = O(x).

Démonstration : On doit trouver des constantes x_0 et c > 0 telles que $|5x + 100| \le cx$ pour tout $x \ge x_0$. Soient c = 10 et $x_0 = 20$. On a

$$|5x + 100| \le 5x + 5x = 10x$$

pour tout $x \ge 20$.

Propriété : On a $x = O(x^2)$.

Démonstration : On doit trouver des constantes x_0 et c > 0 telles que $|x| \le c \cdot x^2$ pour tout $x \ge x_0$. Soient c = 1 et $x_0 = 1$. On a

$$|x| \le 1 \cdot x^2$$

pour tout x > 1.

Propriété : On a $x^2 \neq O(x)$.

Démonstration : Par l'absurde, supposons qu'il existe des constantes x_0 et c>0 telles que

$$|x^2| \le c \cdot x$$

pour tout $x \ge x_0$. On doit donc avoir

$$x \leq c$$

pour tout $x \ge x_0$, ce qui est impossible à satisfaire pour $x = \max(x_0, c+1)$.

Remarques importantes

- ▶ On devrait écrire $f(x) \in O(g(x))$ plutôt que f(x) = O(g(x))
 - ▶ O(g(x)) n'est pas une fonction mais l'ensemble des fonctions f(x) telles que f(x) = O(g(x)).
- ▶ Par abus de notation, on se permet d'écrire :

$$f(x) = g(x) + O(h(x))$$

qui signifie qu'il existe une fonction i(x) = O(h(x)) telle que :

$$f(x) = g(x) + i(x).$$

Exemples:

- $H_n = \ln n + \gamma + O(\frac{1}{n})$
- $2n^2 + \Theta(n) = \Theta(n^2)$
- $\sum_{i=1}^{n} O(i) = O(n^2)$ (mais $O(1) + O(2) + ... + O(n) = O(n^2)$ n'a pas de sens)