Time-harmonic and transient simulation

Higher harmonics in electro/magneto-quasi-static models due to

- excitations, switches, nonlinear/hysteretic materials, moving parts
simulated by

- frequency domain (time-harmonic, multi-harmonic)

- time integration

- combinations (e.g. enveloped method)



Type of problems/models

* Full wave models * Magneto-quasi-statics (MQS),
(wave propagation problems) electro-quasi-statics (EQS), Darwin
models/formulations (EMQS)
o (non)linear materials o (non)linear materials
o frequency dependence o magnitude dependence
o (un)structured grids o unstructured grids
o time- and frequency-domain o time- and frequency domain
o explicit time integration o Implicit time integration

. Maxwell's equations i

s, R



Phasors — Energy and power (reminder!)

J = fre +1fim f(t)“ f(t):Re{fezwt}
fpeak — \/fr2e + f12m f = fre COS(CUt) — fim Sin(wt)
_ fim - / = fpeak COS(wt — @)
P = arctan < Jre ) real time instant | ‘ = fo NG cos(wt — )
i i
imaginary time instant ' — Re {feﬁ \fgezwt}
\
fim
w(t) = uesr V2 cos(wt — @) u(t) = Re {Ue \@ezwt}

i(t) = ie V2 cos(wt — ;)
p(t) = Ueftleff COS(%’ — SOu)
+ Ueftlofr COS(2wWE — ©; — Yy )

i(t) = Re {zeff\fe“"t}




Phasor fields

Magnetic vector potential

Q(xaywzat) — (a,x(a:,y,z,t),ay(a:,y,z,t),az(x,y,z,t))
= Re {a(:c,y,z) e“"t}

=a,.(r,y,2z) cos(wt) — a;,,(x,y, z) sin(wt)

—Te

— |CL(SU, Y, Z)| cos(cut o QO(ZC, Y, Z))
Magnetic vector potential formulation

curlveurla + oia = j time domain (MVP is a real vector)

curl veurl @ + woa = j, frequency domain (MVP is a complex vector)

S .o



non-conducting material

Static field
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a,(R,0,t) = a cos 6 cos(wt) °

. : Q
Pulsating field  by(z,y.t) = - cos(wt) ]
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a.(R,0) =ae™ a,(R,0,t) = acos(wt — ) 7

Rotating field




Coll: massive vs stranded conductor

Massive conductor Stranded conductor
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Time integration for spatially discretized PDEs

* Discretizing the spatial derivatives in PDEs, we get a (coupled) system of (nonlinear)
ODEs. Methods to integrate ODEs can then be directly applied for the time integration of
spatially discretized PDEs

d¢ n41 tn41
SO _ f(t.9) with 6(to) = gy / Pl =G0 = [ (et
tn
* Four S|mple schemes to estimate the time mtegral by approximate quadrature

o Explicit or forward Euler Grr1—n = f(tn, dn) At
o Implicit or backward Euler Ont1—On = f(lnt1, Png1) Al
o Midpoint rule (basis leapfrog) Pnt1=bn = f(tny1/2, Pnir/2) At

o Trapezoid rule (basis Crank-Nicholson) ¢,11—¢, = %[f(tn,¢n)—1—f(tn+1,gbn_H)]At

midpoint rulet trapezoidal rtule implicit Euleg explicit I:,':ulertz

t, t,+At t, t,+At t, t,+At t, t,+At




1

Theta methods

* We consider methods of the form,
Orr1 = On + AL|Of (tny1, Gns1) + (1 —0) f(tn, dn)], n=0,1,...
with parameter 0 < [0, 1]
 If #=0 |, we recover explicit or forward Euler method

 If 9 €(0,1] ,then the theta method is implicit: Each time step requires the solution of N
(nonlinear) algebraic equations for the unknown

e If =1 , we recover the implicit or backward Euler method (damps quickly numerical
oscillations)

 If #=0.5, we have the trapezoidal rule (Crack-Nicholson). Theoretically optimal for linear
problems, but it may oscillate

