

Véronique Beauvois, Ir. 2020-2021

General definition:

-Earth's ground considered for electrical installations as a reference of 0V

-Variable electrical conductivity – naturally electrical currents are flowing.

Key-roles:

- Lightning current flowing
- Leakage current flowing
- Protection of persons

(IEC 364 – Electrical Installations of Buildings

& IEC 50164 – Lightning protection components)

Earthing/grounding and EMC:

For a lot of EMC phenomena (transient disturbances, HF currents...), earthing conductors are not efficient as they are very long and the used topology means a high impedance versus HF. The only solution is **meshing** to get **equipotentiality**. Mesh size: $\pm \lambda/10$.

All electrical elements, components, should be connected as shielding, screens, CM connections of filters (remember some remarks on good implementation in *Components*).

Loop between grounding =

7////

surface beween 2 grounding cables, resulting of a systematic meshing of ground to insure equipotentiality. Solution?

To reduce loop size with a small mesh size.

Grounding loop: surface loop between a power/signal cable and a corresponding grounding cable.

Solution? To reduce loop size with a very short distance between power/signal cable and corresponding grounding cable (all along the cables).

Boucles de masse de grande surface

Forte impédance commune ==> ddp entre les équipements

Building:

- ground meshing by level
- connect all metallic structures of building to the ground (pipes, ducts, duckboards...)
- in sensitive zone (computers, data, measurements), consider a small meshed system

Equipment:

- Connect all metallic structures together **Rack:**
- a metal plate in the bottom of the rack
- insulating coating and painting
- good contact between components and metal plate (greenyellow cabling is not sufficient for EMC).

Shielding

Véronique Beauvois, Ir. 2020-2021

Copyright © 2020 Véronique Beauvois, ULg

Shielding

A variable electric field and a infinite conducting wall, will induce currents in the wall. These currents will generate a reflected E-field in opposite direction.

This is necessary to comply with limit condition E=0 on the wall. The amplitude of the reflected wave determines the **loss by reflection**. As the wall has a finite conductivity, a part of the current penetrates the wall and a part of this current will be present on the other side of the wall, emitting its own wave.

 $E_{incident}$ over $E_{transmitted}$ defines the shielding efficiency.

The thickness of the wall influences the attenuation of the current. Loss by absorption depends of the number of skin depths in the wall thickness.

Reasons of Shielding

- Reducing emission:
 - see for related standards
- Improving immunity:
 - radio-frequency magnetic field
 - 50 Hz magnetic field
 - impulsive magnetic field
 - damped oscillating magnetic field
 - see for related standards
- Used locally to protect one sensitive part of a device:
 - internal local problem
 - no corresponding standard

- Important parameters:
 - material,
 - thickness,
 - characteristics of the source,
 - distance from the source,
 - presence of openings
 - presence of traversing conductors

Materials	Relative conductivity in relation to copper	Relative permeability (100 Hz)
	G	μr
Silver	1.05	1
Annealing copper	1.00	1
Gold	0.70	1
Aluminum	0.61	1
Brass	0.26	1
Nickel	0.20	1
Bronze	0.18	1
Tin	0.15	1
Steel, 3% Si	0.10	1,000
Lead	0.08	1
Monel	0.04	1
Stainless steel	0.02	500
78 Permalloy	0.11	15,000
Mu-metal	0.03	13,000

Materials

μ	=	$4\pi \times 10^{-7}$	$[H \cdot m^{-1}]$
ε_0	=	$1/(36\pi)\times 10^{-9}$	$[F \cdot m^{-1}]$
С	=	3×10^8	$[\mathbf{m} \cdot \mathbf{s}^{-1}]$
σ_{copper}	=	5.8×10^7	$[{\rm S}\cdot {\rm m}^{-1}]$

$$\mu = \mu_0 \times \mu_r$$

$$\sigma = G \times \sigma_{copper}$$

Effect of frequency on materials

Steel, 3% Si									
-	kHz			MHz	62			GHz	
rrequency	≤10	1	3	10	30	100	1	1.5	10
μr	1,000	700	550	400	300	200	50	10	1

Mu-Metal and steel have very high permeabilities but they quickly decrease with frequency.

