Maxwell's equations

$$\operatorname{curl} \boldsymbol{h} - \partial_t \boldsymbol{d} = \boldsymbol{j}$$

$$\operatorname{curl} \boldsymbol{e} + \partial_t \boldsymbol{b} = 0$$

$$\operatorname{div} \boldsymbol{b} = 0$$

$$\operatorname{div} \boldsymbol{d} = q$$

$$\boldsymbol{b} = \mathcal{B}(\boldsymbol{e}, \boldsymbol{h}) = \mu \boldsymbol{h} \ (+\boldsymbol{b}_r)$$

$$\boldsymbol{d} = \mathcal{D}(\boldsymbol{e}, \boldsymbol{h}) = \epsilon \boldsymbol{e} \ (+\boldsymbol{d}_{src})$$

$$\boldsymbol{j} = \mathcal{J}(\boldsymbol{e}, \boldsymbol{h}) = \sigma \boldsymbol{e} \ (+\boldsymbol{j}_{src})$$

grad $f_0 \equiv \nabla f_0 = (\partial_x, \partial_y, \partial_z) f_0$ $\operatorname{curl} \boldsymbol{f}_1 \equiv \nabla \times \boldsymbol{f}_1 \equiv (\partial_x, \partial_y, \partial_z) \times \boldsymbol{f}_1$ $\operatorname{div} \boldsymbol{f}_2 \equiv \nabla \cdot \boldsymbol{f}_2 \equiv (\partial_x, \partial_y, \partial_z) \cdot \boldsymbol{f}_2$

v 0-form = scalar, continuous field $oldsymbol{h}, e$ 1-form = vector field of continuous tangential component $oldsymbol{curl}$ $oldsymbol{b}, oldsymbol{j}, oldsymbol{d}$ 2-form = vector field of continuous normal component $oldsymbol{div}$ 3-form = scalar field

Maxwell's house —Tonti diagram

 $\Gamma = \Gamma_e \cup \Gamma_h$

2-form boundary conditions accounted for in subspaces

boundary split in two parts

square integrable scalar & vector fields: field + field with differential operator

$$H_u^{10}(\Omega) = \{ u \in L^2(\Omega) : \operatorname{grad} u \in \boldsymbol{L}^2(\Omega), u|_{\Gamma_u} = 0 \}$$

$$\boldsymbol{H}_{\boldsymbol{u}}^{0}(\operatorname{curl};\Omega) = \{\boldsymbol{u} \in \boldsymbol{L}^{2}(\Omega) : \operatorname{curl} \boldsymbol{u} \in \boldsymbol{L}^{2}(\Omega), \boldsymbol{n} \times \boldsymbol{u}|_{\Gamma_{\boldsymbol{u}}} = 0\}$$

$$\boldsymbol{H}_{\boldsymbol{u}}^{0}(\operatorname{div};\Omega) = \{\boldsymbol{u} \in \boldsymbol{L}^{2}(\Omega) : \operatorname{div} \boldsymbol{u} \in L^{2}(\Omega), \boldsymbol{n} \cdot \boldsymbol{u}|_{\Gamma_{u}} = 0\}$$

u = e or h

Magnetostatics

solenoid
$$L = \frac{\Phi}{m.m.f} = n^2 \frac{\mu_0 S}{l}$$

magnetic vector potential formulation

$$\operatorname{curl} \nu \operatorname{curl} \boldsymbol{a} = \boldsymbol{j}_s, \quad \boldsymbol{b} = \operatorname{curl} \boldsymbol{a}$$

$$\operatorname{div} \left(\mu (\boldsymbol{h}_s - \operatorname{grad} \varphi) \right) = 0 \quad \text{in } \Omega, \quad \operatorname{curl} \boldsymbol{h}_s = \boldsymbol{j}_s, \quad \boldsymbol{h} = -\operatorname{grad} \varphi$$

$$\operatorname{curl} \boldsymbol{h} = \boldsymbol{j}_s$$

$$\operatorname{div} \boldsymbol{b} = 0$$

$$\boldsymbol{b} = \mu \boldsymbol{h} (+\boldsymbol{b}_r)$$

$$\boldsymbol{h} = \nu \boldsymbol{b} (+\boldsymbol{h}_c)$$

possible sources:

 j_s imposed current density in inductor \boldsymbol{b}_r remanent induction if magnets h_c coercive magnetic field if magnets

$$h = -\operatorname{grad} \varphi$$

Magnetostatics

$$\operatorname{curl} \boldsymbol{h} = \boldsymbol{j}_s, \qquad \operatorname{div} \boldsymbol{b} = 0$$

nodal BF φ, ω grad_h | edge BF $h, t \leftarrow \frac{\mu h = b}{h}$ curl_h facet BF div_h volume BF