* If 9 =2/3, we have the so-called Galerkin choice, derived from a weighted residual
approach instead of finite differences

* Solution of nonlinear algebraic equations can be done by iteration w
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Runge-Kutta methods and
Multistep/multipoint methods

* Higher accuracy in time by using available information (known values of the
derivative in time, i.e. the RHS) at more time steps. Two main approaches:
o Runge-Kutta Methods
 Additional points between ¢, and ¢, . ,, for computational convenience

« Difficulty: n™ order RK requires n evaluations of the first derivative (RHS of PDE) =>
more expensive

o Multistep/Multipoint Methods

« Additional points are at past time steps at which data has already been computed,
hence for comparable order, less expensive than RK methods

« These methods are difficulty to start

* For a given order, RK methods are more accurate and stable than multipoint
methods

S .o



. . i3
Adaptive time step
Step-up converter
_ 7 v acceleration factor (e.g. 1.2)
OITOT = $n+1 — Pnt1 €:01 Prescribed tolerance
| error ||> Yeor ¢ safety factor (e.g. 0.9)
/ \ p order
reject time step time step predictor
€tol l/p
Aty,q1 = _ ot
= 1=y
120
T £ diode || I I I I I I | I sol | I \
s -
. A switch 40 \V g \/
0 4 g 12 16 20 0 4 8 12 20
[Benderskaya, Clemens, De Gersem] smaller time steps
- KU LEUVEN

https://gitlab.onelab.info/getdp/getdp/-/wikis/Adaptive-time-integration




Multi-rate partial differential equations \ !
MPDES | 100 ..... .....

& c. l A%x(t)+Bx(t)=ls(t)

Voltage / V
(&)
o

Ly [ ] {— vc, f; = 500 Hz
[Gyselinck, 2013] 1--- v, £ = 500Hz
- DC to DC converter 0 | — vg, £ = 5000 Hz
« Output voltage controlled by duty cycle of PWM
« Voltage is stepped down while current is stepped up 0 _ S b
 Higher frequency => smaller ripples Time / ms

Disadvantages of classical time discretization:
* fastest change in signal has to be resolved 1072
* the higher the frequency, the slower the simulation

Splitting solution in fast & slowly varying parts

—-— MPDE: Nodal BFs
- MPDE: PWM BFs
- time discretization

Vb.ana""VC”E
[Ve.anall2
- -—t
3 3
A w

= Multirate Partial Differential Equation (MPDE) 2 Yoo = T4 :
Using a-priori knowledge: periodic pulsed excitation 10-5 F i
X ~ 10-8 |
A (é)x(aﬁt‘, 2)) N ﬁg}; tz)) +BR(t, b) = h(tr, o) 0 50 Tim;?&s 150 200



Types of errors

Accuracy improvement
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Types of errors

* Errors in the formulation of the problem to be solved
o Simplifications/assumptions of the mathematical model

* Errors in the input data, given e.g. by measurements, lack of knowledge of material
parameters (no provided by manufacturer)...

* Approximation errors
o Discretization errors
o Convergence error (iterations, nonlinear iterations)

o Discretization/convergence errors may be assessed by an
analysis of the method used

* Round-off errors appear everywhere in a numerical computation due to the finite
precision arithmetic. This kind of errors are quite erratic

S .o
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Error estimation

* Erroris problem (field/formulation) dependent. It can be estimated

o A priori: function of the finite element formulation and type, associated functional
spaces, mesh quality (geometric)

o A posteriori: once the solution is available, it may involve some post-processing
* Error estimator may differ locally

o €e.g. (non-)conducting region

o €e.g. (hon-)magnetic region
* Adequate scaling is necessary to be able to compare (relative error preferred)
* Examples of error estimators:

local field values, local field values weighted with energy, energy densities,
losses, continuity conditions, ...

