Magnetodynamic formulations and
discretization



Magnetodynamics AV ~T-
or magneto-quasi-statics (MQS)

Distribution of magnetic field and eddy currents due to moving magnets and time
variable sources

“h side” “b side”

Faraday’s law
verified in a
strong sense

Ampere’s law
verified in a
strong sense

h — ¢ formulation

| — o < a* formulation
$\, curlh =3 b= ,uh ﬂ

curle = —0;b j=oe(
| divb = 0 \ |
t — w formulation — v formulation

Displacement currents neglected with regard to eddy currents w




Magnetodynamics
curle = —0;b, curlh = 3, divb =0

nodal BF 0 volume BF
|
grad, | div,
edge BF ¥ ph =b
—gradyp = h,l < b facet BF
curly, curl,
facet BF _—
. J =o€
curlh = 3 ;€ edge BF
A
divy, | grad,
volume BF |
e 0 nodal BF
Ampere’s law
verified in a

stronqg sense

3

h — ¢ formulation AW\~

h magnetic field
© magnetic scalar potential

1
resistivity 0= —
o

In non conduction domain:

curl hy = j5

h:h3—|—h7~ with {CUI’I"LT:O

Faraday’s law verified
iIn a weak sense

curl pcurlh + 0;(uh) =0 in 2,
div (,u(hs — grad gp)) =0 in QY



Magnetodynamics
curle = —0;b, curlh = 3, divb =0

nodal BF 0 volume BF
|
grad, | dive
edge BF ¥ ph =b
t —gradw= h,l < b facet BF
curly, curl,
facet BF .
[ ] =o0e
curlt = J ,€ edge BF
A
divy, | grad,
volume BF |
L 0 nodal BF
Ampere’s law
verified in a

stronqg sense

4

t — w formulation AW\ ~T000~

t electric vector potential
w magnetic scalar potential

1
resistivity 0= —
o

Faraday’s law verified + Gauge in 2
In a weak sense

curl (p curlt) + 9; (u(t — gradw)) =0 in Q.
div (pu(t — gradw)) =0 in ¢
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a* formulation AW\~ 00

MagnetOdynam|CS a® magnetic vector potential
curle = —0;b, curlh = 3, divb =10
, reluctivity v = —
nodal BF 0 —divb H
| volume BF
grad,, | dive
Y ,uh — b *
edge BF h, b —curla
facet BF Ampere’s law verified in
curly, curle a weak sense
= oe
facet BF J e § e = —0a”
A edge BF :
divy, | grad, curlveurla™ + 0da™ = js
volume BF ! nodal BF + Gauge in Q¢

Faraday’s law verified
In a strong sense




a — v formulation

Mag netOdynamiCS a magnetic vector potential

v electric scalar potential potential
curle = —0,b, curlh = 3, divb =10

reluctivity v = —

nodal BF 0 =divb o
H'(Q) | volume BF
l grad,, | div,
grad % _
edge BF 3, ph = b b =curla
H (curl; ©2) facet BF Ampére’s law verified in
Curli curt — e a weak sense
facet BF j J — - a,e = —0:a — gradv
H (div; Q) A edge BF .
divp, | grad, curl veurl a + o(0:a + grad v) = j
div | . _ . C
2
L) Faraday’s law verified | + Gauge in ()

In a strong sense




Spatial discretization — magnetodynamics

We want to find the modified magnetic vector potential a*(x) in €2
curl (vcurla™) + c0ra™ = j
with given
7s(x) imposed electric current density
v(a) reluctivity > 0 in part of the domain
o(x) sigma > 0 in part of the domain
curl (vcurla™) + c0ra™ =
weighted residual approach

We integrate the equation weighted by (vectorial) weighting or test functions
w; () over the whole domain €:

find a* such that

/ (Curl (vcurla™) + Jc?ta*) cw; d) = / Js - w; dQ
Q Q

holds Yw; m



Spatial discretization — magnetodynamics (ll)

/ (Curl (vcurla™) + 0(9,50,*) cw; dQ) = / 7s - w; dS)
Q Q

UV — Ww;

u = vcurla®

v-curlu —u - curlv = div (u X v) integration by parts
Green formula

/ (div (vcurla™ xw;) + veurla™-curl w; + Jé’ta*-wi) dQ) = / Js-w; dS)
Q Q

u = rvcurla® x w; l / divu df) = 7{ udIl', dI' = ndIl divergence theorem
Q T
find @™ such that Weak formulation