Material wave impedance and skin depth

Wave impedance in the metal

$$Z_m = \frac{|E_t|}{|H_t|}$$
$$Z_m \sqrt{\frac{j\omega\mu}{\sigma + j\omega\epsilon}}$$

$$\sigma \gg \omega \epsilon \Rightarrow |Z_m| \approx \sqrt{\frac{\omega \mu}{\sigma}}$$

 $\frac{2}{\omega\mu\sigma}$ $\delta = 1$ Skin depth Skin depth at 10 Hz in Aluminium A/mm² 0.25 0.2 0.15 0.1 0.05 -0.3 -0.2 -0.10.1 0.2 0.3 0

Incident wave impedance

Wave	Wave impedance		
Far field	$Z_s = 120\pi$	$k.r \gg 1$	
Near field, E source	$Z_s = \frac{1}{k.r} \times 120\pi$	$k.r \ll 1$	
Near field, H source	$Z_s = k.r \times 120\pi$	$k.r \ll 1$	

dv/dt area => E source di/dt loop => H source

Expression of attenuation

Attenuation is mainly due to:

- Reflection at x = 0
- Attenuation between 0 and e
- Reflection at x = e

Attenuation: reflection

At x = 0

$$\rho_{AM} = \frac{Z_m - Z_s}{Z_m + Z_s}$$
Source

$$E_m^0 = E_i^0 + E_r^0 = (1 + \rho_{AM})E_i^0 = \frac{2Z_m}{Z_m + Z_s}E_i^0$$

$$H_m^0 = H_i^0 - H_r^0 = (1 - \rho_{AM})H_i^0 = \frac{2Z_s}{Z_m + Z_s}H_i^0$$
Source

$$\int_{H_r}^{H_r} E_r^0 - \int_{H_r}^{L_r} E_r$$

Attenuation: reflection

At x = 0:

$$\rho_{AM} = \frac{Z_m - Z_s}{Z_m + Z_s}$$

$$E_m^0 = E_i^0 + E_r^0 = (1 + \rho_{AM})E_i^0 = \frac{2Z_m}{Z_m + Z_s}E_i^0$$

$$H_m^0 = H_i^0 - H_r^0 = (1 - \rho_{AM})H_i^0 = \frac{2Z_s}{Z_m + Z_s}H_i^0$$

$$\rho_{MA} = \frac{Z_s - Z_m}{Z_m + Z_s}$$

$$E_i^e = E_m^e + E_r^e = (1 + \rho_{MA})E_m^e = \frac{2Z_s}{Z_m + Z_s}E_m^e$$

$$H_i^e = H_m^e - H_r^e = (1 - \rho_{MA})H_m^e = \frac{2Z_m}{Z_m + Z_s}H_m^e$$

Copyright © 2020 Véronique Beauvois, ULg

At x = 0:

$$\rho_{AM} = \frac{Z_m - Z_s}{Z_m + Z_s}$$

$$E_m^0 = E_i^0 + E_r^0 = (1 + \rho_{AM})E_i^0 = \frac{2Z_m}{Z_m + Z_s}E_i^0$$

$$H_m^0 = H_i^0 - H_r^0 = (1 - \rho_{AM})H_i^0 = \frac{2Z_s}{Z_m + Z_s}H_i^0$$

$$\rho_{MA} = \frac{Z_s - Z_m}{Z_m + Z_s}$$

$$E_r^e = E_m^e + E_r^e = (1 + \rho_{MA})E_m^e = \frac{2Z_s}{Z_m + Z_s}E_m^e$$

$$H_r^e = H_m^e - H_r^e = (1 - \rho_{MA})H_m^e = \frac{2Z_m}{Z_m + Z_s}H_m^e$$
Attenuation due to reflections:

$$R = \frac{4Z_m Z_s}{(Z_m + Z_s)^2}$$

$$R_{dB} = -20\log(\frac{4Z_m Z_s}{(Z_m + Z_s)^2})$$

Attenuation: reflection

$$|Z_m| \approx \sqrt{rac{\omega \mu}{\sigma}}$$

$$\mu = \mu_0 \times \mu_r$$
$$\sigma = G \times \sigma_{copper}$$

$$R_{dB} = -20 \log(\frac{4Z_m Z_s}{(Z_m + Z_s)^2})$$
$$Z_m \ll Z_s \Rightarrow R_{dB} = -20 \log(\frac{4Z_m}{Z_s})$$

