
Supervised learning with decision tree-based methods

in computational and systems biology

Pierre Geurts, Alexandre Irrthum, Louis Wehenkel

Department of EE and CS & GIGA-Research, University of Liège, Belgium

Abstract

At the intersection between artificial intelligence and statistics, supervised learning provides
algorithms to automatically build predictive models only from observations of a system. During the
last twenty years, supervised learning has been a tool of choice to analyze the always increasing
and complexifying data generated in the context of molecular biology, with successful applications
in genome annotation, function prediction, or biomarker discovery. Among supervised learning
methods, decision tree-based methods stand out as non parametric methods that have the unique
feature of combining interpretability, efficiency, and, when used in ensembles of trees, excellent
accuracy. The goal of this paper is to provide an accessible and comprehensive introduction to this
class of methods. The first part of the paper is devoted to an intuitive but complete description of
decision tree-based methods and a discussion of their strengths and limitations with respect to other
supervised learning methods. The second part of the paper provides a survey of their applications
in the context of computational and systems biology.

The supplementary material provides information about various non-standard extensions of the
decision tree-based approach to modeling, some practical guidelines for the choice of parameters
and algorithm variants depending on the practical objectives of their application, pointers to freely
accessible software packages, and a brief primer going through the different manipulations needed
to use the tree-induction packages available in the R statistical tool.

Introduction

Recent advances in experimental techniques have resulted in a dramatic increase of the amount and
diversity of data being generated in the context of molecular biology. With tools such as microarrays,
high-throughput sequencing, mass spectrometry, or advanced imaging techniques, measurements are
possible at various scales and for more and more components of biological systems. The integration of
all these data with available knowledge to better understand biological systems is at the heart of systems
biology. The increase of complexity and dimensionality requires advanced computational approaches to
store, organize, and analyze the data before they could be turned into novel biological knowledge.

Among computational biology tools, machine learning naturally appears as one of the key com-
ponents. In particular, supervised learning provides techniques to learn predictive models only from
observations of a system and is thus particularly well suited to deal with the highly experimental nature
of biological knowledge. Supervised learning has indeed been applied to a wide spectrum of problems
in computational biology, ranging from genome annotations and structure prediction to the inference of
networks of interactions between various kinds of biological entities, the prediction of protein functions,
and the discovery of biomarkers and drugs.

Among all supervised learning methods, this paper is devoted to a particular family of methods,
called decision tree-based methods. Decision trees are among the most popular learning algorithms
and they have been applied extensively in computational biology. The key ingredients of the success
of these methods are their interpretability, that makes their model transparent and understandable to
human experts, their flexibility, that makes them applicable to a wide range of problems, and their ease
of use, that makes them accessible even to non-specialists. Combined with ensemble methods, they
furthermore often provide state-of-the-art results in terms of predictive accuracy. Importantly in the
context of high-throughput data sets, tree-based methods are also highly scalable from a computational
point of view.

The goal of this paper is to provide an accessible and comprehensive introduction to tree-based su-
pervised learning methods and a survey of their applications in computational and systems biology. The

1

X1 X2 Y

0.19 0.35 sick
0.44 0.94 healthy
0.63 0.08 sick
. . .
0.20 0.63 healthy 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

X
2

X1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

X
2

X1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

X
2

X1

(a) (b) (c) (d)

Figure 1 An illustrative two-dimensional supervised learning problem. From left to right: (a) tabular
learning sample, (b) scatter-plot of the learning sample together with the optimal classification boundary
for this problem, (c) the classification boundary for a too simple model and (d) of a too complex one

paper is structured as follows. We begin with a short introduction to supervised learning, with a dis-
cussion of the bias/variance tradeoff and of cross-validation methods. We then proceed with a detailed
description of tree-based methods, starting with the main steps of standard decision tree induction, fol-
lowed by a discussion of ensemble methods and tree-based attribute importance measures. We conclude
this section with a discussion of the main strengths and limitations of these methods with respect to
other supervised learning algorithms. The remainder of the paper is devoted to a survey of the main
classes of applications of decision tree methods in the context of computational and systems biology.
Supplementary material discusses several extensions of tree-based methods, gives some pointers towards
freely available software packages implementing these methods, and provides a few practical guidelines
on how to best exploit these methods, which are illustrated with an application in the R statistical
language.

The reading of this paper can be usefully complemented by a few other papers. An short intuitive
review of decision trees can be found in Kingsford and Salzberg.1 Two more general introductions
to machine learning in biology are given by Larrañaga et al2 and by Tarca et al.3 Two other recent
papers are dedicated to two other families of supervised learning methods and their applications in
computational biology: support vector machines4 and artificial neural networks.5

Supervised learning

In this section, we briefly introduce supervised learning. For more details, we refer the reader to general
textbooks about supervised learning (and machine learning in general).6–8

Problem statement

Machine learning denotes a broad class of computational methods which aim at extracting a model of
a system from the sole observation (or the simulation) of this system in some situations. By the term
model, we mean a set of exact or approximate relationships between the observed variables of the system.
The goal of such models may be to predict the behavior of this system in some yet unobserved situations
or to help understanding its already observed behavior.

Supervised learning refers to the subset of machine learning methods which derive models in the form
of input-output relationships. More precisely, the goal of supervised learning is to identify a mapping
from some input variables to some output variables on the sole basis of a given sample of joint observations
of the values of these variables. The (input or output) variables are often called attributes or features,
while joint observations of their values are called objects and the given sample of objects used to infer a
model is generally called the learning sample.

As an illustration, consider the bi-dimensional classification problem of Figure 1 and assume that
the goal of learning is to find a function which discriminates at best between red and green points.
For example, each point of this space might represent a patient whose state is described by two input
variables which are the result of two medical tests. Patients marked in red are those suffering from some
disease while patients marked in green are the healthy ones. The goal could be to help a physician to
predict the status of a new patient (the output) for which the test results are known (the inputs). In
the real world, of course, each point of the learning sample is generally described by (many) more than

2

one or two input attributes and these attributes may have many other kinds of values than real numbers
(discrete values, time series, images, sequences, for example). Also the output variables may represent
more complex information than our binary decision variable.

The above problem is the kind of problem targeted by supervised learning algorithms. Loosely
speaking, a supervised learning algorithm receives a learning sample (like the one represented in Figure
1(a)) and returns an input-to-output function h (a hypothesis) which is chosen from a set of candidate
models (its hypothesis space). Learning algorithms differ by the specific form of the hypotheses they
consider (determined either by a parametric class of mathematical expressions or by a class of algorithmic
procedures computing the outputs from the inputs), by their definition of the quality of hypotheses, and
by the optimization strategy they use to find a high quality hypothesis in their hypothesis space.

For example, a potential candidate function returned by a learning algorithm is the one given in
Figure 1(b) in blue, represented by the decision boundary that it defines in the input space. Even
though this function makes some mistakes on the learning sample, it seems that these mistakes are
merely due to noise in the data (which may be due either to errors in measurements or to effects for
which no input variables have been observed) and the function is thus a plausible explanation of the
learning sample. As a matter of fact, for our toy problem, this particular input-output function turns
out to be optimal in the sense that its predictions minimize the probability of mis-classification.

An important criterion to assess learning algorithms, especially in the context of computational and
systems biology, is the interpretability of the models that it infers from the data, i.e. the information
that it may bring to a human expert about the studied input-output relationship. For example, in our
medical application, it would be interesting to know if one of the two tests is not useful or not necessary to
predict the disease status. Computational efficiency and scalability are also of great concern, especially
for very large datasets, be it in the number of objects or the number of attributes. However, the main
criterion used to assess learning algorithms is their prediction accuracy, i.e. the way the model they
produce generalizes to unseen data (i.e. data that were not observed in the learning sample).

Bias-variance tradeoff

To explain why supervised learning of models with good predictive accuracy is not trivial, it is necessary
to understand the bias/variance tradeoff in this context.

To give some intuition about this tradeoff, let us first assume that we want to separate the two classes
in Figure 1 with a linear decision boundary. Figure 1(c) shows one such model illustrating the fact that
with linear models it is impossible to discriminate well enough the two classes of our toy problem. The
family of linear models is not well suited to solve our task because the best linear model is too far from
an optimal decision boundary like the one represented at Figure 1(b), whatever the amount of data used
to infer it. This source of error is called bias.

