grad fo = Vfo = (82,0, 0:)fo

Maxwell's equations cwl f1 =V x fi = (02, 0y,0:) x fi
divfo=V- fo = (axvayvaz) - fo

curlh — 0yd = 3 b= B(e,h) = uh (+b,)
curle + 0;b =0 d="D(e,h) =ce (+ds.)
divh =0 j=J(eh)=o0e (+js.)
divd = q
v O-form = scalar, continuous field
grad l
h,e 1-form = vector field of continuous tangential component
curl
b,j,d 2-form = vector field of continuous normal component

div l
q 3-form = scalar field m



Maxwell's house —Tonti diagram

O-form ¥ H%J<Q) L2(Q) 3-form

I'=T.Uly
‘ grad, dive 1

1-form h,t H(curl: Q) H H(div:Q) b 2-form boundary conditions

accounted for in
‘ curly, curl, '

subspaces
. . €, 0O -
2-form d,j Hp(div;Q) <— H (curl;()) e, a 1-form boundary split in two

‘ divy grad, 1 partS

i, 0-form
S-form ¢ LX) HA(S) v
square integrable H%Q) ={ue L?*(Q) : gradu € L*(Q),ulr, =0}
scalar & vector fields: H? (curl; Q) = {u € L*(Q) : curlu € L*(Q),n X u|r, =0}

u=-eorh

field + field with (
H? (div; Q) = {u € L*( Q

differential operator ( ) ) : divu € L*(Q),n - ulp, = 0} m



// P 2,&05

solenoid L
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Magnetostatics

curlh = 73,
divb =0
b= puh(+b,)
h =vb(+h.)

possible sources:

J . imposed current density in inductor

studied domain

b, remanent induction if magnets

magnetic vector potential formulation h, coercive magnetic field if magnets

curlvcurla =3,, b=curla

=0 in€, curlhy;=73s, h=—gradyp




' formulati
Magnetostatics o formulation

a magnetic vector potential
curl h = 35, divb =0

1

: reluctivity v = —

nodal BF 0 =divb y 0
|

grad;, |

v uh =b
edge BF h, b =curla

Ampere’s law verified in
a weak sense

curly, curl,

facet BF ] J=0¢

- a,e edge BF

A
divy, | grad,

volume BF | + Gauge in 2

curl vcurla = 3,

Magnetic Gauss law
verified in a strong se




Magnetostatics
curl h = 4, divb =0

nodal BF
I
grad;, |

v uh =b

—gradp = h, 1 <

Curlh

] =o0e

curlh = 3

divy,

0
Ampere’s law

verified in a
stronqg sense

0 volume BF

;€ edge BF

| grad,

|
nodal BF

¢ formulation
h = —grad ¢ magnetic field
© magnetic scalar potential

curl hy, = j,

Magnetic Gauss law
verified in a weak sense

div (,u(hs — grad go)) =0 in €



Spatial discretization — magnetostatics

We want to find the magnetic vector potential a(x) in (2

curl (vcurla) = j,

with given
js(x) imposed electric current density
v(x) reluctivity > 0 in part of the domain

weighted residual approach

We integrate the equation weighted by (vectorial) weighting or test functions
w; () over the whole domain €:

find a such that

/ curl (vcurla) - w; dS) = / 7s - w; d§2
Q Q

holds Vw; m



Spatial discretization — magnetostatics (l1)

/ curl (veurla) - w; dS) = / Js - w; dS)
Q Q

V= w;

l v-curlu —u - curlv = div (u X v) integration by parts

u =vcurla Green formula

/ (div (vcurlaxw;) + chrla,-curlwi) d() = / 71s-w; dS)
Q Q

u =vcurla X w; l / divu dQ = j{ udl', dI' = ndl divergence theorem
Q r

find a such that Weak formulation

/(nxucurla-wi) dF—i—/ chrla-curlwidQ:/js-widQ
T Q Q

holds Vw;(x) only the first derivative of the MVP is now required w



From 3D to 2D models

a=(0,0,a,(x))
b=curla = (9,a,, —0,a,,0)

h =vcurla = v (9,a,, —0,a,,0)

divb = 0,0, 4+ 0yb, = Qf,yaz — (‘ﬁyaz =0

curl (vcurla) = j,

— 0, (VOgay) — 0y (vOya,) = js.» w




Open boundary problems —
Low frequency

Truncation of outer boundaries
Asymptotic boundary conditions
Kelvin transformation