* Error propagation is an issue in computations with several stages w



18

Accuracy enhancement

When error in certain region is too large, we may improve accuracy by
* h-adaptation: local mesh refinement around critical areas (element size h|)
* p-adaptation: higher-order finite elements (polynomial degree p1)

o reformulate problem with alternative element type

o use of “hierarchical elements” €= O (h?*1)

* hp-adaptation/hp-FEM: combination elements of variable size (h) and polynomial
degree (p)

* The finite element method converges exponentially fast when the mesh is refined
using a suitable combination h-refinements (dividing elements into smaller ones)
and p-refinements (increasing their polynomial degree)

S .o
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Adaptation/refinement examples

* h-adaptation == mesh refinement
o good for singularities & material inhomogeneities

I

o bad for boundary layers SO

* p-adaptation == higher order elements
o bad for singularities & material inhomogeneities
o good for boundary layers and shocks

u(x)h u(x)s

singularity

>

boundary layer
(eddy currents)
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A priori mesh refinement

modelling & pre-processing * based on a prediction of the behavior of the PDE
! * material distribution
create initial mesh * sources

* boundary conditions

compute solution

post-processing

S .o
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A posteriori mesh refinement

modelling & pre-processing * based on error estimation on a previously
' obtained solution
create initial mesh * intermediate solutions

* deterministic/heuristic error estimators

mesh refinement

compute solution

error estimation

convergence ?

: \ relative difference of a global
post-processing quantity (energy, losses)
smaller than e.g. 1%)

) .o
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Dual formulations

e.g. magnetostatic problem
J-mag P W —div (ugrad ¢) = —div (phs)

curl hy = j5
: magnetic scalar potential formulation

m \/;ector poté:ntial formulation
| | | i | curl veurla = j,

| | | | |

I I I I I
" X

* two FE solutions per step -> expensive

* comparison of the difference in each element

* reliable error estimator

* “superconvergent” solution m

| phs — pgrad ¢ + curla ||q,
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Dual formulations
-

0.0328218

2;/
1.59155

1.06104 {5

0530518 w

1.21442¢-07

0.000507650

7.85175e-06

1.21442e-07

(@)

378897.

284173, Fig. 5. Mesh of the problem Team Workshop 13.

189449. '
94724.3 J

0.00430534

3911.94

40.3891

0.417000

0.00430534

()

207.927

4.83748

0.112545

W

0.00261840

.51.9818

6.09179e-05

6.09179e-05

© Fig. 6. Zoom of mesh of the problem Team Workshop 13.

Fig. 7. Local estimator maps in iron plate for problem Team Workshop 13.
(@) ma2; (b) na; (©) Nequilibrated -

Fig. 9. Zoom out of the estimator map. (a) g ; (b) 74a; (C) Nequilibrated -

KU LEUVEN

Z. Tang, Y. Le Menach, E. Creusé , S. Nicaise , F. Piriou, N. Nemitz, Residual and Equilibrated Error Estimators for
Magnetostatic Problems Solved by Finite Element Method, IEEE Trans. Mag., Vol. 49, No. 12, 2013
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Hierarchical (or embedded) solution

* obtain solution at lower order

e compare this solution to local higher order solutions (e.g. error)
* reliable

* cheap

* does not detect singularities

S .o



A posteriori-error estimation

o i R i T ey T s AT

Sense Electro

Electrokinetic/electrostatic problem T T T R T

electric scalar potential

electric field along top electrode

~ 2 - e g :-T -
il T
E 1.8 - ; . \ /’r»l'\.
- : ; 1 \
I B W
2 140 R
é’ 12 b Solution e .
¢ | , ) . Reﬁneld solutio1|1 ete, P
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A posteriori error estimation
Magnetostatics Magnetodynam

magnetic vector potential
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Heuristic error estimation

* mark element for refinement
when energy, losses, saturation beyond threshold

* mark element for refinement
when difference of flux, voltage, induced current with neighbouring elements
beyond threshold

* mark element for refinement
when size, aspect ratio beyond threshold

* restrict number of new elements to be created in every mesh adaptation step
* not always reliable (skilled simulation engineers)