Magnetic Gauss law verified in a **strong** sense

a formulation

a magnetic vector potential

reluctivity
$$\nu = \frac{1}{\mu}$$

Ampère's law verified in a weak sense

 $\operatorname{curl}
u \operatorname{curl} \boldsymbol{a} = \boldsymbol{j}_s$

+ Gauge in Ω

Magnetostatics

$$\operatorname{curl} \boldsymbol{h} = \boldsymbol{j}_s, \qquad \operatorname{div} \boldsymbol{b} = 0$$

volume BF nodal BF grad_h | curl_h ightarrow a, e edge BF div_h $|\operatorname{grad}_e|$ nodal BF Ampère's law verified in a strong sense

 φ formulation $h = -\operatorname{grad} \varphi$ magnetic field φ magnetic scalar potential

$$\operatorname{curl} \boldsymbol{h}_s = \boldsymbol{j}_s$$

Magnetic Gauss law verified in a weak sense

$$\operatorname{div}\left(\mu(\boldsymbol{h}_s - \operatorname{grad}\varphi)\right) = 0 \quad \text{in } \Omega$$

Spatial discretization — magnetostatics

We want to find the magnetic vector potential $\boldsymbol{a}(\boldsymbol{x})$ in Ω

with given

$$\operatorname{curl}(\nu\operatorname{curl}\boldsymbol{a})=\boldsymbol{j}_s$$

 $j_s(\mathbf{x})$ imposed electric current density $\nu(\mathbf{x})$ reluctivity > 0 in part of the domain

weighted residual approach

We integrate the equation weighted by (vectorial) weighting or test functions $\boldsymbol{w}_{i}(\boldsymbol{x})$ over the whole domain Ω :

find a such that

$$\int_{\Omega} \operatorname{curl} (\nu \operatorname{curl} \boldsymbol{a}) \cdot \boldsymbol{w}_i \, d\Omega = \int_{\Omega} \boldsymbol{j}_s \cdot \boldsymbol{w}_i \, d\Omega$$

holds $\forall \boldsymbol{w}_i$

Spatial discretization — magnetostatics (II)

$$\int_{\Omega} \operatorname{curl} (\nu \operatorname{curl} \boldsymbol{a}) \cdot \boldsymbol{w}_i \, d\Omega = \int_{\Omega} \boldsymbol{j}_s \cdot \boldsymbol{w}_i \, d\Omega$$

$$egin{aligned} oldsymbol{v} & oldsymbol{w}_i \ oldsymbol{u} & =
u \operatorname{curl} oldsymbol{a} \end{aligned}$$

$$egin{aligned} oldsymbol{v} &= oldsymbol{w}_i \ oldsymbol{u} &= oldsymbol{v} \operatorname{curl} oldsymbol{u} - oldsymbol{u} \cdot \operatorname{curl} oldsymbol{v} - oldsymbol{u} \cdot \operatorname{curl} oldsymbol{v} = \operatorname{div} \left(oldsymbol{u} imes oldsymbol{v}
ight) \end{aligned}$$

integration by parts Green formula

$$\int_{\Omega} \left(\operatorname{div} \left(\nu \operatorname{curl} \boldsymbol{a} \times \boldsymbol{w}_{i} \right) + \nu \operatorname{curl} \boldsymbol{a} \cdot \operatorname{curl} \boldsymbol{w}_{i} \right) d\Omega = \int_{\Omega} \boldsymbol{j}_{s} \cdot \boldsymbol{w}_{i} d\Omega$$

$$\boldsymbol{u} = \nu \operatorname{curl} \boldsymbol{a} \times \boldsymbol{w}_i$$