Shell transformation
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Truncation of outer boundaries

Pick an arbitrary boundary far enough from the region of interest and impose a
homogeneous Dirichlet or Neumann boundary condition

Rule of thumb:

distance from centre of problem to outer boundary == 5 times

distance from centre to outside of region of interest
Used by most FE electromagnetic software, as it requires no additional effort to
implement
To get an accurate solution a large volume of air around the area of interest must be
modelled

This large area can be modelled with a relatively coarse mesh to limit the extra
computational time

S .o






Asymptotic boundary conditions (BCs) 13
mixed BC to impose on a circular outer boundary

solution inside: finite elements

solution outside: asymptotic solution of the problem at hand on a circular shell, e.g. for a
magnetic vector potential formulation

a(r,0) = Z a—:;’ cos(mb + auy,)

T
m=1

magnitude of harmonic decreases quickly with distance, only the leading harmonic is
kept for describing the open field solution

a(r,0) ~ fm cos(mb + ayy,)
,rm
5 H aa a/m
substituting — —m

o = - cos(mb + a,,,)  Into the complete solution, we have
r rm

o M =0 mixed BC

8r+’r m




Kelvin transformation

e Strengths
o effects of the exterior region model exactly
o sparse matrix representation of the problem kept
o ho special features in FE solver required

* exterior domain modelled by forcing a link between two circular regions:

o a circular region with devices of interest and surrounding air, where we actually want
to compute the field (‘near field/internal’)

o an additional circular region representing the ‘far field/external’

e periodic boundary constraints between the two circles to enforce the continuity of the
local quantity of interest (e.g MVP)

* the additional circular region models exactly the infinity space solution, but on a bounded
domain




Kelvin transformation (cond’d)

* ‘far field/exterior’ region with homogeneous material

govern by polar coordinates
10 ([ da 1 0%a
Aa=0 mm— Far(rar>+r_23752_0

* ‘near field/interior’ region is a circle of radius r,, ‘far field’
Is everything outside

* Map unbounded region onto a bounded region by
defining in the mapped space

10 da 1 0%a e
E@(R@)+——_o R=-2
the field at any point can always be recovered by applying an inverse mapping

Axisymmetry, Dirichlet or Neumann BCs simulated by modifying material parameters
(e.g. permeabilty)




(x'=xv,zy WV

{y) =2y, 2}
Ccl =765
Map unbounded region into a shell X7 — C7 = (y* — (jj)(;; F(Rint, Rewt, r(y7))
Rint(Remt - Rznt) b dF F Rext — 2r
FRz'naRe:Jca — —2—9—, 0 =
(Bint ) ( r(Rezt — T) ) dr T P(Rezt — 1)

This transformation applies to shells that are:

cylindrical r(y") = /(z — C*)2 + (y — OV)2
Parallelepipedic r(y) = (y* — CF)

(or trapezoidal)

spherical r(y) = V(@ — ")+ (y = C¥)2 + (. — C7)?
mappin A= | —onva,r 1-0nvar  —onvo,r | i LT I
PPng o anaxr — anﬁyr 1 — anazr (A L
N

determinant Asnett(Rint, Rewt,7) = F2(1 — 6) Unidirectional
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Spherical shell

Parallelepipedic or trapezoidal shell




Discrete mathematical structure
Whitney elements
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Discrete mathematical structure