* very cheap

* allows to manually guide mesh adaptation

S .o



Some error estimators

Region Estimator Discussion
ferromagnetic Abl I AB2 | Ab|? |flux density changes (and iron losses); square form
region (core) |Ab], |AbJ7, W |emphasizes iron losses (& smoothes b )
Aj |2 current density changes (and Joule losses), edd
- INTER y changes (a ' , eddy
solid conductor (A31: |A7 1%, o(T) [currents in conducting regions->skin effect
A2 induction variation<->leakage field; stranded
stre:jndetd |Ab], | ‘;' inductors with constant current but o still depends
conductor o(T) on T
T induction changes<->irreversible demagnetization;
P ; |Ab| measure of eddy current loss in conducting
magne magnets (& smoothes b )
surrounding arr, |Ab| leakage flux, force and torque computation

air gaps

28
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Solving nonlinear problems

Successive substitution (also called Picard method)
Newton method (also called Newton-Raphson method)
Magneto-static application example



Hard magnetic Soft magnetic 30
material by material

When do we have nonlinearities?

* Nonlinear material behavior N
o purely electromagnetic, i.e. nonlinear constitutive law ' '
« e.g. ferromagnetic saturation, hysteresis

o depending on other physics
 e.g. conductivity/permeability as a function of temperature

* Nonlinear boundary conditions
 e.g. radiation conditions

Nonlinear terms in multi-physical coupled models

* e.g. electromagnetic forces in an electro/magneto-mechanical m "“*
* e.g. joule losses in an electro-thermal model

* Optimization problems

S .o
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Magneto-thermal problem => Demagnetisation

Coil ——»

Région 1
70
Magnetic core “
—~
PM P -
| 8

- Région 2

I[A]
1.2 T - T T T -0.5
——element n°1
1 L [——elementn®2 1
0.8 1.5
(
= | -
= 0.6 2
~ Région 2
0.4r -2.5
0.2k Région 1
§
0 1 1 1 1 1
-600 -500 -400 -300 -200 -100 0

H[KA/m]
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Magnetostatics -

Distribution of static magnetic field due to magnets & continuous sources (DC)

“h side” “b side”

Ampere’s law
verified in a
strong sense

Faraday’s law
verified in a
strong sense

@ formulation a formulation

h, given so that

7. glven
curlhy = 7, curlvcurla = 3,
div (,u(hs—grad gp)) =0 b = curla
h = h,—grad p

S .o
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Successive substitution (or fixed-point method)

curlv(b) curla = 3,

Gz(a) = O, \)
b = curla
initial value ag
forn =0,1,... till convergence Fixed point methods
compute b,, = curl a,, » reformulation of the problem

« linear problem at each iteration

. « convergence condition
solve curl (v(curla, )curla, 1) = 3, + if A=1 Picard iteration

Ani1=Aa,11+ (1 —XNay,  linear convergence

evaluate v(b,,)

end

S .o
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Successive substitution (cont'd)

by F--------5 . --- f V(b)b — hgiven

I

iterate V(bn) bn—|-1 — hgiven
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Newton method

Newton-Raphson methods

Gi(a) =0, Vi  reformulation of the problem
* Taylor series
I Taylor series « Jacobian = first derivative
« solve for the correction
oG, * quadratic convergence

at each iteration
compute the correction OG oG,

Aanﬂ - — GZ —an
8aj]a:an[ i Cila-a Jacobian matrix

S .o

J(a)
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Newton method (cont'd)

solve v (b> b= hgiven

]

solve G(b) =v(b)b— hyiyen =0

o b

1terate 5 |b=b. Ab, 1 =G |b:bn
% beb. :%(bn)bn v(by)| reluctivity
dv

:%(bn) ov(b,) differential reluctivity

; e
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Newton method (cont'd)
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Newton method (cont'd)

