

Components

Véronique Beauvois, Ir. 2020-2021

Specific components

Solutions – Essential rules

- Technical vs. economical constraints
- Global concept / Early stage
- If not, the risk is additional cost (3 to 5%)
- The margin to solve the problem is decreasing when time is running
- Another risk: additional delay
- No exact solution but engineering rules to follow
- Do not neglect any element (cabling, connections to ground...)
- Step by step solution to solve the problems.

Basic passive components: R & L

- parasitic effects: parasitic R, L, C
- coil: non linear phenomena (saturation, hysteresis)
- dielectric losses (f)

L calculation

L=0.002 . 1 . (ln(4l/d) - 0.75 ($\mu H)$ for a group of parallel cables (diameter d, length 1 in cm)

L=0.004 . 1 . (ln(2D/d) - D/l + 0.25) (μH) for 2 parallel cylindrical conductors (length l cm, diameter d, distance D, D/l <<1)

L=0.002 . ln(4h/d) ($\mu H/cm)$ for one conductor (diameter d, height h above ground)

Empirical rule: 5 to 10 nH/cm

$$\begin{split} M &= 0.002 \ .\ l \ . \ (ln(2l/d) - 1 + D/l) \ (\mu H) \ \ mutual \ inductance \ of \ 2 \\ parallel \ straight \ conductors \ (length \ l, \ distance \ D, \ D/l << 1) \\ M &= 0.001 \ . \ Ln(1 + (2h/D)^2) \ (\mu H/cm) \ \ mutual \ inductance \ of \ 2 \\ parallel \ straight \ conductors \ (distance \ D, \ height \ h \ above \ ground) \end{split}$$

L calculation – PCB track impedance w (mm) 100 L = 10 cm ; w = 0,15 mm L (mm) L = 10 cm ; w = 0,3 mm Résistance (e = 35 µm) Impédance en Ω 10 • $R_{m\Omega} = \frac{0.5 \times L}{D}$ Self L ≈ 10 nH / cm 0,1 1 kHz 10 kHz 100 kHz 1 MHz 10MHz 100MHz

Copyright © 2020 Véronique Beauvois, ULg

- The parasitic capacitance can be measured with a VNA between power connectors (shorted) and earth.
- 450 ohm at 1 MHz => 354 pF equivalent capacitance.
- The curve gives us the validity range of the capacitive model.

Common mode example: 3 phases motor

- Example of an asynchronous 400 V, 3 kW motor.
- Common mode coupling model is valid up to 50 kHz.
- Common mode capacitance to earth is very high: 6 nF.

C(f), parasitic R for dielectric losses A simple capacitor model is accurate up to the 100 MHz range.

C calculation

C = 0.0885. A/d (pF) for two plate of A (cm²) separated by d (cm) (in vacuum)

 $C = \pi .0.0885$ / cosh⁻¹ (D/d) (pF/m) between 2 conductors (diameter d, distance D) (in vacuum)

0.0885 for ε_0 , multiply par ε_r for other materials.

C Class X (φ-φ & φ-N - DM) and Y (φ-PE & N-PE - CM) C (f)

- DC, LF : electrolytic, tantalum
- LF coupling (<1MHz) : MKT, MKC
- HF coupling : ceramic, mica
- HF decoupling : ceramic

Capacitor Comparison – Reference

Туре	Advantage	Disadvantage		
Ceramic Class 1	Small Size, Inexpensive, Stability, Range Of Values, Low L, Very Low ESR	Small Values (10 nF)		
Ceramic Class 2	Low L, Range Of Values	Poor Stability, HV Coefficient		
Polypropylene	Inexpensive, Range Of Values, Low ESR, Low Leakage	Damaged > +105° C, Large, High L		
Teflon	Stability, > +125° C, Range Of Values, Low ESR , Low Leakage	Expensive, Large, High L		
Polycarbonate	Stability, Low Cost, Temperature Range, Low ESR, Low Leakage	Large, High L		
Mica	Low Loss At HF (low ESR), Low L, Very Stable, < 1%	Large, Low Values (<10 nF), Expensive		
Aluminum Electrolytic	Large Values, High Currents, High Voltages, Small Size	High Leakage, Polarized, Poor Stability & Accuracy, High L		
Tantalum Electrolytic	Small Size, Large Values, Low ESR, Medium L	High Leakage, Polarized, Expensive, Poor Stability & Accuracy		

© 2008 Linear Technology

https://en.wikipedia.org/wiki/Ceramic_capacitor

Specific components

• conducted

radiated

performance measurement?

- = decreasing of disturbance (U, I, P)
- = Insertion Loss I.L.

amplitude of disturbance **without** component amplitude of disturbance **with** component

Conducted

- some components are bidirectionnal (EMI / EMS)
- importance of source and load impedances (see previous equation)
- take into acount the type of ports (power / signal)
- CM / DM or both

• . . .