Replace the continuous spaces (infinite dimension) by discrete spaces (finite dimension)
H}(Q) L?() WoG) =<——= 1" (G)

grad,, l Tdive grad div

local function spaces on W(G) <= W2(Q)

H, (curl; Q) <—— H (div; Q) geometrical element G

curlhl Tcurle L — ) curl curl

H ,(div; Q) <— H (crl: Q) wo(G) ¢ HY(G) W2(G) <—= 119
dlvhl Tgrade Wl(g) C H(CUI’I; g) divl Tgrad
L2(2) mo  WOCHWEG g o

W3(G) C L*(9)

L ® VIR
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The Whithey complex

WP(G) is the finite dimensional subspace spanned by the p-Whitney elements
on G. They satisfy the property of conformity:

. WG £S@) $°9) | 0
0
grad gradl
Wl g V 2 ’CSl(g) ; Sl(g) 1

(

0
curl curll
(

W3(G

divl

W3 (G

)
)
)
)
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Finite elements

* set of linearly independent basis/shape functions and weighting functions (also
called test and trial functions)

* commonly piecewise polynomial

* defined at a structured or unstructured grid/mesh
* compact support

e scalar or vectorial functions

4
u

KU LEUVEN




Typical FE elements in 2D and 3D 25
First order

2D Elements
® ®
@ @
Triangular Rectangular Prismatic
3D Elements
e
o
Tetrahedral Pyramidal Hexahedral

S oo


https://www.comsol.com/multiphysics/finite-element-method

Finite element (G, X, S): 27
v/ geometrical element G
v X = set of N Dofs

v’ S function of finite dimension N
Let us consider a mesh of () formed by geometrical elements G
with nodes N, edges &, faces F, volumes V,

The Whitney elements

0-form 1-form 2-form 3-form
nodal BF edge BF facet BF volume BF
'ﬁjﬂ
{m n} {lmn} {klmn}
\%

The Whitney elements of order p are expressed as

Whg,... m, = D! Z(—l)mgnmgrad Sno X+ -Xgrad ¢, , xgradg,, . x---xgradg,

7=0
with gnixi baricentric Weiiht of x with resiect to node n in ¢ w
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The Whitney elements of order O
Nodal elements

Wp = Sn
with n € A (node set)
0-form
k 0
nodal BF span space W"(G)
The interpolation of a function u is given by
1 U~ Uup = Z U; W;
z; EN
n X .
with u; = a;(u) = u(x;)
0
m  piecewise linear continuous: . .
n first order scalar Lagrange finite elements 0d V0 — 1
v discretisation of scalar fields
v w, =1 at node n, 0 at other nodes 0 -0 [0

v w, = 1 is continuous across faces m



The Whitney elements of order O
Nodal elements on a line

BF w1 (:13) BF w2 (aj)
1 1
numbering
of DOFs
0.5 0.5 ]
as in GetDP
0 y L Y
0 0.5 1 15 2 25 3 0 0.5 15 25 3
X (m) @X X (m) ‘LX
BF w3 (x) BF ’LU4(£B)
1 1
|
+1
05 05 grad w (33') = -1 x
0
: Y 0 \
0 0.5 1 15 2 25 3 0 0.5 1.5 25 3 Y
x (M) b X (M) L




The Whitney elements of order O
Nodal elements on a triangle

2 2

h

Node 1 Node 2 Node 3

0 0.5 1 0 0.5 1
-
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The Whitney elements of order 1
Edge elements

W, = w{m,n} = Gm grad Sn — Sn gfad Smes
with e € £ (edge set)

1-form 1
k span space W= (G

edge BF b P (9)

The interpolation of a function wu is given by

w, i
y \ 1 U Uup = Z UeWe m
7 ec&

n X

Withuezae(u):/u-dl, Ve &

6 ~
F.nm

NF,mﬁ

- m
W{ma Il} v' Dof = circulations of field along edges of mesh
v’ discretisation of 1-forms, e.g. h, e

v/ tangential component continuous across faces

v circulation of w, = 1 along edge e, 0 across other edgew



elements on a triangle ) )
Edga)e A '> % - )
Ny

'y




Whitney elements of order 2 ”
Face elements

w.f — w{l7m7n} —
2 (gl grad ¢,, X gradg, — ¢, gradg X grad ¢, + ¢, grad g X grad Cm)