Let us assume now that we use a much larger family of hypotheses among which there exist one
or several which realize a perfect separation between classes in our learning sample. Then, by using
this hypothesis space, the learning algorithm might produce a decision boundary like the one shown on
Figure 1(d). This time, the classification boundary perfectly separates all learning objects of different
classes. Like the linear model however, this model is still not appropriate. This time, the model is too
complex and hence it learns “too much” information from our data. In this case, we say that the learning
algorithm overfits the data. If we would use another learning sample for the same problem (e.g. by
repeating the experiment on another group of patients), then it would be very likely that the model
found by the same learning algorithm would be very different from the one of Figure 1(d). In this case,
we say that the learning algorithm suffers from variance, because the hypothesis that it returns for a
given problem is very much dependent on the particular learning sample that is provided.

When it comes to apply the hypothesis inferred by supervised learning on new objects, both bias and
variance are sources of error and hence they should ideally both be minimal. Moreover, as they react in
an opposite direction to variations of the complexity of the hypothesis space, there is a tradeoff between
their effects which must be taken into account.

Because of its central role in supervised learning, this tradeoff has received a lot of attention in the
design of supervised learning algorithms. The main approach to handle it is to adapt the complexity of
the hypothesis space to the problem under consideration (during learning), e.g. by using cross-validation
to select meta-parameters controlling the complexity of the hypothesis space.

3

Assessment by cross-validation

The evaluation of the predictive accuracy of a model is crucial in supervised learning, first in order to
predict its future performance on new data but also in order to provide the learning algorithm with
a criterion to choose a model in its hypothesis space. Evaluation requires the choice of an estimation
procedure and of a performance measure.

Usually the performance of the model as estimated on the learning sample, called resubstitution

estimate, is a very optimistic estimate of the true quality of the model. A more reliable estimate would
be obtained from a sample independent of the data sample used during the learning stage. For example,
a hold-out estimate is obtained by partitioning the learning sample ls into two disjoint subsets, the
validation sample vs and the learning sample ls without the objects in vs, denoted ls\vs. A model is
learned from ls\vs and its performance is assessed on vs. A common practice is to save one third of the
data for the validation. However, when the learning sample is very small, subdividing further the data
will yield an unreliable estimate. In these cases, cross-validation provides a way to make a better use
of the available sample. In k-fold cross-validation, we divide the learning sample into k disjoint subsets
of the same size, ls = ls1

⋃
ls2

⋃
. . .

⋃
lsk. A model is then inferred by the learning algorithm from

each sample ls\lsi, i = 1, . . . , k and its performance is determined on the held out sample lsi. The final
performance is computed as the average performance over all these models. Notice that when k is equal
to the number of objects in the learning sample, this method is called leave-one-out. Typically, smaller
values of k (say, between 10 and 20) are however preferred for computational reasons.

Notice that when cross-validation is used to make a selection between several models (e.g. corre-
sponding to different values of the meta-parameters of a learning algorithm or produced by different
learning algorithms), then an additional external run of cross-validation is necessary to provide also a
reliable estimate of the finally chosen model.9

Evaluation also raises the question of the choice of a performance measure. This choice usually
depends on the application. In the context of classification, i.e. when the output variable is discrete,
the most common measure is the error rate of the model (i.e. the probability of making a wrong
prediction as estimated for example by the proportion of wrong predictions on the validation sample).
The main drawback of this measure is that it is sensitive to the proportion of objects of different
classes in the validation sample and that it does not convey information about the kind of errors. In
the context of binary classification, it is therefore usually complemented by other measures such as
sensitivity (the proportion of objects in the class of interest that are well classified) or specificity (the
proportion of objects in the other class that are well classified). Moreover, since most classifiers inferred
by supervised learning actually produce a confidence score (e.g., in the form of a class probability
estimate), in the case of binary classification problems, one may use different thresholds on this score
to achieve different compromises between sensitivity and specificity. To evaluate a model independently
of the chosen threshold, one can use a ROC curve,10 that plots true positive rate (sensitivity) versus
false positive rate (1-specificity) for different values of this threshold. The quality of a ROC curve is
evaluated by the area under this curve (AUC), as we will illustrate below.

Decision tree induction

Decision tree induction11, 12 is currently one of the most interesting supervised learning algorithms. The
paternity of tree-based learning methods is often attributed to Hunt with his Concept Learning System.13

Later on, the method was formalized, extended, and popularized in the field of statistics by the famous
book of Breiman, Friedman, Olsen, and Stone on Classification And Regression Trees (CART11). During
the same period, Quinlan also contributed to the dissemination of this approach in the field of artificial
intelligence with his ID314 and C4.512 algorithms.

Let us notice that decision tree induction, originally designed to solve classification problems, have
been extended to handle more complex output spaces (e.g. single- or multi-dimensional regression). For
the sake of simplicity, we will focus on the case of classification trees and describe in this context the main
ideas behind this methodology. We will then discuss its main strengths and weaknesses with respect to
other supervised learning methods. For advanced readers, the supplementary material elaborates on the
extensions of the basic decision tree framework, in particular to regression.

4

X2<0.53?

X2<0.29?

y e s

X 1 < 0 . 1 1 ?

no

sick

y e s

X1<0.63?

no

sick

y e s

X1<0.97?

no

X1<0.39?

y e s

sick

no

X1<0.19?

y e s

h e a l t h y

no

sick

y e s

X2<0.40?

no

sick

y e s

h e a l t h y

no

h e a l t h y

y e s

sick

no

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

X
2

X1

Figure 2 Left, a decision tree, right, the corresponding decision boundary

Tree structured classifiers

In its simplest form, a decision tree combines several binary tests in a tree structure. For example, Figure
2 plots a decision tree and the resulting decision boundary for the bi-dimensional example problem of
Figure 1. Each interior node of this tree is labeled with a test, which compares the value of an input
attribute to a threshold, and each terminal node is labeled with a class. To produce a classification
for a new object whose attribute values are known, we simply propagate it into the tree from the top
node according to the test answers. When a terminal node is reached, its corresponding class label
is attributed to the object. By using such tests, the tree progressively partitions the input space into
hyper-rectangular regions where the output is constant.

Learning algorithm

There exist many variants of decision tree learning methods. Our goal in this section is therefore to give
the general idea of these algorithms, rather than to make an exhaustive list of all their variants. We
refer the interested reader to the references mentioned throughout this section for more details about
specific methods.

Loosely speaking, the general idea behind tree induction algorithms is to find a simple tree that
has good predictive performance on the learning sample. Since the enumeration of all possible trees
is essentially intractable, most tree induction algorithms are based on heuristics. The most common
heuristic is a greedy top-down recursive partitioning approach. This algorithm starts with a single node
tree corresponding to the complete learning sample and finds a way to split this node by selecting a test
among a set of candidate tests. The algorithm then proceeds recursively to split the successors of this
node. The whole process results in a partition of the learning sample into smaller and smaller subsets.
The development of a branch is stopped when some stop-splitting criterion applies. Eventually, each
terminal node of the tree is labeled with a prediction (class name or vector of class probabilities) which
is computed on the basis of the subset of objects which reach this node. This tree growing step is then
usually followed by a pruning stage which aims at removing unessential parts of the tree, so as to avoid
overfitting. The different ingredients of this algorithm are further explained below.

Score measure. To split a node, a score measure is defined and the test among the set of candidate
tests which realizes the best score is selected. The score measure is designed to favor tests which
discriminate between objects of different output classes. To this end, the score usually evaluates the
ability of the test to reduce the impurity of the class within the local learning (sub)sample. More

5

precisely, most score measures are of the following form:

Score(S, T) = I(S) −

p∑

i=1

Ni

N
I(Si), (1)

where T is the candidate test, S is the local learning sample of size N which is split by T into p subsets
Si of size Ni (i = 1, . . . , p), and I(S) measures the impurity of the output in the sample S.