Wave	Wave impedance	
Far field	$Z_s = 120\pi$	$k.r \gg 1$
Near field, E source	$Z_s = \frac{1}{k.r} \times 120\pi$	$k.r \ll 1$
Near field, H source	$Z_s = k.r \times 120\pi$	$k.r \ll 1$

$$k = \frac{2\pi}{\lambda}$$

$$c = \lambda f$$

Far field :
$$R_{dB} \approx 168.1 - 10 \log(\frac{\mu_r f}{G})$$

Near field E: $R_{dB} \approx 321.7 - 10 \log(\frac{\mu_r f^3 r^2}{G})$
Near field H: $R_{dB} \approx 14.6 - 10 \log(\frac{\mu_r}{fr^2 G})$

Use case: far field attenuation for aluminium and steel

Far field :
$$R_{dB} \approx 168.1 - 10 \log(\frac{\mu_r f}{G})$$

 $A_{dB} = 131.5 \cdot \sqrt{\mu_r f G} \cdot e$

	Skin depth (10 kHz)	Wave impedance Z_m (10 kHz)	R _{dB}
Aluminum	$850\times 10^{-6}~{\rm m}$	$47 \times 10^{-6} \Omega$	126 dB
Steel	$66\times 10^{-6}~{\rm m}$	$3.7 \times 10^{-3} \Omega$	$88 \mathrm{dB}$

Typical application:

immunity to external radiations

Use case: near field attenuation for aluminium and steel

Near field E: $R_{dB} \approx 321.7 - 10 \log(\frac{\mu_r f^3 r^2}{G})$

 $A_{dB} = 131.5 \cdot \sqrt{\mu_r fG} \cdot e$

Near field	Electrical
Wave impedance Z_s	$18 imes 10^6 \ \Omega$
R _{dB} Steel (10 kHz)	182 dB
R _{dB} Aluminum (10 kHz)	220 dB

Typical application

reduce emission of E field sources = traces with high dv/dt

Use case: near field attenuation for aluminium and steel

$$R_{dB} = -20 \log(\frac{4Z_m Z_s}{(Z_m + Z_s)^2})$$
$$A_{dB} = 131.5 \cdot \sqrt{\mu_r f G} \cdot e$$

Near field	Electrical	Magnetic
Wave impedance Z_s	$18\times 10^6~\Omega$	$7.9\times10^{-3}~\Omega$
R _{dB} Steel (10 kHz)	182 dB	$1.2~\mathrm{dB}$
R _{dB} Aluminum (10 kHz)	220 dB	32 dB

 $Z_m = 3.69m\Omega$ (Steel, 10 kHz)

 $Z_m = 47 \mu \Omega$ (Alu, 10 kHz)

EGE

Attenuation

- In very low frequencies, magnetic near field attenuation is very low:
 - Absorption does not operate (δ is too large).
 - Reflection does not operate (no mismatch).
 - Problem for loops and air gaps generated field.
- Solution:
 - Increase Z_m and mismatch with high permeability material (Permalloy or Mu-metal), works at low frequency.
 - Use closed loop conductive sheet to create an "opposite". This works differently on the normal H component (i.e. not the transverse).
- Openings of length D can $20 \cdot D < \lambda$ ing effectiveness, try to keep:

Attenuation: shielding with cables?

- Expected field (dBµV/m) can be estimated using conducted measurements results, assuming that:
 - the cable behaves like an isotropic radiator,
 - the impedance seen by the wire is 50 Ω .

 $U_{dB\mu V} = E_{dB\mu V/m} + 22.22$, at 10 meters

- This rough estimation helps to evalutate radiated emission due to cable by using conducted measurements above 30 MHz, keeping in mind the LISN effective bandwith.
- Can be effective up to about 100, 200 MHz.