2-form . . . o
facet BF The interpolation of a function wu is given by
U~ Uup = Z ufwf
fer VF,nﬂ !
y -pz 1
"  withuy—ag(w) = [uends, Vi eF v
E N ““" f y
——— ' m

{19 m, n} v' Dof = flux through faces of mesh

\%Y%

v discretisation of 2-forms, e.g. b, 3

v/ normal component continuous across interfaces

v’ flux of wy =1 across face, 0 across other faces of G w



Face elements on a tetrahedron

Facet 1_CutBox

b3
0 05 1 L}Y




Whitney elements of order 3 *
Volume elements

Wy = W{k |,m,n} = 0 (s gradq x grad ¢, X gradg, — ¢ grad¢, X grad ¢, x grad¢,+

Sn grad ¢, X grad ¢ x grad ¢, — ¢, grad ¢x X grad ¢ X gradg,,)
3-form
volume BF K with v = {k,l,m,n} € V (volume set)

w span space W?(G)
The interpolation of a function u is given by

y%} yA U = Uy = E Uy Wy
n vEY

- with u, = a,(u) = /udv
{k,1,m, n} , —
W v/ piecewise constant functions

v' Dof = integration over its volume

v discretisation of densities

v’ > w, =1 over the volume of G , 0 over other volumes w



o / 36
. O-If(i)lclllg)lcx lzédixgglcx
Conformity <

2-simplex 3-simplex
(face) (volume)

v' Nodal elements: Conforming finite elements (in H!(Q)) interpolate
scalar fields that are continuous across any interface.
Discretisation of scalar quantities: potentials ¢, v, temperature. ..

v’ Edge elements: Curl-conforming finite elements (in H (curl; 2)) ensure
the continuity of the tangential component of the field.
Discretisation of the magnetic field h, the magnetic vector potential a or
the electric field e. "V

/ h-7dl = /(]+8td)-ﬁds 5 Vo
oS
n X (hy —h1)|ls = Js
e Tdl = /(%b nds nx (ex—e1)|ls =




) O-S?r;x-lplcx —sunplcx @ ‘ 7
Conformity e

2-simplex 3-simplex
(face) (volume)

v' Face elements: Div-conforming FEs (in H (div;(2)) ensure the continu-
ity of the normal component of the interpolated field. Discretisation
of magnetic flux density b, current density 7 or electric flux density d.

/b-ﬁ,ds:() %
A S
oS, /d-'fzds:/pdv
S T S |4 ﬁ'(bg—bl)‘szo
/j-ﬁds:O i (da —dy)|s = ps
S

v Volume elements: FEs in L?(€) do not impose any continuity (discontinuous)
between elements on the interpolated field. Discretisation of quantities
that may vary from one element to the other e.g. the electric charge

density p. / Joh e / oo
S V w



Finite elements spaces of Whitney forms

D H(D,Q) Vi(D) C H(D, Q) FE space Reference
1
grad Hl(Q) Vi, (grad) linear Lagrangian FE [13]
Hy (2)
(or node elements)
H(curl, Q)
curl Ho(curl, ) Vi (curl) edge elements [29]
. H(div, ©2) .
div Ho (div, Q) Vi (div) face elements [29]
L*()
0 £2(Q) V1 (0) p.w. constants

e

Fic. 4.1. Symbolic notation for local degrees of freedom for Vi (grad), V (curl), V3, (div), and
Vi (0) (left to right).

R. Hiptmair, J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces, SIAM J. Numer. Anal.. KU LEUVEN

Vol. 45, No. 6, pp. 2483-2509, 2007.