In the context of a classification problem with m classes, two popular measures of impurity are
Shannon’s (or logarithmic) entropy:

I(S) = −

m∑

c=1

Nc

N
log

Nc

N
,

and Gini’s (or quadratic) entropy:

I(S) =

m∑

c=1

Nc

N
(1 −

Nc

N
),

where N is the size of the local learning sample S and Nc is the number of objects of output class c in
S. These score measures give very similar results in practice and have been widely used in the context
of decision tree induction, either as is11, 14 or normalized in different ways.12, 15

Candidate tests. The set of candidate tests used in the score maximization procedure defines the
actual hypothesis space and the representation power of decision trees of given complexity. In standard
decision tree induction methods, candidate tests involve only one attribute at a time. For numerical
attributes, standard tests are of the form [X < xth?], where xth is a discretization threshold for the
attribute X . The optimal thresholds are usually determined automatically by the induction algorithm,
but a pre-discretization of numerical attributes could also be provided by the user. When the attribute
takes its values in a finite set, typical tests consist in partitioning the set of all possible values of the
attribute into a number of subsets and creating a successor node for each one of these subsets. In the
literature, partitions into singletons (one successor for each value of the attribute) or into two subsets
are generally considered. In the second case, tests are of the form [X ∈ V ?], where V is a subset
of all possible values of the attribute X . Like discretization thresholds, subsets V are automatically
determined by the induction algorithm so as to maximise the score.

Node labeling. In classification, the simplest labeling of decision tree leaves with a class prediction
is obtained by computing the majority class among the objects present in the leaf. A more detailed
information can be stored in the leaves in the form of an estimation of the conditional class probabili-
ties. These probabilities can be estimated by class frequency counts but more sophisticated estimation
techniques have also been proposed.16

Stop-splitting and pruning. During induction, the decision tree can usually be extended as far as
needed to perfectly separate objects from the learning sample. However, from the discussion about
bias-variance tradeoff, such fully grown trees are often likely to overfit and suffer from a high variance.
There exist essentially two ways to prevent a tree from overfitting: using a stop-splitting criterion to
interrupt the development of a branch before the tree starts to overfit or using of a post-pruning algorithm
simplifying an overly grown tree so as to maximise its performance, e.g. as estimated by cross-validation.

There are several possible stop-splitting criteria. A possibility is to compute the impurity of the
output variable in the subset and stop splitting if this value is lower than a given threshold. It is also
possible to stop induction when the number of instances in the current subset is too small. More elaborate
stop-splitting criteria have also been designed based for example on statistical hypothesis testing.12, 15

One disadvantage of stop-splitting is that it requires the user to fix in advance the value of one
or several meta-parameters that determine the final complexity and it may thus miss the complexity
that optimizes the bias-variance tradeoff for a given problem. Pruning on the other hand consists in
simplifying the tree a posteriori by closing some of its test nodes so as to find the best compromise between
bias and variance for the problem at hand. Post-pruning generates from a fully grown tree a sequence of
(nested) trees of decreasing complexity, and selects among these the sub-tree which minimizes the error
rate estimated by holdout or by cross-validation. Different pruning methods essentially differ in the way

6

they generate the sequence of nested sub-trees. One example of such algorithm is the cost-complexity

pruning method proposed in CART.11

Ensembles of decision trees

Although pruning may reduce substantially the complexity (and hence improve the interpretability) of
the tree by removing useless parts of it, its effect on accuracy is often limited.17 A more efficient way to
improve the accuracy of decision trees is to aggregate the predictions given by several of them for the
same problem. Various techniques have been proposed to generate different decision trees from the same
learning sample that often give very impressive improvements of accuracy when they are aggregated.
Below, we discuss the two main families of such methods, namely randomization methods and boosting
methods.

Randomization methods. The general idea of these methods is to introduce some random pertur-
bation in the process that generates a tree from a learning sample in order to get an ensemble of different
trees. To make a prediction with an ensemble, the test object is propagated in all trees and the final pre-
diction is obtained by aggregating the predictions of the individual trees for this object. In classification,
an aggregated prediction may be obtained simply by computing the majority class among all individual
predictions. One can also average the class probability estimates produced by the individual trees of the
ensemble to produce an aggregated score for each class and then select the class corresponding to the
largest score.

The most prominent method in this family is Bagging (for bootstrap aggregating18) method. Bagging
is a generic method to randomize any learning algorithm. The idea of Bagging is to learn each model of
the ensemble from a bootstrap sample1 drawn from the original learning sample using the unmodified
learning algorithm. While Bagging improves very much standard single trees in terms of accuracy, several
other methods have been proposed in the literature to generate randomized ensembles of decision trees
and these methods are often more accurate than bagging. For example, Breiman’s Random Forests
algorithm19 builds each tree from a bootstrap sample like Bagging but modifies the node splitting
procedure as follows: at each test node, K attributes are selected at random among all input attributes,
an optimal candidate test is found for each of these attributes, and the best test among them is eventually
selected to split the node. The Extremely Randomized Trees algorithm,20 on the other hand, grows each
tree of the ensemble from the complete original learning sample and generates its splits by selecting
at each test node the best split among K random ones. Compared to Random Forests, this algorithm
typically grows trees that are more strongly randomized for a given value of K. When K = 1, it even
builds totally randomized trees, whose tests do not depend anymore on the learning sample output
values. Both methods usually generate more accurate models than Bagging and they are much more
efficient from the computational point of view.

Intuitively, these randomization methods act as variance reducers while they mostly do not affect
the bias of the original tree induction method. Indeed, even with randomization, the trees can still be
extended to almost perfectly predict the learning sample and thus have a low bias. However, because
of the randomization, these trees are less dependent on the learning sample and thus their aggregation
has less variance than the original (optimized on the learning sample) trees. From a geometrical point
of view, the resulting ensembles of trees are also able to model much smoother classification boundaries
than single trees (see Figure 3).

Boosting methods. Although the main idea of boosting is also to combine the predictions of several
models, its philosophy is very different from that of randomization methods. While randomization
methods improve a low-bias and high-variance method, the goal of boosting is to “boost” the performance
of a weak learning method i.e. a method that outputs very simple and highly biased models. Unlike
randomization methods, Boosting builds the models sequentially; each model in the sequence being
built to address the deficiencies of the previous models in the sequence. Usually, boosted predictions are
obtained by a weighted average of the predictions of the models in the resulting ensemble, where the
weights of the models are chosen according to theoretical arguments.

1A bootstrap sample is a sample of the same size as the original sample where each object is drawn with replacement

from the original sample.

