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Solutions – Essential rules

• Technical vs. economical constraints

• Global concept / Early stage

• If not, the risk is additional cost (3 to 5%)

• The margin to solve the problem is decreasing when time is 

running

• Another risk: additional delay

• No exact solution but engineering rules to follow

• Do not neglect any element (cabling, connections to 

ground…)

• Step by step solution to solve the problems.

Specific components
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Basic passive components: R & L

• parasitic effects: parasitic R, L, C

• coil: non linear phenomena (saturation, hysteresis)

• dielectric losses (f)

R =[R L (nH)] Cp (pF) L = [L//Cp//R] Rs

Passive components vs. H.F.
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Passive components vs. H.F.

L calculation

L = 0.002 . l . (ln(4l/d) - 0.75 (mH) for a group of parallel cables

(diameter d, length l in cm)

L = 0.004 . l . (ln(2D/d) – D/l + 0.25) (mH) for 2 parallel

cylindrical conductors (length l cm, diameter d, distance D, D/l

<< 1)

L = 0.002 . ln(4h/d) (mH/cm) for one conductor (diameter d,

height h above ground)

Empirical rule: 5 to 10 nH/cm

M = 0.002 . l . (ln(2l/d) – 1 + D/l) (mH) mutual inductance of 2

parallel straight conductors (length l, distance D, D/l << 1)

M = 0.001 . Ln(1 + (2h/D)2) (mH/cm) mutual inductance of 2

parallel straight conductors (distance D, height h above ground)
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Passive components vs. H.F.

L calculation – PCB track impedance
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• The parasitic capacitance 
can be measured with a 
VNA between power 
connectors (shorted) and 
earth.

• 450 ohm at 1 MHz => 354 
pF equivalent capacitance.

• The curve gives us the 
validity range of the 
capacitive model.

Figure reproduced from [1]
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Passive components vs. H.F.
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Passive components vs. H.F.

Basic passive components: L calculation

L A-B = mr . m0 (hl) / w
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Common mode example: 3 phases motor

• Example of an 

asynchronous 400 V, 3 kW 

motor.

• Common mode coupling 

model is valid up to 50 

kHz.

• Common mode 

capacitance to earth is very 

high: 6 nF.

Figure reproduced from [1]
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Passive components vs. H.F.
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Passive components vs. H.F.

C(f), parasitic R for dielectric losses
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A simple capacitor model is accurate up to the 100 MHz range.

Example: 1.05 µF, rs = 85 mOhm, lt = 43 nH
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Passive components vs. H.F.
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C calculation

C = 0.0885. A/d (pF) for two plate of A (cm2) separated by d

(cm) (in vacuum)

C = p.0.0885 / cosh-1 (D/d) (pF/m) between 2 conductors

(diameter d, distance D) (in vacuum)

0.0885 for e0, multiply par er for other materials.
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C

Class X (f-f & f-N - DM) and Y (f-PE & N-PE - CM)

C (f)

• DC, LF : electrolytic, tantalum

• LF coupling (<1MHz) : MKT, MKC

• HF coupling : ceramic, mica

• HF decoupling : ceramic

Passive components vs. H.F.

Murata
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Passive components vs. H.F.

https://en.wikipedia.org/wiki/Ceramic_capacitor
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Specific components

• conducted

• radiated

performance measurement?

= decreasing of disturbance (U, I, P)

= Insertion Loss I.L.

amplitude of disturbance without component

amplitude of disturbance with component
=
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Conducted

• some components are bidirectionnal (EMI / EMS)

• importance of source and load impedances (see previous 

equation)

• take into acount the type of ports (power / signal)

• CM / DM or both

• …
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Conducted - Power Lines

Filters

- to decrease disturbances from EUT to mains

- to decrease disturbances from mains to EUT

15



Copyright © 2020 Véronique Beauvois, ULg

Mains Filter

Distur-

bing

circuit

Mains Filter
Victim

circuit

Mains
Filter

Victim

circuit

Distur-

Bing

circuit
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Efficient low-pass filter:

C          Zs ou ZL >>

L Zs ou ZL <<
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Conducted - Power Lines



Copyright © 2020 Véronique Beauvois, ULg

 Data sheet

For Z = 50W

Ideal model

(no parasitic

components)
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Conducted - Power Lines
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A correct implementation is mandatory

[EN 50174-2]
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Conducted - Power Lines

(((EMC filter size can represent up to one-third

of the total converter volume.)))
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A correct implementation

is mandatory
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Conducted - Power Lines



Copyright © 2020 Véronique Beauvois, ULg

Solution: Reducing switching frequency

• Reducing the switching 
frequency reduces the 
amplitude of all 
harmonics.

• The only advantage of 
using a higher switching 
frequency is a potential 
size reduction of EMC 
filter at the fundamental 
frequency.
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Conducted - Power Lines
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Filter design for conducted emission

• EMC design often trial and error 
=> we propose

• Modeling, characterization, design 
and optimization  of filters => 
challenge.

• An EMC filter is simple but its 
design requires to:
1. design the filter according to 

“master” operation,

2. take parasitic elements into account 
and,

3. perform a correct implementation to 
reach expected performances.

• The basic cell is shown below:

• ZY is a shortcut for the perturbing 
current, typically a capacitor.

• ZX increase the impedance to 
avoid the perturbing current to go 
outside.
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Filter design steps

1. Collect EMC requirements 

(standards).

2. Collect functional requirements 

(current, voltage, safety limits, 

transient, inrush limits).

3. Evaluate converter negative 

resistance (input) and define 

filter impedance (differential 

filter only):

4. Estimate noise level (PWM cell 

model + simulation or 

measurements)

5. Define required attenuation.

6. Define filter structure and poles.

7. Calculate L, C components based 

on:

• cut-off frequency,

• leakage current in common 

mode filters,

• Z0 impedance in differential 

mode filters.
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Common mode inductance: introduction

• Common mode inductance in 
the earth path:

OK for EMC 

NOK for safety and ground 
continuity.

• Using differential inductor on 
both line:

big inductances required

increase impedance in 
differential mode.

Figures reproduced from [1]
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• to allow changing earthing system (IT, TN…)

• to insure a good galvanic isolation in LF

Isolation transformers

C12 = 50 pF for 100VA

some nF for some kVA

26

Conducted - Power Lines
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C12 < qq pF

Isolation transformers
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Conducted - Power Lines
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A correct implementation is mandatory

[EN 50174-2]

Isolation transformers
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Conducted - Power Lines
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1. Spark gap (“éclateurs”)

2. Varistors

3. Semi-conductor components

Different kinds of components are used for the protection

against overvoltages.

Components for transients
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Conducted - Power Lines
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Ideal protection criteria?

In the presence of a disturbance, the ideal protection

component should limit immediately the voltage to a level

lower than the lower value of the maximum acceptable voltage

for the circuit.

Regarding consumption, it should consume:

- The minimum of energy during permanent regime

- The maximum of energy during disturbance

Protections in series or in parallel: check the defect mode of

the component (open circuit or short circuit).

30

Components for transients

Conducted - Power Lines
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Spark gap

Components for transients
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Main characteristics:

• Very low residual voltage (+)

• Very low parasitic capacitor (+)

• Very high flowing capacity (+)

• Sparking time is related to gas ionisation (-)

Criteria:

• sparking voltage > maximum voltage of circuit (x 1.5)

• maximum sparking current < destruction value

• lifetime

Spark gap

Components for transients
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This is a component with a resistance varying according to the

reverse of applied voltage

Varistors ZnO prepared by sintering (frittage) of different

oxydes (chemical mixture and thermal treatment are very

important).