$$u = \nu \operatorname{curl} \boldsymbol{a} \times \boldsymbol{w}_i$$

$$\int_{\Omega} \operatorname{div} \boldsymbol{u} \, d\Omega = \oint_{\Gamma} \boldsymbol{u} \, d\Gamma, \quad d\Gamma = \boldsymbol{n} d\Gamma$$

divergence theorem

find **a** such that

Weak formulation

$$\int_{\Gamma} (\boldsymbol{n} \times \nu \operatorname{curl} \boldsymbol{a} \cdot \boldsymbol{w}_i) \, d\Gamma + \int_{\Omega} \nu \operatorname{curl} \boldsymbol{a} \cdot \operatorname{curl} \boldsymbol{w}_i \, d\Omega = \int_{\Omega} \boldsymbol{j}_s \cdot \boldsymbol{w}_i \, d\Omega$$

holds $\forall \boldsymbol{w}_i(\boldsymbol{x})$

only the first derivative of the MVP is now required

From 3D to 2D models

$$\boldsymbol{j_s} = (0, 0, j_s(\boldsymbol{x}))$$

$$\boldsymbol{b} = (b_x(\boldsymbol{x}), b_y(\boldsymbol{x}), 0)$$

$$\boldsymbol{h} = (h_x(\boldsymbol{x}), h_y(\boldsymbol{x}), 0)$$

$$\boldsymbol{a} = (0, 0, a_z(\boldsymbol{x}))$$

$$\boldsymbol{b} = \operatorname{curl} \boldsymbol{a} = (\partial_y a_z, -\partial_x a_z, 0)$$

$$\mathbf{h} = \nu \operatorname{curl} \mathbf{a} = \nu \left(\partial_y a_z, -\partial_x a_z, 0 \right)$$

$$\operatorname{div} \boldsymbol{b} = \partial_x b_x + \partial_y b_y = \partial_{xy}^2 a_z - \partial_{xy}^2 a_z = 0$$

Open boundary problems — Low frequency

Truncation of outer boundaries
Asymptotic boundary conditions
Kelvin transformation
Shell transformation

Truncation of outer boundaries

- Pick an arbitrary boundary far enough from the region of interest and impose a homogeneous Dirichlet or Neumann boundary condition
- Rule of thumb:
 - distance from centre of problem to outer boundary == 5 times distance from centre to outside of region of interest
- Used by most FE electromagnetic software, as it requires no additional effort to implement
- To get an accurate solution a large volume of air around the area of interest must be modelled
- This large area can be modelled with a relatively coarse mesh to limit the extra computational time

Asymptotic boundary conditions (BCs) mixed BC to impose on a circular outer boundary

- solution inside: finite elements
- solution outside: asymptotic solution of the problem at hand on a circular shell, e.g. for a magnetic vector potential formulation

$$\boldsymbol{a}(r,\theta) = \sum_{m=1}^{\infty} \frac{a_m}{r^m} \cos(m\theta + \alpha_m)$$

 magnitude of harmonic decreases quickly with distance, only the leading harmonic is kept for describing the open field solution

$$a(r,\theta) \approx \frac{a_m}{r^m} \cos(m\theta + \alpha_m)$$

• substituting $\frac{\partial a}{\partial r} = -m \frac{a_m}{r^{m+1}} \cos(m\theta + \alpha_m)$ into the complete solution, we have

$$\frac{\partial \boldsymbol{a}}{\partial r} + \frac{m}{r}\boldsymbol{a} = 0$$
 mixed BC

Kelvin transformation

- Strengths
 - effects of the exterior region model exactly
 - sparse matrix representation of the problem kept
 - no special features in FE solver required

- exterior domain modelled by forcing a link between two circular regions:
 - a circular region with devices of interest and surrounding air, where we actually want to compute the field ('near field/internal')
 - o an additional circular region representing the 'far field/external'
- periodic boundary constraints between the two circles to enforce the continuity of the local quantity of interest (e.g MVP)
- the additional circular region models exactly the infinity space solution, but on a bounded domain
 KULEUVEN

Kelvin transformation (cond'd)