7

A 2 < 0 . 4 7

A2<0 .42

y e s

A 2 < 0 . 7 7

no

A2<0 .07

y e s

A 1 < 0 . 7 6

no

A1<0 .02

y e s

A2<0.86

no

sick

y e s

A 1 < 0 . 7 5

no

h e a l t h y

y e s

sick

no

A2<0 .25

y e s

sick

no

sick

y e s

A 1 < 0 . 1 1

no

sick

y e s

A 1 < 0 . 5 5

no

A1<0 .40

y e s

A1<0 .59

no

A 1 < 0 . 2 4

y e s

A2<0.33

no

h e a l t h y

y e s

sick

no

sick

y e s

A2<0 .37

no

A 1 < 0 . 4 7

y e s

h e a l t h y

no

sick

y e s

h e a l t h y

no

h e a l t h y

y e s

A 1 < 0 . 5 2

no

h e a l t h y

y e s

A1<0 .53

no

sick

y e s

h e a l t h y

no

sick

y e s

A2<0.63

no

A 1 < 0 . 9 7

y e s

h e a l t h y

no

A 1 < 0 . 1 9

y e s

A1<0.93

no

A2<0.53

y e s

A2<0.49

no

A2<0 .70

y e s

A2<0.66

no

sick

y e s

A 1 < 0 . 1 3

no

sick

y e s

A1<0.39

no

sick

y e s

h e a l t h y

no

h e a l t h y

y e s

A1<0.66

no

h e a l t h y

y e s

A1<0 .84

no

h e a l t h y

y e s

A 1 < 0 . 9 1

no

h e a l t h y

y e s

sick

no

A2<0.68

y e s

h e a l t h y

no

h e a l t h y

y e s

sick

no

A 1 < 0 . 1 8

y e s

h e a l t h y

no

A1<0.06

y e s

h e a l t h y

no

sick

y e s

h e a l t h y

no

h e a l t h y

y e s

sick

no

A2<0.85

A 2 < 0 . 7 2

y e s

h e a l t h y

no

A2<0.08

y e s

A 1 < 0 . 4 1

no

sick

y e s

A2<0.59

no

h e a l t h y

y e s

A1<0 .58

no

A 2 < 0 . 1 5

y e s

A2<0.66

no

sick

y e s

A2<0 .55

no

A2<0.64

y e s

A 1 < 0 . 0 7

no

A1<0 .56

y e s

h e a l t h y

no

A1<0 .53

y e s

A2<0.33

no

A 1 < 0 . 4 5

y e s

A1<0 .56

no

sick

y e s

A1<0 .59

no

A 1 < 0 . 2 1

y e s

A2<0.46

no

h e a l t h y

y e s

sick

no

A2<0.36

y e s

A2<0.38

no

A2<0.33

y e s

h e a l t h y

no

sick

y e s

A2<0.50

no

A 1 < 0 . 4 1

y e s

h e a l t h y

no

sick

y e s

A 1 < 0 . 1 3

no

sick

y e s

h e a l t h y

no

sick

y e s

h e a l t h y

no

A2<0.30

y e s

h e a l t h y

no

sick

y e s

h e a l t h y

no

h e a l t h y

y e s

A1<0 .62

no

h e a l t h y

y e s

A 2 < 0 . 4 1

no

sick

y e s

A 1 < 0 . 7 9

no

h e a l t h y

y e s

sick

no

A 1 < 0 . 2 7

y e s

h e a l t h y

no

sick

y e s

A 1 < 0 . 8 7

no

A 1 < 0 . 1 0

y e s

A 1 < 0 . 7 6

no

sick

y e s

h e a l t h y

no

h e a l t h y

y e s

A2<0.60

no

A 1 < 0 . 8 7

y e s

h e a l t h y

no

h e a l t h y

y e s

sick

no

h e a l t h y

y e s

A 1 < 0 . 9 1

no

h e a l t h y

y e s

sick

no

h e a l t h y

y e s

A1<0.99

no

h e a l t h y

y e s

sick

no

A2<0 .45

A 2 < 0 . 1 5

y e s

A 2 < 0 . 7 7

no

sick

y e s

A2<0.28

no

A1<-0 .01

y e s

A1<0 .85

no

sick

y e s

A2<0.38

no

A 1 < 0 . 1 3

y e s

A2<0.40

no

sick

y e s

A1<0.89

no

sick

y e s

A 1 < 0 . 2 5

no

A1<0 .43

y e s

sick

no

A2<0.30

y e s

A1<0 .59

no

h e a l t h y

y e s

sick

no

h e a l t h y

y e s

sick

no

sick

y e s

A 1 < 0 . 7 3

no

h e a l t h y

y e s

sick

no

sick

y e s

A2<0.58

no

h e a l t h y

y e s

A 1 < 1 . 0 0

no

A 1 < 0 . 1 4

y e s

A1<0.39

no

sick

y e s

A1<0.80

no

A 2 < 0 . 7 4

y e s

A2<0.60

no

h e a l t h y

y e s

sick

no

A 1 < 0 . 2 5

y e s

h e a l t h y

no

A 1 < 0 . 8 7

y e s

A 1 < 0 . 7 5

no

A 1 < 0 . 1 4

y e s

h e a l t h y

no

A 1 < 0 . 0 7

y e s

h e a l t h y

no

sick

y e s

h e a l t h y

no

h e a l t h y

y e s

sick

no

h e a l t h y

y e s

A1<0.90

no

h e a l t h y

y e s

A1<0 .95

no

h e a l t h y

y e s

sick

no

h e a l t h y

y e s

sick

no

A2<0 .07

sick

y e s

A2<0.83

no

A2<0.68

y e s

h e a l t h y

no

A2<0.49

y e s

A 1 < 0 . 7 7

no

A 2 < 0 . 4 7

y e s

A2<0.56

no

A2<0.80

y e s

A 1 < 1 . 0 1

no

A 1 < 0 . 7 9

y e s

sick

no

A 1 < 0 . 2 2

y e s

A 2 < 0 . 5 7

no

A2<0.23

y e s

sick

no

sick

y e s

A2<0.43

no

A2<0.32

y e s

h e a l t h y

no

A 2 < 0 . 2 7

y e s

A2<0.35

no

sick

y e s

A1<0.69

no

A2<0.33

y e s

A 1 < 0 . 1 0

no

A1<0.06

y e s

sick

no

sick

y e s

A 1 < 0 . 4 1

no

sick

y e s

h e a l t h y

no

h e a l t h y

y e s

A1<0 .35

no

sick

y e s

A 1 < 0 . 2 4

no

sick

y e s

A1<0.60

no

h e a l t h y

y e s

sick

no

sick

y e s

A1<0 .53

no

A1<0 .34

y e s

sick

no

A 1 < 0 . 3 1

y e s

h e a l t h y

no

sick

y e s

h e a l t h y

no

A 1 < 0 . 1 5

y e s

A2<0.50

no

h e a l t h y

y e s

A2<0.65

no

sick

y e s

h e a l t h y

no

sick

y e s

h e a l t h y

no

A 1 < 0 . 4 1

y e s

A2<0 .67

no

A1<0 .23

y e s

A1<0.80

no

h e a l t h y

y e s

A 1 < 0 . 1 7

no

A 1 < 0 . 1 0

y e s

h e a l t h y

no

h e a l t h y

y e s

A1<0.90

no

sick

y e s

h e a l t h y

no

h e a l t h y

y e s

sick

no

sick

y e s

h e a l t h y

no

A 1 < 0 . 1 8

y e s

h e a l t h y

no

A 2 < 0 . 7 2

y e s

sick

no

A1<0.03

y e s

h e a l t h y

no

sick

y e s

h e a l t h y

no

sick

y e s

h e a l t h y

no

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

X
2

X1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

T
ru

e
po

si
tiv

e
ra

te

False positive rate

Single tree (AUC=0.89)
Ensemble (AUC=0.98)

Figure 3 Ensemble methods with trees: top, a subset of 4 trees built with the Extra-trees randomiza-
tion method20 on the toy problem of Figure 1; bottom left, in dotted line, the classification boundaries
of 50 randomized trees and in plain blue line, the classification boundary obtained by a majority vote
over these 50 trees; bottom right, the ROC curves for the single tree of Figure 2 (red, piece-wise linear)
and for the randomized ensemble (green, smooth) as estimated on a test sample of 4000 points. The
classification boundary obtained with the ensemble is much smoother than each individual classification
boundary. On this problem, the error rate (as estimated on a test sample of 4000 points) decreased from
10.2% with a single pruned tree to 5.4% with the ensemble. Also the AUC of ensembles of 50 trees is
significantly better compared to the AUC of a single tree (0.98 as compared to 0.89)

8

One of the first and most famous boosting algorithms for classification is Freund and Schapire’s
AdaBoost method (for “adaptive boosting”21). The main idea of AdaBoost is to build each model in
the sequence in such a way that it focuses on correcting the errors made by the previous models in the
sequence. One way to achieve this is to replicate objects in the learning sample that are misclassified
by the previous models. AdaBoost however exploits the fact that most learning algorithms can handle
weighted objects. Starting with uniform “object” weights, this algorithm sequentially increases the
weights of the objects misclassified by the previous models in the sequence, thereby forcing the learning
algorithm to focus on the most “difficult” instances. Eventually, predictions are carried out by a weighted
majority vote among the models according to another set of “model” weights which depend on the
accuracy of the corresponding model on the learning sample.21

The efficiency of AdaBoost at improving classification learning algorithms has been highlighted in
many empirical studies, mainly in combination with decision trees (e.g.22, 23). Several variants of this
original algorithm have been proposed, for classification problems24 but also for regression problems.7, 25

For the boosting algorithm to work, each model must be learned with a weak learning algorithm. In the
context of decision trees, this means that their complexity has to be reduced so that they do not overfit
the learning sample. This is usually achieved by adjusting the stop-splitting criterion. One popular
variant of decision trees in the context of boosting uses decision trees with only one test node, called
“decision stumps”.

Discussion. Although they often improve accuracy very significantly, the main drawback of ensemble
methods is that they may jeopardize the interpretability and the efficiency with respect to the standard
“single” decision tree method. In terms of interpretability, it is nevertheless still possible to rank the
attributes using ensemble methods and, as a matter of fact, the resulting ranking is typically much more
stable with an ensemble (see the next section). The negative effect on efficiency can also be mitigated.
Indeed, randomization methods can be easily parallelized and also the introduction of randomization
actually makes the growing of one random tree much faster than the growing of one standard tree. So, all
in all, the computational costs of these methods is actually very similar to that of standard single trees.
Boosting methods can not be so easily parallelized, but since they exploit trees of very low complexity
their computational overhead remains nevertheless often acceptable.

Feature selection and ranking

One of the most interesting characteristics of decision trees, especially in the context of computational
and systems biology,26 is that they allow to carry out directly some feature selection, or in other words to
identify among a large set of input attributes those that are really useful for solving the problem at hand.
Indeed, because of the greedy nature of the tree induction algorithm, useless attributes will normally
not be selected during the tree induction and conversely the attributes selected by the algorithm usually
give a good indication of the most useful input variables for the problem at hand.