Criteria:

• Calculation of dissipation energy

• Stability of characteristics (dc, ac and pulse)

Varistors (varistances)

Components for transients
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Advantages:

• moderate cost

• small response time (< 50 ns)

• different values of knee voltage available.

Drawbacks:

• slope I-U is soft

• high parasitic capacitor

(not efficient for quick signals)

• slow destruction by fatigue, carbonisation 

risk and burst

Varistors (varistances)

Components for transients
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• diodes inversely polarised (Zener and avalanche)

• thyristor effect component

• « surge suppressor » group of components, integrated on the

silicium level.

Characteristics:

Easy to use (+), economic (+), very quick (+), nearly perfect

characteristics (+), steady voltage in conduction regime (+),

limited absorption energy capacity (-), end of life as short-

circuit (-).

Semi-conductors

Components for transients
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Gas tube

Varistor

Semi-conductor
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• In EMC efficient components are mandatory but a good implementation is 

also mandatory.

• Those components are efficient regarding transients, but fuses and breakers 

are still mandatory on the input of power circuits.

• To install components as near as possible.

• Energy to ground.

• In case of components in parallel, take care of their non linearity.

• Importance of equipotentiality.

Components for transients
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Conducted - Signal lines

Filters for signals

Individual filtering for signal lines

C = écoulement des courants

de MC à la masse-châssis
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parasitic L

Filter I/O on printed circuit board

Filters for signals
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Conducted - Signal lines
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Connector-filter in Pi [Amphenol®] 

Filters for signals
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Conducted - Signal lines
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Isolation transformers for signals

DM (transmitted) - CM (blocked)

With mid-point: 

• IMC: OK 

• galvanic insulation of ground: KO

With screen for signal bus
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Conducted - Signal lines
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Optical couplers

Internal Cp (between LED

and photosensitive element)

By-pass Cp
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Conducted - Signal lines
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Importance of a correct implementation

[EN 50174-2]

Optical couplers
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Conducted - Signal lines
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Power / signal lines

Baluns – CM inductances
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Power / signal lines

Ferrites (magnetic ceramic MFe2O4)

• Nickel

• Manganese

• Zinc

• Copper

• ...
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Manganese-Zinc (MnZn) :

• high permeability

• low resistivity

• usable frequencies

<10MHz

Nickel-Zinc (NiZn) :

• low permeability

• high resistivity

• usable frequencies >10MHz & <1GHz

Power / signal lines

Ferrites
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Power / signal lines

Ferrites
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Ls Rs

I

Equivalent circuit

with

Power / signal lines

Ferrites
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Ferrite core = localised effect

Distributed effect?
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Power / signal lines



Copyright © 2020 Véronique Beauvois, ULg

Lossy cables

Power / signal lines
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VMVB LiMYCY

Lossy cables

Power / signal lines
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Twisted cables
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Shielded cables

A shielded cable is characterised by its transfer impedance Zt.

Lets consider a coaxial cable over a conductive plane (figure). We connect at

one end between shielding and ground plane a source E0 with an internal

impedance Z0. At the other end, the shielding is connected to the ground plane

with a short-circuit. I0 is the induced current in the shielding. The central

conductor is open at one end and short-circuit at the other end. Vint is the image

of the shielding defects (I0 on the shielding).

Zt is Vint over I0, in W/m.

Zt is a function of physical characteristics

and geometry

- homogeneous tubular shielding

- braided shielding

- helicoidally shielded
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Same lineic resistance 6mW/m (typ.)

Do not confuse metalic armature (mechanical)

and shielding.

Shielded cables
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Multi-pair cable

Double shielding

with aluminium sheet and 

tinned braid 

Multiconductor cable

aluminium shielding

Multi-pair cable

Shielding for each pair

and general shielding

(tinned copper braid)

Multiconductor cable

+ shielding

(tinned copper braid)

Shielded cables
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Shielded cables
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(a)

(b)

Shielded cables
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(c)

Shielded cables
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End of shielding braid? Solutions [Radialex®]

Shielded cables
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