Filters

- to decrease disturbances from EUT to mains
- to decrease disturbances from mains to EUT

Efficient low-pass filter:

$$C \longleftrightarrow Z_{s} \text{ ou } Z_{L} >> L \longleftrightarrow Z_{s} \text{ ou } Z_{L} <<$$

Configuration du filtre Zcharge Zsource $\sim mm_{\circ}$ n = 1(20 dB / décade) Faible Faible $\sim mm$ *n* = 3 (60 dB / décade) 0000 n = 2 0 (40 dB / décade) Élevée Faible -m $\overline{\mathfrak{m}}$ *n* = 4 (80 dB / décade) *n* = 1 (20 dB / décade) Élevée Élevée n = 3O (60 dB / décade) ണം n = 2o (40 dB / décade) Élevée Faible ത്ത +mm-o *n* = 4 0 (80 dB / décade)

Ideal model (no parasitic components)

(i) Data sheet For $Z = 50\Omega$

Courant perturbateur de mode différentiel

Le filtrage passif «en mode commun»

En mode différentiel, les 2 selfs s'annulent car elles sont bobinées en sens inverse sur le même noyau.

Conducted - Power Lines A correct implementation is mandatory Mauvais Correct FILTRE FILTRE [EN 50174-2] Mauvais Correct FILTRE FILTRE Mise à la terre Plan de masse (((EMC filter size can represent up to one-third of the total converter volume.)))

Copyright © 2020 Véronique Beauvois, ULg

A correct implementation is mandatory

AMÉLIORATION GRACE À UN MONTAGE CORRECT

Solution: Reducing switching frequency

- Reducing the switching frequency reduces the amplitude of all harmonics.
- The only advantage of using a higher switching frequency is a potential size reduction of EMC filter at the fundamental frequency.

Filter design for conducted emission

- EMC design often trial and error => we propose
- Modeling, characterization, design and optimization of filters => challenge.
- An EMC filter is simple but its design requires to:
 - 1. design the filter according to "master" operation,
 - 2. take parasitic elements into account and,
 - 3. perform a correct implementation to reach expected performances.

• The basic cell is shown below:

- Z_{γ} is a shortcut for the perturbing current, typically a capacitor.
- Z_{χ} increase the impedance to avoid the perturbing current to go outside.

Filter design steps

- 1. Collect EMC requirements (standards).
- 2. Collect functional requirements (current, voltage, safety limits, transient, inrush limits).
- 3. Evaluate converter negative resistance (input) and define filter impedance (differential filter only):

$$R_n = -\frac{|V_{in}|}{|I_{In}|}, Z_0 \ll |R_n|$$

- 4. Estimate noise level (PWM cell model + simulation or measurements)
- 5. Define required attenuation.
- 6. Define filter structure and poles.
- 7. Calculate L, C components based on:
 - cut-off frequency,
 - leakage current in common mode filters,
 - Z₀ impedance in differential mode filters.

Common mode inductance: introduction

- Common mode inductance in the earth path:
 - OK for EMC
 - NOK for safety and ground continuity.
- Using differential inductor on both line:
 - big inductances required
 - increase impedance in differential mode.

Isolation transformers

- to allow changing earthing system (IT, TN...)
- to insure a good galvanic isolation in LF

Isolation transformers

Z_{MC}

Isolation transformers

A correct implementation is mandatory

Components for transients

Different kinds of components are used for the protection against overvoltages.

- 1. Spark gap ("éclateurs")
- 2. Varistors
- 3. Semi-conductor components

Components for transients

Ideal protection criteria?

In the presence of a disturbance, the ideal protection component should limit immediately the voltage to a level lower than the lower value of the maximum acceptable voltage for the circuit.

Regarding consumption, it should consume:

- The minimum of energy during permanent regime
- The maximum of energy during disturbance

Protections in series or in parallel: check the defect mode of the component (open circuit or short circuit).

Components for transients Spark gap

Main characteristics:

- Very low residual voltage (+)
- Very low parasitic capacitor (+)
- Very high flowing capacity (+)
- Sparking time is related to gas ionisation (-)

Criteria:

- sparking voltage > maximum voltage of circuit (x 1.5)
- maximum sparking current < destruction value
- lifetime

#

Components for transients

Varistors (varistances)

This is a component with a resistance varying according to the reverse of applied voltage $J = KV^{\alpha}$

Varistors ZnO prepared by sintering (*frittage*) of different oxydes (chemical mixture and thermal treatment are very important).

Criteria:

- Calculation of dissipation energy
- Stability of characteristics (dc, ac and pulse)

Varistors (varistances)

Advantages:

- moderate cost
- small response time (< 50 ns)
- different values of knee voltage available. Drawbacks:
- slope I-U is soft
- high parasitic capacitor
- (not efficient for quick signals)
- slow destruction by fatigue, carbonisation risk and burst

Components for transients

Semi-conductors

- diodes inversely polarised (Zener and avalanche)
- thyristor effect component
- « surge suppressor » group of components, integrated on the silicium level.

Characteristics:

Easy to use (+), economic (+), very quick (+), nearly perfect characteristics (+), steady voltage in conduction regime (+), limited absorption energy capacity (-), end of life as short-circuit (-).