In addition to feature selection, it is possible to compute from a tree an attribute importance measure
that allows to further rank the selected attributes according to their relevance for predicting the output.
Several such importance measures have been proposed in the literature.7, 11, 15, 19, 27 The simplest measure
is derived from the impurity score in Eqn. (1). The overall importance of an attribute is defined as the
sum of the total reduction of entropy NiScore(Si, Ti) (where Ni is the size of Si) over all nodes i(a) in
the tree where the attribute a is used to split. Those attributes that are not selected at all obtain a zero
value of their importance, and those that are selected close to the root node of the tree typically obtain
high scores.

One drawback of this measure is that it only takes into account the split that is effectively selected
at each node. If two variables have very similar scores at one node, one of them may be masked by the
other and will thus receive a zero score although it could well be as important as the other one. In order
to circumvent this effect, more sophisticated measures have been proposed that take into account the
alternative unselected splits, called surrogate splits, at each node.11

Typically, ensembles of trees select a much larger proportion of the attributes and thus can not be
readily used for attribute selection. However, attribute importance measures can be easily extended
to ensembles, simply by averaging importance scores over all trees in the ensemble. The resulting
importance measure is even more reliable because of the variance reduction effect resulting from the
averaging. It is also less prone to the masking effect of correlated attributes. In the context of Random
Forests, Breiman19 proposed another measure based on random permutations. In this method, the

9

importance of an attribute is defined for each tree as the variation of its error rate when its values are
randomly permuted in the validation set. The resulting importance is normalized to give a z-score from
which a p-value is derived.

All these measures of importance provide interesting alternatives to attribute ranking based on the
(adjusted) p-values obtained from classical statistical tests. The main advantage of these measures with
respect to these statistical tests is that they do not make any assumption about the problem (such as
gaussianity, linearity, or independence) and they are potentially able to detect multivariate effects, i.e.
attributes that are only relevant through interaction with others. However, the tree-based importance
measures are not yet as well principled as statistical tests, because their limitations and biases are not
yet fully characterized, although research in this area is ongoing.27–30

Strengths and limitations

From the point of view of their statistical properties, tree-based methods (like other supervised learning
methods) are non-parametric universal approximators, meaning that, with sufficient complexity, a tree
can represent any continuous function with an arbitrary high precision. Under some very mild conditions,
single tree induction algorithms are also consistent,11 i.e. they yield models that converge to the best
possible classifier for the problem at hand as the size of the learning sample tends to infinity (notice that
this is not true for all methods based on ensembles of trees31). When used with numerical attributes,
they are invariant with respect to monotone transformations of the input attributes.

From a more practical point of view, the main strength of tree-based methods is their interpretability.
Single trees are readily understandable and interpretability is also gained through their ability to select
or rank the attributes according to their relevance for predicting the output. They share this feature
with almost no other non-parametric methods. With respect to other methods such as support vector
machines (SVMs) or artificial neural networks, tree-based methods are also very easy to use. They only
require to set the value of a very limited number of parameters and their accuracy is not overly sensitive
to the setting of these parameters. The accuracy of ensemble methods such as Random Forests or
boosting has been proved very competitive with other supervised learning methods. Their computational
complexity at the learning stage is typically linear in the number of features and log linear in the number
of objects, which is close to the lowest possible complexity one could expect for a learning algorithm.
These methods are thus able to deal with very large datasets (e.g. of millions of objects and thousands
of variables). Because of the greedy nature of the induction algorithm, their computing times are
furthermore very predictable. These methods are also flexible: they can handle both continuous, discrete
and even more complex structured input and output spaces. They are also easy to extend through the
use of different sets of ‘ad hoc’ candidate tests or node labeling schemes, which makes them useful in a
wide range of applications.

These methods have nevertheless several limitations. The main drawback of single trees is their high
variance: decision trees obtained from only slightly perturbed learning samples can be very different.
This high variance makes the accuracy of single trees not competitive with other learning algorithms
(like e.g. neural networks). In addition, this instability reduces also their interpretability: one can
not fully trust the choices of the tests if they are changing from one learning sample to another. In
terms of accuracy, while ensemble methods with trees are competitive on many problems, finely-tuned
support vector machines or artificial neural networks can sometimes reach higher levels of accuracy in
some application domains.

One other possible drawback of ensemble methods is their high demand in terms of memory require-
ment for storing the model: the number of nodes of unpruned trees is typically of the same order as
the number of objects in the datasets and thus the storage of an ensemble of trees might require more
space than the original dataset, especially when there are many objects and few attributes. Even though
decision tree tests can be easily extended, tree-based methods are still mostly restricted to the standard
attribute-value representation, which makes them less suitable than, e.g., kernel methods to handle very
structured data types such as graphs or sequences.

To sum up, tree-based methods (especially in their ensemble flavor) are certainly methods of choice
for many applications where simplicity, interpretability, and ease of use is required. Although their
accuracy is often very good, in general slightly better results can nevertheless be obtained by finely-
tuning other methods such as SVMs or artificial neural networks for instance, but this is then at the
price of a lot of human intervention, a higher computational complexity, and a loss of interpretability
and genericity.

10

Comparison with other supervised learning algorithms

In this section we compare a short list of some other popular supervised learning algorithms to decision
tree-based methods. We refer the interested reader to the literature for further information about these
other supervised learning methods.6–8

k-Nearest Neighbors. Probably the simplest and most intuitive learning algorithm, it assigns to
an object an output value derived from those of its k nearest neighbors (determined according to a
distance measure computed from the inputs) in the learning sample. Although very simple, this method
is sometimes very accurate. However, it does not provide explicitly a model and it is also very sensitive
to the presence of irrelevant attributes (i.e. attributes which are not related to the output), contrary
to tree-based methods. For large sample sizes it may also lead to prohibitive computing times at the
moment of finding the nearest neighbors.

Naive Bayes. A classification method that estimates conditional class probabilities by applying Bayes’
theorem under the (naive) assumption that the attribute values are independent given the class. Despite
this strong assumption, Naive Bayes classifiers often work well on practical problems. They are highly
scalable and rather interpretable. Their main limitation with respect to tree-based methods is their
strong independence assumption and their inability to handle automatically numerical attributes without
further parametric assumptions.

Linear models. The term linear models encompasses any method that uses as an hypothesis space the
set of linear functions of the inputs (or, for classification, functions that correspond to a linear decision
boundary in the input space). There exist many alternatives to learn linear models, that correspond to
different statistical models or techniques to deal with the bias/variable tradeoff. Some examples are ridge
regression, LASSO, or linear discriminant analysis.7 These methods are especially well suited for high-
dimensional problems. Like decision trees, they can also be used for attribute selection and ranking.
Their main limitation with respect to tree-based methods is their inability to handle interactions of
variables in an automatic way. Also, algorithms for inferring linear models are typically less scalable to
very high dimensional input spaces.

Artificial neural networks. They are a generalization of linear models inspired by analogies with
the biological brain. A neural network combines several simple linear units organized in layers through
non-linear functions in order to improve expressiveness. These methods may be very accurate but they
do not scale well with the number of inputs and are difficult to use for large scale practical problems.
See5 for a review of these methods and their applications in bioinformatics.

Support vector machines. Loosely speaking, the support vector machine (SVM) method is a partic-
ular way to learn a linear classification model: the idea is to choose the hyperplane which is the furthest
away from objects of each class, maximizing the so called “margin”. One of the nice features of this
algorithm is that its solution may be written only in terms of a similarity measure between the objects
called a kernel (like the k-NN method). Using appropriate kernels, these methods can thus actually learn
non-linear models and also handle naturally the complex data types that are often met in the context
of computational biology. Compared with other methods, SVMs usually provide state-of-the-art results
but like neural networks, they are essentially black-box models and not easy to use for non specialists.
See4 for a review of these methods and their applications in computational biology.

Applications in computational and systems biology

Owing to their versatility, decision trees and, to a lesser extent, regression trees, have been applied to a
wide variety of bioinformatic problems. Of particular interest for bioinformatics is the interpretability of
decision trees, because the output of the algorithm must often be interpreted by biologists and validated
in the laboratory. An additional advantage of decision trees in the context of bioinformatics is their
ability to deal with heterogeneous data with relatively little preprocessing.