Design rules For electrical circuits

Véronique Beauvois, Ir. 2020-2021

Power supplies management

Equipement Equipement perturbateur sensible

PREFERABLE

Equipement perturbateur Equipement sensible

Design rules

Design rules

'puissance"

Classe* 1 "analogique

- Equipotentiality of grounding (LF & HF) is ensured
- Do not use sensitive signals and disturbing signals in the same cable

- Reduce the parallel length of sensitive signals cables and disturbing signals cable
- Limit cable lengths
- Shielded cables permits those signals cables in the same cable tray.

- Keep distance between sensitive cables and disturbing cables (costless and efficient solution) – this distance increases with the length of parallel cables.

- Signal conductor near grounding conductor

- Any unused conductor should be connected to ground at both ends

- Shielding connections?

- at both ends?
 - very efficient against external HF disturbances
 - no voltage between cable and ground

- Shielding connections?
 - at 1 end?
 - not efficient against external HF disturbances
 - to delete low frequency signals in shielding called « ronflette »

- Shielding connections?
 - not connected?
 - ▲ FORBIDDEN if accessible to touch (voltage between shielding and ground)
 - not efficient against external HF disturbances

Copyright © 2020 Véronique Beauvois, ULg

Design rules For electronic circuits and PCBs (part I)

Véronique Beauvois, Ir. 2020-2021

Why?

-Frequency is increasing (wireless, Bluetooth)
-Speed is increasing (clock, Mbit/sec)
-t_r and t_f are decreasing
-Components density is increasing (SMD)
-Tracks density /cm² is increasing

Broadband spectrum interferences PCB design (PCB design software!)

Protections classification:

- Primary: circuit design (decoupling, balanced configuration, speed and bandwidth limitations) PCB design and grounding,
- Secondary: external circuit interfaces, cabling (filtering), connectors,
- Tertiary: full shielding (cost)

Divided circuit

Divided circuit

2nd step: Grounding

- do not confuse ground and earth (PE)
- grounding role: to give a reference for all connections
- low impedance track to send the current to the source
- low transfer impedance solutions

a) To suppress common grounding Z (OK up to some MHz, then Cp et U_{CM} due to length of links).

b) Similar circuits linked together, noisy circuits near grounding point.

c) A lot of short connections $(<0.1\lambda)$ for digital circuits.

- 1 PCB side/ 1 side versus 2 sides
- Multi-layer PCB (ground plane)
- Reduce impedance
- Grounding track // and near signal track
- Grounding: grid or ground plane
- SMD (to reduce loop surface, length, PCB size)

Circuit design and grounding Grid or meshed grounding

The number of return path for current to ground should be important to reduce L. Tracks with width >> The comb configuration is not a good solution.

qu'elle soit au moins pontée par une piste courte

- Do not interrupt ground plane
- If this interruption is mandatory, add a bridge (as short as possible and near the critical track)
- No slot in the ground plane (multi-layer is ideal).

Design rules For electronic circuits and PCBs (part II)

Véronique Beauvois, Ir. 2020-2021

Radiated emission of circuits Differential mode Common mode R.E. R.E. efficacité du rayonnement dB dB +40 dB/décade efficacité du rayonnement +20 dB/décade -20 dB/décade enveloppe résonnance du spectre de boucle enveloppe d'émission -40 dB/décade du spectre d'émission émissions émissions globales globales F1 1/\mt. log F F1 1/nt, log F Differential mode radiation Common mode radiation a) b) 6.4 Table 6.1 Table 6.2

Loop = small if dimensions $< \lambda/4$, means 1m @ 75MHz IC loops could be considered as small up to some 100 MHz Maximum E-field of this loop @ 10 m measurement distance: E (V/m) = 263 x 10⁻¹² x f(MHz)² x A(cm²) x I_S (mA) ---> +40dB/dec

D.M. ----> R.E. of PCB

According to: E (V/m) = 263 x 10^{-12} x f(MHz)² x A(cm²) x I_S(mA) ---> 40 dB/dec

Question: this PCB needs or not an additional shielding? A=10 cm²; Is=20 mA and f=50 MHz E=42 dB μ V/m means 12dB over the limit in class B So if current I and frequency f are fixed, A could not be reduced, a shielding is necessary.