* graphical interpretation: we approximate the bh-curve by a tangent
* computing the Jacobian matrix maybe complicated

o analytical expression of the derivatives not always known

o numerical approximation by finite differences (e.g. perturbing the solution)
* quasi-Newton methods combine

o fixed point techniques for some iterations

o finite difference for evaluating the Jacobian

* complex harmonic systems require particular treatment when using Newton-type
methods

S .o
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Application — A three-phase transformer

1
| |

|| 1'., L
LN \S«“ i .
" \;:‘;_——__j____ _ﬁf'll Y T R TS sz IR
-0.094 -0.0331 0.0278 ‘LX 1.27e-24 0.879 1.76 7 X
NEREREEN HENERN NEREREEN HENERN
Picard method Newton-Raphson method
no convergence (relaxation = 0.5) 6 iterations (no relaxation)

23 iterations (relaxation = 0.3)
35 iterations (relaxation = 0.2)
73 iterations (relaxation =0.1)
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Application — PM synchronous machine

Picard method Newton-Raphson method

divergence (relaxation = 0.5 11 iterations (no relaxation)
no convergence (relaxation

no convergence (relaxation
126 iterations (relaxation =47

\
\\\
P N =
////,
Vd 4
/ ! ﬁ az Y
-0.007 2.95e-07 0.007 Z X

FEETETETT CEETTT NRRRRNEN LT




Nonlinear problems in GetDP

Resolution of nonlinear problems

For linear problems, the finite element method leads to the solution of linear systems of algebraic equations of the form:
Ax =D, (€))
where A is a square matrix (e.g. the stiffness matrix of the problem), b takes into account potential source terms and X is the vector of unknowns to be calculated.
In the presence of material nonlinearities, the matrix A depends on the unknown field X, and the system of equations becomes nonlinear:
AX)x=Dh. 2)

Therefore, the system must necessarily be solved iteratively. Starting from an initial guess vector X, (e.g. a zero vector), the following calculated values X1 , X, , ... are hoped to converge to the correct
solution. For the exact solution, the residual defined by r(x) = A(x) x — b is zero. If after p iterations, a satisfactory convergence is obtained, the iterative process is stopped. The convergence
criterion could be based on some norm of the residual r(xp) or on the pth increment 5Xp = X, — X, . For example, it could be :

116X, || o

1%, oo

€, (€))

with £ a small dimensionless number (e.g. 10_6).

Picard's method

Picard's iteration provides an easy way to handle the nonlinearity. In the Picard iterative process, a new approximation X; is calculated by using a known, previous solution X;_; in the nonlinear terms so
that these terms become linear in the unknown X;. Therefore, the problem becomes:

Axi-1) x; =b. “)
The following iterative process summarizes the Picard method:
xo =0; // Initialization
for i=1,2,3,... {
-1 - AN c c
X; = (A(xi_l)) b; // Find the new x http://onelab.info/wiki/Nonlinear_problems_in_GetDP
}

41




Post-processing of electromagnetic
quantities



Circuit parameters

resistances, inductances, capacitances
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Capacitance and resistance

* By applying basic concepts of electrostatic fields and conduction media, the
capacitance and the resistance for complex geometric configurations read

 [4ddS  [geedS fed ¢ ed
 fedl § ed [.3dS ~ [.oedsS
* We can use the electrostatic energy for calculating C

C

R —

1 1 1Q% 1 2W.
e== [ d-edV == 2dV = ==X = _CV*? = °
W 5 /V edV 5 /V ece“dV 50 QCV C 72
* The Joule losses or power dissipated as heat in the conductive material
2 2
P:/j-edV:/ae2dV:V—:[2R RV _F