11

Following the evolution of machine learning methods, some bioinformatic problems have been re-
analyzed using successive “generations” of decision tree methods. One conspicuous trend is the re-
placement of single tree methods by ensemble methods such as Random Forests. Another important
trend is the increased emphasis on rigorous evaluation of prediction accuracy, using methods such as
cross-validation.

In this section we provide a survey of the diversity of problems to which decisions tree-based methods
have already been applied in the context of computational and systems biology. As dozens of articles
have already been published this context, we will not attempt to be comprehensive, but will rather focus
on a few representative examples.

Sequence annotation

An early application of decision trees in bioinformatics was the identification of coding regions in eu-
karyotic genomic sequences using oblique decision trees and attributes related to the composition of the
DNA sequences.32

The precise localization of the transcriptional start site is more challenging to predict, but good
performances have been achieved by combining quadratic discriminant functions with decision trees.33

Decision trees have also been applied to the prediction of non-protein coding genes, for example
Random Forests for the discovery of microRNA genes in Drosophila genomes.34

A second class of annotation problems is the inference of functions of unannotated genes and proteins.
Kretschmann et al. used the C4.5 algorithm to infer protein functions in the SWISS-PROT database
based on sequence patterns.35 In a more recent application, a multi-label version of the C4.5 algorithm
was used to assign functions to unannotated yeast genes, based on various data including sequence,
expression patterns, knockout mutant experiments, PSI-BLAST homology searches and predicted sec-
ondary structure.36

Other applications of decision trees in protein sequence annotation include the prediction of mem-
brane proteins37,38 of subcellular localization,39 of ubiquitylation sites,40 and of the specificity of the
cleavage sites of viral proteases.41

Biomarker discovery

Biomarkers are biomolecules whose expression patterns are indicative of a biological condition of interest,
such as a stage of differentiation or a disease. Examples of classes of biomarkers are mRNAs, proteins
and peptides, metabolites, and microRNAs.

Decision trees are particularly suitable for biomarker discovery and tissue classification because they
provide simple measures of attribute importance that can be used to rank biomarkers.

An important problem in genomics is the discrimination of cancer/non-cancer samples and the dis-
crimination of sub-types of cancers based on gene expression patterns measured with microarrays. Ben-
Dor et al. compared several methods for cancer classification, including nearest neighbor, decision stumps
with boosting, and support vector machines (SVMs), and obtained comparably good accuracy with the
SVMs and the boosted decision stumps.42 Boulesteix et al. used a CART-based approach on expression
microarray data to discover models of interactions between pairs of genes that are significantly correlated
with cancer class.43

The goal is often to obtain a set of discriminating biomarkers that is as small as possible while
remaining accurate, because this allows the development of cheap and convenient diagnostic tests. In
this respect, decision trees are also advantageous because they often lead to compact decision models
compared to other machine learning methods.44 A striking example is the study by Chen et al. in which
a decision tree model with five genes accurately predicted the survival of patients with non-small-cell
lung cancer.45

The identification of biomarkers from biological fluids is a promising area of research, because it could
detect medical conditions with minimally invasive procedures and without knowledge of the localization
of the anomaly in the body. Mass spectrometry (MS) is the technique of choice for the characterization
of proteins and peptides in these complex biological samples. Decision tree-based methods have been
widely used in this domain.46–54 For example, Qu et al. exploited boosted decision stumps to dis-
criminate prostate cancer patients from noncancer patiens.46 Geurts et al. compared several ensemble
methods based on decision trees to the identification of serum biomarkers for rheumatoid arthritis and

12

inflammatory bowel diseases in MS spectra.50 Another study used decision trees to detect pancreatic
cancer from serum biomarkers.51

Molecular interactions

A rich field of applications of decision and regression trees in bioinformatics is the prediction of inter-
actions between different types of biomolecules, such as protein-protein interactions (PPIs) and DNA-
protein interactions.

Prediction of PPIs requires adjustment of the tree learning algorithms, because each attribute is
measured twice, once for each protein of a pair. A number of papers have proposed to classify protein
pairs with single decision trees55 or Random Forests.56, 57 For example, in Chen and Liu,57 a random
forest classifier was trained in which protein pairs were represented by a vector of 4293 attributes corre-
sponding to protein domains. These attributes have discrete values 0, 1 or 2, corresponding respectively
to the absence of the domain in the pair, its presence in one of the proteins, or its presence in both.

Another possible approach for interaction prediction is to use attributes defined on single biomolecules
to infer their positions in the network, and to deduce interactions from the network. Geurts et al. used an
ensemble of regression trees and a kernelization of the output space to predict protein-protein interaction
and metabolic networks.58

Supervised learning can also be used in the context of PPIs to clean and aggregate noisy experimental
data. In order to identify new interactions in the yeast Saccharomyces cerevisiae, Krogan et al. performed
a genome-wide purification of protein complexes, followed by protein identification by two complementary
mass spectrometry procedures. To differentiate true from spurious PPIs in the noisy data, a classifier
was built with a hand-curated database of PPIs as training set. This classifier combined by stacking
the outputs of a Bayesian network, C4.5 decision trees and boosted stump decision trees to achieve best
performance.59

Decision trees can also be used to infer PPIs among members of a particular class of proteins. In one
study, correlated pairs of protein sequence motifs were extracted from known interacting transcription
factor (TF) pairs. These motifs were then used to build a random forest predictor of TF interactions.60

Besides prediction of interacting biomolecules, decision trees have been used to predict the precise
regions involved in the interaction in known interacting biomolecules. Random Forests have been used
to predict residues involved in PPIs, based on combinations of sequence, physicochemical properties of
the amino acids, evolutionary conservation and 3D structure61.62 Similar studies investigated prediction
of amino acids binding DNA,63 metal ions or small ligands64.65

Genetics

Systematic knockout studies in model organisms such as S. cerevisiae or C. elegans have revealed that
only a relatively small proportion of genes are essential for viability. However, the simultaneous mutation
of two “non-essential” genes often confer a more strongly deleterious or a lethal phenotype, a type
of genetic interaction known as sick and synthetic lethal (SSL) that may shed light on the basis of
multigenic genetic traits and diseases. However, systematic generation of all double mutants in a model
organism is extremely labor-intensive and decision tree methods have been applied to their computational
identification, based on attributes defined on pairs of proteins.66 More recently, Chipman and Singh
combined random walks in biological networks with decision trees to identify gene pairs most likely to
result in SSL interaction.67

Genome-wide association studies for complex diseases produce thousands of single nucleotide poly-
morphism (SNP) genotypes. A first step of the analysis is often to apply univariate statistical test
of association to the individual SNPs. These test will fail to reveal SNP variants that have a small
marginal effect on disease susceptibility, but a large effect when combined. Decision trees can take
into account interactions among variables, and have been proposed as a method to identify interacting
polymorphisms.68–70

The identification of genes likely to be associated with genetic diseases is also an application, related
to sequence annotation, of decision trees in molecular and statistical genetics. López-Bigas and Ouzounis
have used decision trees to predict these genes based on protein sequence length and various measures
of evolutionary conservation of the protein.71

Single nucleotide polymorphism (SNP) variants that are close together on a chromosome tend to be
highly correlated because they are inherited together in blocks (haplotypes). It is thus advantageous to

13

select a smaller set of SNPs (tagging SNPs) that convey the same information. The problem of finding
the minimum set of tagging SNPs is NP-complete, but a fast algorithm based on decision trees has been
developed that gives satisfactory results.72

More recently, Schlecht et al used a hybrid machine learning approach including decision trees to
infer patterns of SNP variants on sampled human Y chromosomes (haplogroups) from the patterns of
another type of genetic markers, microsatellites73

Discriminating between polymorphisms that have no functional effect (neutral polymorphisms), and
functional ones is of crucial importance. Single nucleotide polymorphisms resulting in an amino acid
substitution in the protein (non-synonymous SNPs) are of particular interest because they account
for a large proportion of genetic diseases. Random Forests have been used to differentiate functional
from neutral non-synonymous SNPs. Relevant input attributes include the physicochemical properties
of the original and the substituted amino acids, their evolutionary conservation, and their structural
environment in homologous protein structures.74, 75

Another application of decision trees in molecular genetics is the prediction of antiretroviral drug
resistance of HIV isolates from their sequence. In Beerenwinkel et al., C4.5 decision trees were used to
build interpretable models of drug resistance of the viral protease and reverse-transcriptase based on the
protein sequence.76

Regulatory networks

The accurate modeling of regulatory networks is one of the grand goals of systems biology, and many
modeling schemes have been proposed, from comparatively simple Boolean networks to complex models
based on stochastic differential equations.77

Decision and regression trees provide suitable approaches to describe the structure of regulatory
networks. For example, Soinov et al. used decision trees to predict the Boolean (on/off) expression levels
of genes based the continuous expression values of other genes.78 Phuong et al. used multiple output
regression trees to predict gene expression levels from the presence of motifs in promoter sequences.79

More sophisticated methods based on generalizations of decision trees80, 81 and of regression trees82 have
been proposed to model simultaneously the expression levels of target genes, of their regulators, and the
presence of motifs in the promoters of the genes.