	Familie logique	4/4	(4)	Surface de boucie en cm ² ; fréquence d'horloge			
		ns	mA	4 MHz	10 MHz	30 MHz	100 MHz
	4000B CMOS à 5 V	40	6	1000	400	-	-
<u>ynamic commutation</u>	74HC	6	20	45	18	6	
o charge or discharge	74LS	6	50	18	7,2	2,4	
he capacitor	74ALS	3,5	50	10	4	1,4	0,4
-	74AC	3	80	5,5	2,2	0,75	0,25
	74F	3	80	5,5	2,2	0,75	0,25
	74AS	1,4	120	2	0,8	0,3	0,15
	Surface de boucle pour 1000 MHz à 10 m	r 30 dBµ'	V/m 30 i	MHz - 230 MH	Hz, 37 dBµV/r	n 230 MHz -	
Limit EN 55022 cl.B	Utilisation : prenons l'ex Le cas le plus défavora L'analyse de Fourier de $(t + t_r) /T = 0.5$; T = 33, le courant du cinquième De l'équation (4.6), pour	xemple d ble est à la sourc 3 ns ; t _r = e harmon r un chai	le la fam 150 MH e de cou = 3,5 ns hique. mp E de t de 1 30	ile 74ALS avo z (5 ^{ème} harmo rant, en utilis et I =50 mA, o 30 dBµV/m e	ec F _{clk} = 30 M onique) ant la section donne 3,83 m/ et l ₍₅₎ comme o	Hz. C.7 avec A pour I ₍₅₎ , ci-dessus à 19	50 MHz, Ia

C.M. ----> R.E. of PCB

E (V/m) = 1,26 x 10⁻⁴ x f(MHz) x L(m) x I_{MC} (mA) if the cable is represented by a short monopole (L $<\lambda/4$) @ 10m of the ground e.g. 1m of cabling, E = 42dB μ V/m, then Is = 20 μ A (/1000#I_{MD})

CM voltage to cable, ΔI on ground path Differential noise voltage $V_N = \Delta I.j\omega.L$ (between reference ground and cable connection) $Z \approx 150\Omega$ (constant with f)

Pamille logique	t,/t, NB	ΔJ mA	Longueur de plate en cm ; fréquence d'horloge				
			4 MHz	10 MHz	SO MHZ	100 MHz	
4000B CMOS à 5 V	40	6	180	75	-	-	
74HC	6	20	8,5	3,2	1		
74LS	6	50	3,25	1,3	0,45		
74ALS	3,5	50	1,9	0,75	0,25	0,08	
74AC	3	80	1	0,4	0,14	0,05	
74F	3	80	1	0,4	0,14	0,05	
74AS	1,4	120	0,4	0,15	0,05	-	
1000 MHz à 10 m ; longueur du câble = 1 (2,8 nH/cm). Utilisation : prenons pa défavorable est à 90 M	m ; agen ar exemp Hz (9èm	icement le la fam le harmo	pistes paralle ille 74HC ave nique).	èles de 0,5 m C F _{cik} = 10 MH	m distantes de Iz. Le cas le pl	0,5 mm us	
À partir de l'équation (4 ou doit être égal à 2.8	4.7), pou μΑ. avec l'att	r une int	ensité de cha de couplage	mp E de 30 di de 20 dB, V _N	ВµV/m et 1 m o = 4,18 mV.	le câble,	

Limit 55022

4

R.E. - Comparaison CM / DM

For the same signal in DM or CM trapezoidal @12MHz, with t_r and t_f 3.5ns CM Ipk 0.1mA in cable, with L 2m DM 20mA in a loop of 5cm² E (V/m) = 263 x 10⁻¹² x f(MHz)² x A(cm²) x I_s (mA) loop-IC E (V/m) = 1,26 x 10⁻⁴ x f(MHz) x L(m) x I_{MC} (mA) antenna-cable

R.E. > main source processor clock

Commercial standards: no difference between N.B. and B.B.

- To reduce N.B. with buffer on lines and take care of ground plane.
- To reduce B.B. sources on data lines, video...