'far field/exterior' region with homogeneous material govern by polar coordinates

$$\Delta \mathbf{a} = 0 \qquad \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \mathbf{a}}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \mathbf{a}}{\partial \phi^2} = 0$$

- 'near field/interior' region is a circle of radius r_0 , 'far field' is everything outside
- Map unbounded region onto a bounded region by defining in the mapped space

$$\frac{1}{R}\frac{\partial}{\partial R}\left(R\frac{\partial \mathbf{a}}{\partial R}\right) + \frac{1}{R^2}\frac{\partial^2 \mathbf{a}}{\partial \phi^2} = 0 \qquad R = \frac{r_0^2}{r}$$

$$R = \frac{r_0^2}{r}$$

- the field at any point can always be recovered by applying an inverse mapping
- Axisymmetry, Dirichlet or Neumann BCs simulated by modifying material parameters (e.g. permeabilty)

Shell transformation

 ${X^I = X, Y, Z}$ $\{y^j = x, y, z\}$ $C^I = C^j \delta^I_i$

Map unbounded region into a shell
$$X^I-C^I=(y^i-C^j)\delta^I_j\,F(R_{int},R_{ext},r(y^j))$$

$$F(R_{int}, R_{ext}, r) = \left(\frac{R_{int}(R_{ext} - R_{int})}{r(R_{ext} - r)}\right)^p \qquad \frac{dF}{dr} = -\theta \frac{F}{r}, \qquad \theta = \frac{R_{ext} - 2r}{p(R_{ext} - r)}$$

$$\frac{dF}{dr} = -\theta \frac{F}{r} \, ,$$

$$\theta = \frac{R_{ext} - 2r}{p(R_{ext} - r)}$$

This transformation applies to shells that are:

cylindrical

Parallelepipedic

(or trapezoidal)

spherical

$$r(y^i) = \sqrt{(x - C^x)^2 + (y - C^y)^2}$$

$$r(y^i) = (y^k - C^k)$$

$$r(y^{i}) = \sqrt{(x - C^{x})^{2} + (y - C^{y})^{2} + (z - C^{z})^{2}}$$

Jacobian matrix of the mapping

determinant

$$\Lambda_j^I = \begin{pmatrix} 1 - \theta n^x \partial_x r & -\theta n^x \partial_y r & -\theta n^x \partial_z r \\ -\theta n^y \partial_x r & 1 - \theta n^y \partial_y r & -\theta n^y \partial_z r \\ -\theta n^z \partial_x r & -\theta n^z \partial_y r & 1 - \theta n^z \partial_z r \end{pmatrix} \quad n^i = \frac{y^i - C^i}{r}$$

$$n^i = \frac{y^i - C^i}{r}$$

Unidirectional

Spherical shell

Parallelepipedic or trapezoidal shell

Discrete mathematical structure Whitney elements

Discrete mathematical structure

Replace the continuous spaces (infinite dimension) by discrete spaces (finite dimension)

local function spaces on geometrical element \mathcal{G}

$$W^0(\mathcal{G}) \subset H^1(\mathcal{G})$$

$$\int_{\operatorname{grad}_e} W^1(\mathcal{G}) \subset \boldsymbol{H}(\operatorname{curl};\mathcal{G})$$

$$W^2(\mathcal{G}) \subset \boldsymbol{H}(\mathrm{div};\mathcal{G})$$

$$W^3(\mathcal{G}) \subset L^2(\mathcal{G})$$

The Whitney complex

 $W^p(\mathcal{G})$ is the finite dimensional subspace spanned by the p-Whitney elements on \mathcal{G} . They satisfy the property of conformity:

Finite elements

- set of linearly independent basis/shape functions and weighting functions (also called test and trial functions)
- commonly piecewise polynomial
- defined at a structured or unstructured grid/mesh
- compact support
- scalar or vectorial functions

 $u(\boldsymbol{x}) \approx u_h(\boldsymbol{x}) = \sum_{i=1}^{N} u_i s_i(\boldsymbol{x})$ $F^0(\Omega) = \operatorname{span}\{s_1(\boldsymbol{x}), s_2(\boldsymbol{x}), \dots s_N(\boldsymbol{x})\}$