Segal et al. applied a probabilistic method to identify gene regulatory modules, i.e. sets of genes
co-regulated in different conditions. In this approach, the logic of modules is modeled by regression trees,
and the best modules and assignments of genes to modules are searched iteratively with the expectation
maximization (EM) algorithm.83

Chen and Blanchette84 modeled tissue-specific cis-regulatory modules using Bayesian networks. They
addressed the problem of learning conditional probabilities of combinations of TFs by using regression
trees as a compact representation of these probabilities.

Structural biology

Structural biology is another field of application of decision trees. The prediction of protein secondary
structure has a long history in bioinformatics, and numerous algorithms have been proposed to solve
this problem. For example, Selbig et al. used decision trees to combine the predictions of 10 existing
methods, thereby outperforming all of these individual methods.85

Tree-based methods have also been used to predict specific types of structural elements in proteins.
Siepen et al86 used a pruned C4.5 decision tree and a support vector machine to predict exposed edges of
β-strands, a structural element that has been linked to protein aggregation and neurodegenerative disor-
ders. The two methods achieved the same prediction accuracy, but they remarked that the interpretable
rules generated by the decision tree were in close agreement with knowledge about protein structure.
In another study, two tree-based algorithms were used for the prediction of the DNA-binding structural
motif helix-turn-helix. A single decision tree model was used to get insight on the structural features
associated with DNA-binding, while a more accurate but less interpretable model based on boosted
(with AdaBoost) decision stumps was used to scan a whole database to find new proteins of this class.87

14

Image and video analysis

More and more, the acquisition of images or videos becomes a tool of choice for recording experiments
in the context of systems biology. Indeed, in the recent literature, one can observe a significant trend
of works exploiting various kinds of image acquisition and image analysis techniques in systems biology
but also in medicine.88–90

One of the main problems in this context is to extract quantitative information from images and
videos in a reproducible and automatic way, so as to allow statistical assessments of the significance of
biological effects. For example, methods need to be designed for the automatic detection, classification,
counting, quantification, and monitoring of various biological entities (molecules, cells, tissues) within
such images. Since there is a large diversity of problems stemming from the diversity of biological objects
and imaging modalities, machine learning approaches are a method of choice to design such systems in
an effective and mostly automated way.

This field of applications is only at its very early stage of development but has a great future. To
give some ideas about the possibilities, we refer the reader to some recent publications in this field which
are based on the use of decision tree-based methods in this context.91–93

Acknowledgments

The authors thank Raphaël Marée and Tom Druet for comments on the manuscript. PG is Research Associate

of the F.R.S.-FNRS. This paper presents research results of the Belgian Network BIOMAGNET (Bioinformatics

and Modeling: from Genomes to Networks), funded by the Interuniversity Attraction Poles Programme, initiated

by the Belgian State, Science Policy Office. The scientific responsibility rests with the authors.

References

[1] C. Kingsford and S. L. Salzberg, Nat Biotechnol, 2008, 26, 1011–3.

[2] P. Larrañaga, B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A. Lozano, R. Armañanzas,
G. Santafé, A. Pérez and V. Robles, Briefings in Bioinformatics, 2006, 7, 86–112.

[3] A. L. Tarca, V. J. Carey, X.-w. Chen, R. Romero and S. Draghici, PLoS Comput Biol, 2007, 3,
e116.

[4] A. Ben-Hur, C. S. Ong, S. Sonnenburg, B. Schölkopf and G. Rätsch, PLoS Comput Biol, 2008, 4,
e1000173.

[5] L. Lancashire, C. Lemetre and G. Ball, Briefings in bioinfirmatics, 2009.

[6] R. Duda, P. Hart and D. Stork, Pattern Classification, John Wiley & Sons, 2nd edn., 2000.

[7] T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning: data mining, infer-

ence and prediction, Springer, 2001.

[8] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[9] C. Ambroise and G. McLachlan, PNAS, 2002, 99, 6562–6566.

[10] T. Fawcett, Pattern recognition letters, 2006, 27, 861–874.

[11] L. Breiman, J. Friedman, R. Olsen and C. Stone, Classification and Regression Trees, Wadsworth
International (California), 1984.

[12] J. Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann (San Mateo), 1986.

[13] E. Hunt, Concept Learning, New York: Wiley, 1962.

[14] J. Quinlan, Machine Learning, 1986, 1, 81–106.

[15] L. Wehenkel, Automatic learning techniques in power systems, Kluwer Academic, Boston, 1998.

[16] F. Provost and P. Domingos, Machine learning, 2003, 52, 199–215.

15

[17] J. Mingers, Machine learning, 1989, 4, 227–243.

[18] L. Breiman, Machine Learning, 1996, 24, 123–140.

[19] L. Breiman, Machine learning, 2001, 45, 5–32.

[20] P. Geurts, D. Ernst and L. Wehenkel, Machine Learning, 2006, 36, 3–42.

[21] Y. Freund and R. E. Schapire, Proceedings of the second European Conference on Computational
Learning Theory, 1995, pp. 23–27.

[22] H. Drucker and C. Cortes, Advances in Neural Information Processing Systems, 1996, pp. 479–485.

[23] E. Bauer and R. Kohavi, Machine Learning, 1999, 36, 105–139.

[24] R. Meir and G. Rätsch, in Advanced Lectures on Machine Learning, Springer, 2003, ch. An intro-
duction to Boosting and Leveraging.

[25] J. Friedman, T. Hastie and R. Tibshirani, The Annals of Statistics, 2000, 38, 337–374.

[26] Y. Saeys, I. Inza and P. Larranaga, Bioinformatics, 2006, 23, 2507–2517.

[27] C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin and A. Zeileis, BMC Bioinformatics, 2008, 9,
307.

[28] C. Strobl, A. Boulesteix, A. Zeileis and T. Hothorn, BMC Bioinformatics, 2007.

[29] K. Archer and R. Kimes, Computational Statistics and Data Analysis, 2008.

[30] V. Huynh-Thu, L. Wehenkel and P. Geurts, JMLR Workshop and Conference proceedings, 2008, 4,
60–73.

[31] G. Biau, L. Devroye and G. Lugosi, Journal of Machine Learning Research, 2008, 9, 2015–2033.

[32] S. Salzberg, J Comput Biol, 1995, 2, 473–485.

[33] R. V. Davuluri, I. Grosse and M. Q. Zhang, Nat Genet, 2001, 29, 412–417.

[34] A. Stark, P. Kheradpour, L. Parts, J. Brennecke, E. Hodges, G. J. Hannon and M. Kellis, Genome

Res, 2007, 17, 1865–1879.

[35] E. Kretschmann, W. Fleischmann and R. Apweiler, Bioinformatics, 2001, 17, 920–926.

[36] A. Clare and R. D. King, Bioinformatics, 2003, 19 Suppl 2, ii42–ii49.

[37] M. M. Gromiha and Y. Yabuki, BMC Bioinformatics, 2008, 9, 135.

[38] J. Y. Yang, M. Q. Yang, A. K. Dunker, Y. Deng and X. Huang, BMC Genomics, 2008, 9 Suppl

1, S7.

[39] Y. Q. Shen and G. Burger, BMC Bioinformatics, 2007, 8, 420.

[40] C.-W. Tung and S.-Y. Ho, BMC Bioinformatics, 2008, 9, 310.

[41] Z. R. Yang, Bioinformatics, 2005, 21, 2644–2650.

[42] A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer and Z. Yakhini, J Comput Biol,
2000, 7, 559–583.

[43] A.-L. Boulesteix, G. Tutz and K. Strimmer, Bioinformatics, 2003, 19, 2465–2472.

[44] R. Díaz-Uriarte and S. A. de Andrés, BMC Bioinformatics, 2006, 7, 3.