S .o
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Capacitance matrix

Capacitance matrix

1 Ci1 Ci2| |u 1 7
We — [Ul U2] [021 022] [u2] @ We = 51]. Cu

W.>0, Ya#0=C  symmetric and positive definite

S .o
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Resistance matrix

Resistance matrix

ol w2 e wem

U2 Roy 19
Joule losses

L 1 |Ri1 Riof |0 I
Pe — 5 [7/1 7/2] [R21 RQQ ’1:2 @ Pe = 51 Ri

P.>0, Vi#0=R symmetric and positive definite

S .o
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Inductance matrix

Inductance matrix

¢1 L Lll L12 7:1 .
LbZ] - [L21 L22] [22] @ gb = Li
Magnetic energy

W | - . L11 L12 ’il E a W 1 .TI .
— —_ — —
" 2 [Zl 22] [Lgl L22 iQ 21 '

Wn >0, ViZz0=L gsymmetric and positive definite

S .o
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Parameter extraction

e extract C, R and L directly from the FE matrices
(not further considered here)

* apply a few linearly independent excitations for voltages (C), currents (R) and
currents (L) and compute charges (C), voltages (R) or fluxes (L)

1| _ |Ci1 Ciz| |1V - _ @ _ 42
[%] B [021 sz] [()V] Cn = 1V C21 = 1V

* apply a few linearly independent excitations for voltages (C), currents (R) and
currents (L) and compute the electric energy (C), the Joule losses (R)
or the magnetic energy (L)

1 Ci1 Cio| |1V 2We
wW.==-11V V —

S .o




Analogy between scalar and vector potentials *
In a transmission line

Electrostatics

Pl
C =
V’r_‘/l

Yl h
5 Magnetostatics
r S »l< \Y v X A —_— A l
B4 - ' = t B I — zr z
k‘y i | W 1
‘:N
My o . Al
equipotentials A4,

S .o



Parameter extraction

(parallel plate capacitor)
_div (6 gra’d SO) — 0 Conductor surface —Ps z=d
capacitance g | )
matrix _ J g€edS C = €~ charge densty ‘
4 edl Lo
Y Conductor surface 2=0
: - (straight conductor with
—div (0 grad 90) =0 constant cross section)
i Conductivity o
resistance § edl 1 _ U§ U
ma’[I’IX R — Y R l 1=JS —>B=7
| goedS
(ideal solenoid)
curl (vcurla) = j
inductance , 1 -
matrix N Js, @3sdS 7~ Yo
L = — = lz = m
1 12

Engineering Electromagnetics, W.H. Hayt, J.A. Buck, Mc Graw Hill, 2012. 8th edition

50

KU LEUVEN
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Magnetic energy/Co-energy

The magnetic energy and magnetic co-energy are two global quantities that can be used for the
computation of inductances and forces

A In the nonlinear case,
energy & co-energy are
NOT equal

b
W:/dQ/ h db
Q 0
h
WCO:/dQ/ bdh
- Q 0

In the linear case, energy and co-energy are numerically equal

1 1 1 [ b?
szcoz—/bhdﬂz—/,uthQ:—/—dQ
2 2 Ja 1

0




b(h) 52
Nonlinear case co-energy>>energy &
Nonlinear isotropic materials h=v(®)b b =b+b,+b,=b-b ol
2| gy “ 1em . Brauer expression
_{..---5'2#""";;"}_1— | ':,'-'.""“* +//* V(b2) _ kl 4+ k26k:3b2
l—.: + 4+ + metingen TEAMI13 1.0 k1 [m/H] ko [T_2] ks [IIl/H]
Brauner TEAMI13

+ + + metingen TEAMI13 TEAM13 0.3774 2.970 388.33

e e e metingen VHRO0-65D i ;: Brauer TEAMI13
- Brauer VH800-65D 0.5 i : e e e metingen VH800-65D VHS&00-65D 0.0596 3.504 122.87

L + ceeeeeeeeoo Brauer VH800-65D
: +

1 .