Dispositif	Tension de service du circuit protégé	Temps de réponse	Possibilité d'absorption d'énergie	Capacité	Courant de fuite au repos	Gamme de température d'utilisation	
(V)		(ns) (J)		(pF)	(A)	(°C)	
Diode <i>en direct</i> (§ 2.1)	0,5 à 10	très rapide < 1	faible 10 ⁻² à 1	faible 10 à 100	important 10 ⁻⁶ à 10 ⁻³	– 40 à + 85	
Diodes Zener et à avalanche (§ 2.2.2)	5 à 200	très rapide < 0,1	faible 10 ⁻² à 1	élevée 10 ³ à 10 ⁴	important 10 ⁻⁶ à 10 ⁻³	– 65 à + 125	
Dispositif à effet thyristor (§ 2.3)	75 à 300	10 à 50 (fonction de d <i>v</i> /d <i>t</i>)	bonne quelques joules	moyenne 10 à 300	faible 10 ⁻⁵	limitée – 40 à + 85	
Varistances (ZnO) (§ 3.3)	5,5 à 5 000	≤ 1	très bonne 10 à 10 ⁴	moyenne 10 ² à 5·10 ³	faible 10 ⁻⁷ à 10 ⁻⁶	– 55 à + 125 (modèles standards) – 55 à + 85 (modèles de forte puissance) (limitation à haute température due au courant de fuite)	
Éclateurs à gaz (§ 5)	100 à 20 000	< 1	très bonne 10 ² à 10 ⁴	très faible 1 à 10	très faible 10 ⁻¹² à 10 ⁻⁹	– 55 à + 125	
Copyright © 2020 Véronique Beauvois, ULg 36							

Onde B/20 µs

Components for transients

• In EMC efficient components are mandatory but a good implementation is also mandatory.

- Those components are efficient regarding transients, but fuses and breakers are still mandatory on the input of power circuits.
- To install components as near as possible.
- Energy to ground.
- In case of components in parallel, take care of their non linearity.
- Importance of **equipotentiality**.

Conducted - Signal lines Filters for signals

Connector-filter in Pi [Amphenol®]

Copyright © 2020 Véronique Beauvois, ULg

GND

Boîtier D.I.L.

Conducted - Signal lines

Isolation transformers for signals DM (transmitted) - CM (blocked)

With mid-point:

- I_{MC}: OK
- galvanic insulation of ground: KO

Copyright © 2020 Véronique Beauvois, ULg

Conducted - Signal lines Optical couplers

Importance of a correct implementation

Power / signal lines Baluns – CM inductances

Ferrites

Nickel-Zinc (NiZn) :

- low permeability
- high resistivity
- usable frequencies >10MHz & <1GHz

Manganese-Zinc (MnZn) :

- high permeability
- low resistivity
- usable frequencies <10MHz

Туре	Material	μ	B _{sat} (mT)	(°C)	ρ (Ωm)	
Manganese	3E8	18000	350	100	0.1	
Zinc	3E7	15000	400	130	0.1	
	3E6	12000	400	130	0.1	
	3E5	10000	400	120	0.5	
	3E26	7000	450	155	0.5	
	3E27	6000	400	150	0.5	
	3C11	4300	400	125	1	
	3S1	4000	400	125	1	
	3C90	2300	450	220	5	
	3\$4	1700	350	110	10 ³	
	3B1	900	400	150	0.2	
	3\$3	250	350	200	10 ⁴	
Nickel	4A15	1200	350	125	10 ⁵	
Zinc	4S2	700	350	125	10 ⁵	
	4B1	250	350	250	10 ⁵	
	4C65	125	350	350	10 ⁵	
Iron Powder	2P90	90	1600	140 *	low	

Lossy cables

MOTOR DRIVE CABLE LiMY(St)CY-JZ 4 x 2,5 Typical attenuation versus frequency

Lossy cables

Attenuation [dB/m]

LP/CABLE LiMYCY Typical attenuation of both common and differential mode disturbances versus frequency – all types

VMVB Installation Cable Common Mode Attenuation in dB/m

Copyright © 2020 Véronique Beauvois, ULg

Copyright © 2020 Véronique Beauvois, ULg

A shielded cable is characterised by its transfer impedance Zt.

Lets consider a coaxial cable over a conductive plane (figure). We connect at one end between shielding and ground plane a source E_0 with an internal impedance Z_0 . At the other end, the shielding is connected to the ground plane with a short-circuit. I_0 is the induced current in the shielding. The central conductor is open at one end and short-circuit at the other end. V_{int} is the image of the shielding defects (I_0 on the shielding).

Zt is V_{int} over I_0 , in Ω/m .

Zt is a function of physical characteristics and geometry

- homogeneous tubular shielding
- braided shielding
- helicoidally shielded

Copyright © 2020 Véronique Beauvois, ULg

Multiconductor cable aluminium shielding

Multi-pair cable Double shielding with aluminium sheet and tinned braid

Multi-pair cable Shielding for each pair and general shielding (tinned copper braid)

Multiconductor cable + shielding (tinned copper braid)

End of shielding braid? Solutions [Radialex®]