[45] H.-Y. Chen, S.-L. Yu, C.-H. Chen, G.-C. Chang, C.-Y. Chen, A. Yuan, C.-L. Cheng, C.-H. Wang,
H.-J. Terng, S.-F. Kao, W.-K. Chan, H.-N. Li, C.-C. Liu, S. Singh, W. J. Chen, J. J. W. Chen and
P.-C. Yang, N Engl J Med, 2007, 356, 11–20.

16

[46] Y. Qu, B.-L. Adam, Y. Yasui, M. D. Ward, L. H. Cazares, P. F. Schellhammer, Z. Feng, O. J.
Semmes and G. L. Wright, Clinical Chemistry, 2002, 48, 1835–1843.

[47] H. Liu, J. Li and L. Wong, Genome informatics, 2002, 13, 51–60.

[48] B. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. Stone, D. Ward, K. Williams and
H. Zhao, Bioinformatics, 2003, 19, 1636–1643.

[49] G. Izmirlian, Ann N Y Acad Sci, 2004, 1020, 154–174.

[50] P. Geurts, M. Fillet, D. de Seny, M.-A. Meuwis, M. Malaise, M.-P. Merville and L. Wehenkel,
Bioinformatics, 2005, 21, 3138–3145.

[51] Y. Yu, S. Chen, L.-S. Wang, W.-L. Chen, W.-J. Guo, H. Yan, W.-H. Zhang, C.-H. Peng, S.-D.
Zhang, H.-W. Li and G.-Q. Chen, Oncology, 2005, 68, 79–86.

[52] J. Cui, X. Kang, Z. Dai, C. Huang, H. Zhou, K. Guo, Y. Li, Y. Zhang, R. Sun, J. Chen, Y. Li,
Z. Tang, T. Uemura and Y. Liu, J Cancer Res Clin Oncol, 2007, 133, 825–834.

[53] Y. Su, J. Shen, H. Qian, H. Ma, J. Ji, H. Ma, L. Ma, W. Zhang, L. Meng, Z. Li, J. Wu, G. Jin,
J. Zhang and C. Shou, Cancer Sci, 2007, 98, 37–43.

[54] Y.-S. Wei, Y.-H. Zheng, W.-B. Liang, J.-Z. Zhang, Z.-H. Yang, M.-L. Lv, J. Jia and L. Zhang,
Cancer, 2008, 112, 544–551.

[55] L. Zhang, S. Wong, O. King and F. Roth, BMC Bioinformatics, 2004, 5, 15.

[56] Y. Qi, J. Klein-Seetharaman and Z. Bar-Joseph, Pacific Symposium of Biocomputing, 2005.

[57] X.-W. Chen and M. Liu, Bioinformatics, 2005, 21, 4394–4400.

[58] P. Geurts, N. Touleimat, M. Dutreix and F. d’Alché Buc, BMC Bioinformatics, 2007, 8 Suppl 2,
S4.

[59] N. J. Krogan, G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A. P.
Tikuisis, T. Punna, J. M. Peregrín-Alvarez, M. Shales, X. Zhang, M. Davey, M. D. Robinson,
A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie, D. P. Richards, V. Canadien, A. Lalev, F. Mena,
P. Wong, A. Starostine, M. M. Canete, J. Vlasblom, S. Wu, C. Orsi, S. R. Collins, S. Chandran,
R. Haw, J. J. Rilstone, K. Gandi, N. J. Thompson, G. Musso, P. S. Onge, S. Ghanny, M. H. Y. Lam,
G. Butland, A. M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O’Shea, J. S. Weissman, C. J. Ingles,
T. R. Hughes, J. Parkinson, M. Gerstein, S. J. Wodak, A. Emili and J. F. Greenblatt, Nature, 2006,
440, 637–643.

[60] A. D. J. van Dijk, C. J. F. ter Braak, R. G. Immink, G. C. Angenent and R. C. H. J. van Ham,
Bioinformatics, 2008, 24, 26–33.

[61] X. wen Chen and J. C. Jeong, Bioinformatics, 2009, 25, 585–591.

[62] M. Šikić, S. Tomić and K. Vlahoviček, PLoS Comput Biol, 2009, 5, e1000278.

[63] J. Wu, H. Liu, X. Duan, Y. Ding, H. Wu, Y. Bai and X. Sun, Bioinformatics, 2009, 25, 30–35.

[64] A. J. Bordner, Bioinformatics, 2008, 24, 2865–2871.

[65] M. Lippi, A. Passerini, M. Punta, B. Rost and P. Frasconi, Bioinformatics, 2008, 24, 2094–2095.

[66] S. L. Wong, L. V. Zhang, A. H. Y. Tong, Z. Li, D. S. Goldberg, O. D. King, G. Lesage, M. Vidal,
B. Andrews, H. Bussey, C. Boone and F. P. Roth, Proc Natl Acad Sci U S A, 2004, 101, 15682–
15687.

[67] K. C. Chipman and A. K. Singh, BMC Bioinformatics, 2009, 10, 17.

[68] K. L. Lunetta, L. B. Hayward, J. Segal and P. V. Eerdewegh, BMC Genet, 2004, 5, 32.

[69] R. Jiang, W. Tang, X. Wu and W. Fu, BMC Bioinformatics, 2009, 10 Suppl 1, S65.

17

[70] S. S. F. Lee, L. Sun, R. Kustra and S. B. Bull, Bioinformatics, 2008, 24, 1603–1610.

[71] N. López-Bigas and C. A. Ouzounis, Nucleic Acids Res, 2004, 32, 3108–3114.

[72] P. Zhang, H. Sheng and R. Uehara, BMC Bioinformatics, 2004, 5, 89.

[73] J. Schlecht, M. E. Kaplan, K. Barnard, T. Karafet, M. F. Hammer and N. C. Merchant, PLoS

Comput Biol, 2008, 4, e1000093.

[74] L. Bao and Y. Cui, Bioinformatics, 2005, 21, 2185–2190.

[75] J. Hu and C. Yan, BMC Bioinformatics, 2008, 9, 297.

[76] N. Beerenwinkel, B. Schmidt, H. Walter, R. Kaiser, T. Lengauer, D. Hoffmann, K. Korn and
J. Selbig, Proc Natl Acad Sci U S A, 2002, 99, 8271–8276.

[77] T. Schlitt and A. Brazma, BMC Bioinformatics, 2007, 8 Suppl 6, S9.

[78] L. A. Soinov, M. A. Krestyaninova and A. Brazma, Genome Biol, 2003, 4, R6.

[79] T. M. Phuong, D. Lee and K. H. Lee, Bioinformatics, 2004, 20, 750–757.

[80] M. Middendorf, A. Kundaje, C. Wiggins, Y. Freund and C. Leslie, Bioinformatics, 2004, 20 Suppl

1, i232–i240.

[81] A. Kundaje, M. Middendorf, M. Shah, C. H. Wiggins, Y. Freund and C. Leslie, BMC Bioinformatics,
2006, 7 Suppl 1, S5.

[82] J. Ruan and W. Zhang, Bioinformatics, 2006, 22, 332–340.

[83] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein, D. Koller and N. Friedman, Nat Genet, 2003,
34, 166–176.

[84] X. Chen and M. Blanchette, BMC Bioinformatics, 2007, 8 Suppl 10, S2.

[85] J. Selbig, T. Mevissen and T. Lengauer, Bioinformatics, 1999, 15, 1039–1046.

[86] J. A. Siepen, S. E. Radford and D. R. Westhead, Protein Sci, 2003, 12, 2348–59.

[87] W. A. McLaughlin and H. M. Berman, J Mol Biol, 2003, 330, 43–55.

[88] S. G. Megason and S. E. Fraser, Cell, 2007, 130, 784–95.

[89] A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J. K. Gohagan and A. F. Laine,
BMC Syst Biol, 2008, 2, 74.

[90] H. Peng, Bioinformatics, 2008, 24, 1827–1836.

[91] G. Giannone, B. Dubin-Thaler, O. Rossier, Y. Cai, O. Chaga, G. Jiang, W. Beaver, H. Dobereiner,
Y. Freund, G. Borisy and M. Sheetz, Cell, 2006, 128, 561–575.

[92] R. Marée, P. Geurts and L. Wehenkel, BMC Cell Biol, 2007, 8 Suppl 1, S2.

[93] R. Liu, Y. Freund and G. Spraggon, Acta Crystallogr D Biol Crystallogr, 2008, 64, 1187–95.

18

