Introduction à la théorie de l'informatique

Répétition 9

Année académique 2012-2013

1. Trouvez une solution analytique pour

(a)
$$\sum_{k=1}^{\infty} (2k+1)x^{2k}$$
 (avec $|x| < 1$);

(b)
$$\sum_{i=x}^{y} (2i+1);$$

(c)
$$\sum_{i=0}^{\infty} \sum_{j=1}^{n} \left(\frac{j}{j+2} \right)^{i}.$$

(d)
$$\sum_{k=0}^{n} k^2 4^k$$
 (Suggestion : par perturbation)

2. Démontrez que :

- $2^{n+1} = \Theta(2^n)$.
- si $a, b \in \mathbb{R}$ sont tels que 1 < a < b, alors $a^n \neq o(b^n)$.
- $\bullet \ e^{2n} = o(n^n).$
- $n! = \omega(n^n)$ (Suggestion : utiliser les bornes vues au cours pour n!) $\sum_{k=1}^n k^6 = \Theta(n^7)$

3. Ordonnez ces différentes fonctions suivant l'ordre asymptotique :

n	n^2
$\log_{10} n$	$n\log_2 n$
$n^{\ln n}$	$(\ln n)^n$
$\ln(n^n)$	$(\ln n)^{\ln n}$
$(\ln n)^{\ln(\ln n)}$	$2^{\ln n}$
$2^{\sqrt{\ln n}}$	2^n
3^n	$3^{n/2}$