/(l/ curla™ x w;) ndl’ + / (l/ curla®-curl w; + aata*.wi) dQ) = / Js-w; dQ
I Q Q

holds Vw; () only the first derivative of the MVP is now required w



Spatial discretization — magnetodynamics (lll)

Dirichlet BC at I'p;,
a*Xn=apn,Xxn<b-n=>0,

Homogeneus Neumann BC at I'yey

h; =vcurla*xn =0

/ (vcurla™ xw;) ndl’ + / (vcurla™ xw;) ndl’
]._‘Difr' 1_‘Neu

b — N —
Rt e

I‘Neu =0 =0

n x h=h Vw;(x) :w; xn =0

essential BC natural BC m
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Spatial discretization — magnetodynamics (V)

{ s;(x) shape functions

N
e (w) ~ a;:(a;) — Zujsj U; scalar unknowns, Dofs

J=1 Ritz-Galerkin method Sj(w) = 'wj(a:)
sj(x) x n =0 at I'py, Petrov-Galerkin method  s;(z) # w;(x)

/ (1/ curla™-curl w; + aﬁta*-wi) d) = / 71s w; dQ2
Q \L Q
Z (uJ/ veurlw;-curl w; A2 + (‘9tuj/ oW - W dﬂ) — / 71 w; dS2
j Q Q Q
- —~— — —

R kijllus] + [mij][Orus] = [fi]

I K and M Simmetric‘ Semi—iositive—deﬁnite I m
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Spatial discretization — magnetodynamics (V)

Z(uj/chrle-curlw,,;dﬂ—k(?tuj/J'wj-wid(l) :/]S’I.Uzdﬂ n
Q | Q Q We

J

curle = E CiqZq
q

F,nm

o i \ \\ \ | ‘ , - ;;’l . // "% NEma
I J : j ¢¢ | ! S L — e e g T AN
Z( ZZC@PCJG/ Vzq ZPdQ+8tuJ/ U'wj'wz'dQ) :/js'widﬂ
Q Q
J
W—J ~ - - —~ __J N\ )
A; M3, MY, T

FE matrix system CMYCA+ M8, A = J°* m
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Inserting boundary conditions

unconstraint system

K, K. [u f potentials living at Dirichlet
[Kiz KiJ [uj - [ i] ~boundaries

adding constraints leads to

Ky Ky | 0] [us] [f, eliminate known potentials
ch ch :ch Ue | = fc

___ _()_ - _B:]c_ _:_ (_) ___ _yq_ ] 0 ] Kbbub — fb — Kbcuc

K| [we] = |[f — Kycuc] matrix system is shrank

S .o



Boundary conditions
Duality between formulations

electric BC
“flux wall”

“current gate”

magnetic BC
“flux gate”
“current wall”

definition e; h;
electric current Jn # 0 Jn =20
magnetic flux b, =0 b, #0

magnetic vector  b-conform
potential formulation

Dirichlet BC

Neumann BC

magnetic scalar  h-conform
potential formulation

Neumann BC

Dirichlet BC

S .o

13
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Boundary conditions (ll)

magnetic flux density
or induction

electric current density

yaliiut: i

e, — (0 Vvalues to imposéﬂ
at symmetry planes
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From 3D to 2D models

a= (0,0,a,(x))

b=curla = (9,ya,, —0,a,,0)

h =vcurla =v(0,a,, —0za;,0)

j = (0,0,05hy — Oyhy) = (0,0, s . — 0Osa)

divb = 0,b, + 9yb, = 8§yaz = aiyaz =0 y

—aa:(l/axaz) — ay(Vﬁyaz) + o0 S Z/I/ 7
curl (veurla) + 00ra = js m
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2D spatial discretization
zj:(uj/Qucurle-curlwidﬂ+8tuj/ngj.widQ) Z/st-’widﬂ

J(®) We = 6m grad ¢, — 6 grad o,

2 > ="
a = Ui We ; = U 2
J e i B
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Physical meaning of MVP & FE equations

y o 1
1 az,1 ' -;!J 4 |
x ®=1,(a,1—a.2) *’ ‘

The flux is given by difference of z-
MVPs multiplied by the axial length "\

az b
0 0.000713 0.00143 0.00377 0.0681 0.133
o i i (o ] il i [ - A

h-curlwidQ:]{ h-dl =0
C;
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Flux and flux linkage of a coll

Coil with n=16 turns with two
coil sides (+,-)

Flux of two turns is depicted
Current density, / A

n
b — ®, Total flux-linkage of
; ® " the coil (Vs or Wb)

uniform current region

. ol o+ — per coil-side region, i.e.
J: =% in fleon = 27 UL homogenisation

, _ " - _ O+t — homogenised
Jz,1A + 111 QCOII Ul 1D current density (1/m?)