H [A/m] ‘ + A .
0 l ! 0.0 ‘t't'l"'1’"""["'\"'Y"W"'T'"‘['"1"'r"""1["l/rn] 2
0 5000 10000 0 500 1000 1500

© M330-50A
—fitted curve with (3)

1.5~

b b2 _
|/|/ 1 ]- 1 k 2 = 1
" 0 0.5

2 ko b(h) = By atan(HLO) + auph

h(b) | | | |
Wco(b) = / b(h’) dh/ = hb — W(b) — I/(bQ)bQ . W(b) 0 2000 4000 H(A;s:so 8000 10000
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NL linear isotropic materials — differential reluctivity tensor

B ha(bz, by) = h(b) = Ohy _ h | dh 0b by by Ob
h=v(b)b bb o, b dbov, b 52 om,
hy(bs,by) = h(D) ?y —
Oh,
N A N Oby
[ Oh, Oh, | .
h 10 dh 1| 0z bab
Oh | db, 0Ob, | _ v(b) (L) - y
Ob Ohy  Ohy 0 1 db b b b2
| Ob, Ob, | oY
3D implementation in GetDP: S1 = b vector
57
58 //dhdb_v[] = nu_sc[Norm[$1]] * TensorDiag[1,1,1] +
59 // ( dhdb_sc[Norm[$1]] - nu_sc[Norm[$1]] ) * SquDyadicProduct[$1]/SquNorm[$1];
50
4 dnhdb_v[] = (Norm[$1]#111) ? 0 TERIEES
5 nu_sc[#111]#222 * TensorDiag[1,1,1] + (dhdb_sc[#111] - #222) * SquDyadicProduct[$1]/#111A2

: nu_sc[#111];



Simple winding model

n more or less regularly spaced series-
connected turns

flux linkage (Vs) in 2D model

\IIQD — Lz / jz,lA c Ay dQ2
Q

W

d

V =RI + I (Uop + L3pl)
end-turns
SA=KI
J=KI Kz:/ jz,lA"wz‘dQ
Qw
V=L K'A

homogenized current density in 2
coil sides at @1A

+n
) B ) At B
]z,lA—Q—i in Q, =Q] —Q
W
y jz:% J= gva
© @{----oneee e ® ®
é . Wl Se e T 282
z @@@ _________ ®®®
Il
L= ' ' IR

95

|

V=

end-turns

(same K matrix -> reciprocity (symm. inductance matrix)) w



56

Inductance from flux linkage

* flux linkage model

@:/de: adl
S 8

pon®_y Js 284S
I IE

{ Name Flux ; Value { Integral {
[ SymmetryFactor*LengthAlongZ*Idir[][*NbWires[]/SurfCoil[]* CompZ[{a}] ] ;
In Inds ; Jacobian Vol ; Integration |1 ; }

1}

{ Name Inductance_from_Flux ; Value { Term { Type Global;

[ $flux*1e3/Il ] ; In DomainDummy ; } } } // register $flux contains the Flux az Y
0 0.0162 0.0324 |z_x
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Inductance from energy

* energy model - linear material

b
W:/dQ/ h db
Q 0

2W

L =

(nl)?

{ Name MagEnergy ; Value { Integral {
[ SymmetryFactor*LengthAlongZ* 1/2 *nu[{d a}]*{d a}*{d a} ] ;
In Domain ; Jacobian Vol ; Integration I1 ; }

1}

{ Name Inductance_from_MagEnergy ; Value { Term { Type Global; // in mH
[ 2*$wmag*1e3/(II*II) ] ; In DomainDummy ; } } }
Il register $wmag contains the energy

0 0.0162 0.0324 |z X
. NN




Inductance from co-energy  [oes ;

N\
* co-energy model — nonlinear materials \
Y S\

b h o .
W — / dQ/ hdb W, — / dQ/ bdh underestimation: if saturation, the
Q 0 g 0 variation of b becomes negligible

energy is bounded, co-energy not

_ aj.ds 187
o flux linkage 1="%_, Js. @ |

I I?