Typical FE elements in 2D and 3D First order

The Whitney elements

Finite element (\mathcal{G}, Σ, S) :

 \checkmark geometrical element \mathcal{G}

 $\checkmark \Sigma = \text{set of } N \text{ Dofs}$

 \checkmark S function of finite dimension N

Let us consider a mesh of Ω formed by geometrical elements \mathcal{G} with nodes \mathcal{N} , edges \mathcal{E} , faces \mathcal{F} , volumes \mathcal{V} ,

The Whitney elements of order p are expressed as

$$\boldsymbol{w}_{n_0,\dots,n_p} = p! \sum_{j=0}^{p} (-1)^m \varsigma_{n_m} \operatorname{grad} \varsigma_{n_0} \times \dots \times \operatorname{grad} \varsigma_{n_{m-1}} \times \operatorname{grad} \varsigma_{n_{m+1}} \times \dots \times \operatorname{grad} \varsigma_{n_p}$$

with $\varsigma_n(x)$ barycentric weight of x with respect to node n in \mathcal{G}

The Whitney elements of order 0 Nodal elements

with $n \in \mathcal{N}$ (node set)

span space $W^0(\mathcal{G})$

The interpolation of a function u is given by

$$u \approx u_h = \sum_{x_i \in \mathcal{N}} u_i w_i$$

with $u_i = \alpha_i(u) = u(x_i)$

- ✓ piecewise linear continuous: first order scalar Lagrange finite elements
- ✓ discretisation of scalar fields
- \checkmark $w_n = 1$ at node n, 0 at other nodes
- $\checkmark w_n = 1$ is continuous across faces

The Whitney elements of order 0 Nodal elements on a line

The Whitney elements of order 0 Nodal elements on a triangle

The Whitney elements of order 1 Edge elements

$$\mathbf{w}_e = \mathbf{w}_{\{m,n\}} = \varsigma_m \operatorname{grad} \varsigma_n - \varsigma_n \operatorname{grad} \varsigma_m,$$
with $e \in \mathcal{E}$ (edge set)
span space $W^1(\mathcal{G})$

 $\{m, n\}$

The interpolation of a function u is given by

$$\mathbf{u} \approx \mathbf{u}_h = \sum_{e \in \mathcal{E}} u_e \mathbf{w}_e$$

with $u_e = \alpha_e(\mathbf{u}) = \int_e \mathbf{u} \cdot d\mathbf{l}$, $\forall e \in \mathcal{E}$

- \checkmark Dof = circulations of field along edges of mesh
- \checkmark discretisation of 1-forms, e.g. h, e
- \checkmark tangential component continuous across faces
- \checkmark circulation of $\mathbf{w}_e = 1$ along edge e, 0 across other edges

Edge elements on a triangle

Whitney elements of order 2 Face elements

$$\mathbf{w}_{f} = \mathbf{w}_{\{l,m,n\}} = 2\left(\varsigma_{l} \operatorname{grad} \varsigma_{m} \times \operatorname{grad} \varsigma_{n} - \varsigma_{m} \operatorname{grad} \varsigma_{l} \times \operatorname{grad} \varsigma_{n} + \varsigma_{n} \operatorname{grad} \varsigma_{l} \times \operatorname{grad} \varsigma_{m}\right)$$

The interpolation of a function u is given by

$$\mathbf{u} \approx \mathbf{u}_h = \sum_{f \in \mathcal{F}} u_f \mathbf{w}_f$$

with $u_f = \alpha_f(\mathbf{u}) = \int_f \mathbf{u} \cdot \mathbf{n} \, ds$, $\forall f \in \mathcal{F}$

- \checkmark Dof = flux through faces of mesh
- \checkmark discretisation of 2-forms, e.g. b, j
- ✓ normal component continuous across interfaces
- \checkmark flux of $\boldsymbol{w}_f = 1$ across face, 0 across other faces of \mathcal{G}