U — ] - d0 flux-linkage (in Vs) from a
© /Q Pyl FE solution in terms of MVP

RU LeUVEN
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Flux and flux linkage of a coll
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2D Coil model — example electrical machine

with S the area of the slot
. : and N; the number of turns of the winding
.7 — (07 07]2)




Coil model (cont'd)

induced voltage ~ flux linkage

what flux is linked?

for a single path b = j{ a dl
.

for a coil

v integrating along the coil
v/ average of the coil cross-section

n A
U = a-tdS
Scoz'l L

coil

t current direction vector

t tangent vector
from geometry

21
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Coil model stranded inductors (N; turns) Q, € QY

A

v imposed current density js = is(t) ¢t

t tangent vector
from geometry

sources in
Q, € O¢ Qmi 4 .
0. 0 CE 0 v/ imposed current or voltage
mo25f ¢ = j, unknown
:-%f“""' massive foiled curlhy = js 1in €, h, computed via FEs

cuts inductors curlh, =0 in Q¢  h, not unique




Coil model (cont'd)

v massive inductors €2,,, € ).

e-dl =V,
Yag,i
n-j3ds = I,
T,
stranded ~-massive
Qi
L L
nassive [foiled — e S
| hii homogeneo%:is 3

on-homogeneou

cuts inductors distribution distributio
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Multi-turn windings and eddy current effects

_— ':-"lu =5 - -
L i

Homogenization methods are
indispensable!
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magnetic core
with a 3 mm
central air-gap
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Multi-turn windings and eddy-current effects:
Skin and proximity effects

The equivalent radius of the conductors, of arbitrary but symmetrical cross-sectional shape, is given by
r = /$2./m, where €. is the cross-sectional surface area. The skin depth at frequency f or pulsation w =
27 f is given by § = /2/(owg), where o is the conductivity of the conductors and jiy = 4710~ H/m
their permeability. The normalized or reduced frequency X is defined as follows:

-
X = g = \/7 T\/TTO L) - (3)
——— F=—— 100 ‘ s ‘ i '
/ G 80 fine model
3 : (| [ g 60 I homogenisation &
sessses 0 § 40
Sessess L s ¢ 207
'-'{:(& é" ‘ \ ,m \ " : ? O o I t i i i
- ” 4o bbb
Noasssss TN 0 05 1 15 2.5 3.5
AR ‘ "‘1 : T 28 — ‘ ‘
AT ({1 <=2 = 27+
eZele® il 3
e%2%000 e 26
90929, ‘ 2]
o ®, o g 25 L
£ 24 : ‘ ;
= - == 0 0.5 1 15 2.5 3 3.5

reduced frequency X

Fig. 5: 2D axisymmetric model of inductor (round conductors and hexagonal packing) — flux lines (real part, i.e.

in phase with imposed current), at X = 0.1 (left) and X = 2 (right), obtained with fine model

25




Permanent magnet cse cza 2

_____________ iron —____________u'on
Scalar & linear model N i I A RS B I R A
permanent ; : ) i) coil 8 : g .
magnet ! n)pypy = !
. B (T) A B.. o t l lpnm 'y 0 Lpat By / 1o { 8#0: g
PM materials - 14 ' | '
1 Ticonal P
2 Alnico
3 Ferrite 1S e e
4 SmCo '

5 NdFeB s

Very simple magnetic model
y v resulting flux approximately aligned
o2 v operation point in linear range
T T T I T T I > ‘ b
-700 -600 -500 -400 -300 -200 -100 0 H (kA/m)

remanent field b |
MVP formulation

measure
content

7

: b=1> h
curl (vcurla) = j — curl h,y, r K
— h=~h,, +vb
magnetization current
2D ? demagr’\gtizétion

max(bh) is
for energy

—0;(VOya,) — 0y(v0ya,) =

l : ' ’f’Lm coercive field /hc
Jz — 8th,y + ayhm,x