Face elements on a tetrahedron

Whitney elements of order 3 Volume elements

$$w_{v} = w_{\{k,l,m,n\}} = 6 \left(\varsigma_{k} \operatorname{grad} \varsigma_{l} \times \operatorname{grad} \varsigma_{m} \times \operatorname{grad} \varsigma_{n} - \varsigma_{l} \operatorname{grad} \varsigma_{k} \times \operatorname{grad} \varsigma_{m} \times \operatorname{grad} \varsigma_{n} + \varsigma_{n} \operatorname{grad} \varsigma_{k} \times \operatorname{grad} \varsigma_{k} \times \operatorname{grad} \varsigma_{l} \times \operatorname{grad} \varsigma_{l} \times \operatorname{grad} \varsigma_{m} - \varsigma_{n} \operatorname{grad} \varsigma_{k} \times \operatorname{grad} \varsigma_{l} \times \operatorname{grad} \varsigma_{m} \right)$$

$$\mathbf{W}^{\{\mathbf{k},\mathbf{l},\mathbf{m},\mathbf{n}\}}$$

with $v = \{k, l, m, n\} \in \mathcal{V}$ (volume set)

span space $W^3(\mathcal{G})$

The interpolation of a function u is given by

$$u \approx u_h = \sum_{v \in \mathcal{V}} u_v w_v$$

with $u_v = \alpha_v(u) = \int_v u \, dv$

- ✓ piecewise constant functions
- \checkmark Dof = integration over its volume
- ✓ discretisation of densities
- $\checkmark \sum w_v = 1$ over the volume of \mathcal{G} , 0 over other volumes

Conformity

 \checkmark Nodal elements: Conforming finite elements (in $\mathcal{H}^1(\Omega)$) interpolate scalar fields that are continuous across any interface. Discretisation of scalar quantities: potentials φ , v, temperature...

Edge elements: Curl-conforming finite elements (in $\mathbf{H}(\text{curl};\Omega)$) ensure the **continuity of the tangential component** of the field. Discretisation of the magnetic field h, the magnetic vector potential a or

the electric field e.

$$\int_{\partial S} \mathbf{h} \cdot \hat{\tau} \, dl = \int_{S} (\mathbf{j} + \partial_{t} \mathbf{d}) \cdot \hat{n} \, ds$$

$$\int_{\partial S} \mathbf{e} \cdot \hat{\tau} \, dl = -\int_{S} \partial_{t} \mathbf{b} \cdot \hat{n} \, ds$$

$$\int_{\partial S} \boldsymbol{e} \cdot \hat{\tau} \, dl = -\int_{S} \partial_t \boldsymbol{b} \cdot \hat{n} \, ds$$

$$\hat{n} imes(oldsymbol{h}_2-oldsymbol{h}_1)|_S=oldsymbol{j}_s \ \hat{n} imes(oldsymbol{e}_2-oldsymbol{e}_1)|_S=0$$

Conformity

✓ Face elements: Div-conforming FEs (in H(div; Ω)) ensure the continuity of the normal component of the interpolated field. Discretisation of magnetic flux density b, current density j or electric flux density d.

Volume elements: FEs in $L^2(\Omega)$ do not impose any continuity (discontinuous) between elements on the interpolated field. Discretisation of quantities that may vary from one element to the other e.g. the electric charge density ρ . $\int_C \mathbf{d} \cdot \hat{n} \, ds = \int_V \rho \, dv$

Finite elements spaces of Whitney forms

D	$\mathcal{H}(D,\Omega)$	$V_h(D)\subset\mathcal{H}(D,\Omega)$	FE space	Reference
grad	$H^1(\Omega)$ $H^1_0(\Omega)$	$V_h(\mathbf{grad})$	linear Lagrangian FE (or node elements)	[13]
curl	$\mathbf{H}(\mathbf{curl},\Omega) \ \mathbf{H}_0(\mathbf{curl},\Omega)$	$V_h(\mathbf{curl})$	edge elements	[29]
div	$\mathbf{H}(\mathrm{div},\Omega) \ \mathbf{H}_0(\mathrm{div},\Omega)$	$V_h(\mathrm{div})$	face elements	[29]
0	$L^2(\Omega)$ $L^2_0(\Omega)$	$V_h(0)$	p.w. constants	

FIG. 4.1. Symbolic notation for local degrees of freedom for $V_h(\mathbf{grad}), V_h(\mathbf{curl}), V_h(\mathbf{div}),$ and $V_h(0)$ (left to right).