1.4+
flux linkage based -

Definition of the inductance? 127
Given the nonlinearity, its value is no

longer constant, it depends on the current

B
[

W[l o1

0.8°7 BH based

0.6 T
041

Key quantity in nonlinear OL(I)

0271 =
transient problems: —
P oI 0 ewes =

Differential inductance 0 200 400 600 8
Ampere turns [A] W




Force computation
Virtual work, Maxwell stress tensor



Magnetic force computation 0
Generalities

the magnetic field exerts a force on
 current (in coils, in conducting material in general) -> volume distribution, in N/m3
* on (ferro-) magnetic material -> volume and surface distribution, N/m3 and N/m?

total magnetic force/torque computation methods
* volume/surface integration of Lorentz (Laplace) force density,
for non-magnetic material only!
* numerical differentiation (finite difference) of energy or co-energy w.r.t. position
* |ocal application of virtual-work principle
(virtual distortion of layer of elements around volume/surface)
* surface/line integration of Maxwell stress tensor
+ approaches for averaging

S oo



Magnetic force computation °
Force distribution vs total force/torque

o

S

% 7 /’/‘:“:‘:3'-%:5.",:"\
i_._,\\\\\\\\\\‘é ’L

7 »

Application to an SRM
in [Vandevelde2001]

e. Method 4 f. Method 5

S 7
14
d. Method 3 w
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| orentz force

Lorentz force is simple to apply to compute the magnetic force acting on a
current-carrying wire. Given the local value of current density and flux density,

we can find the local force distribution and the total force:

f=j3xb=curlhxb (N/m?) fop =3 xb=—j.b,& — j.b.Y

P / ixbdQ (N) integration over a volume
] of non-magnetic conducting material

The total force on a close conductor
Is then obtained by integration, i.e.

F=/Idl><b
gl




Lorentz force — applications

Surround

Axisymmetric loudspeaker

\oice coil Diaphrac

Current out Current in _
of paper to paper Spider
DC flux path N TF FT e Whizzer
AN $ &
N N S S N
'Y
D . Dust cap
N N
S S
Magnet

Pole piece

Compliant material

Levitation device - TEAM 28

exercise:
calculate axial force

10 turns
0.1A

radius of 1 cm
bof1.1T

e
pasPav
N

63

f=jxb=curlhxb (N/m?)

F = 7 x bdf}

Q*

.fQD — .7 X b= _]zbyi - ]szﬁ

(N)

‘”‘vv Wap !

) : , , /7
* Aluminum disk above 2 concentric coils AV e
- 50Hz sinusoidal current in two coils o\
* Induced currents in the disk 4 ]

! i cmedl o

RO

o| | o ® REREAAAT R

WRRAAA AT avAy




Lorentz force — applications o
TEAM 28 levitation device

L\

///N

""""""""""""" )]

0\
\:\\\\_-_'///// ) ’

50 Hz
Fig. 1 Flux lines and induced current density in the plate, real (left) and imaginary (right)
parts, with f = 50Hz, z,; = 3mm and 2 = 20 A o _
The levitating force on the aluminum plate
can be computed by Lorentz force
1 kHz

\ //
Results in

Fig. 2 Flux lines and induced current density in the plate, real (left) and imaginary (right) [Sabariego2018]
parts, with f = 1kHz, 2, = 3mm and 2 = 20 A
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Magnetic force computation — Virtual work

Principle used in conservative energy systems

It is based on the comparison of the energy balance between two different positions,
supposing a virtual movement along the direction where the force is computed

_8Wmag L anag,co
85 VU=cte B 85

F =
I=cte

system with just 1 coil and just 1 generalised position DOF
 linear coordinate Y (m) and force (N)
» angular coordinate 0 (rad) and torque (Nm)

anag anag co 8Wma ana co
- = : To(I,0) = — 2 = &
aY VU=cte aY I=cte 89 VU=cte 80 I=cte

S .o

Fy(1,Y) =




Magnetic force computation
Virtual work — linear case

Linear case (no saturation, no PMs, no induced currents)

Y

Winag(I,Y + AY/2) —

67

U(I,Y)=L(Y)I
1 2
Wmag — Wmag,co — §L(Y)[
MW inag o AL general force associated
Fy(L,Y) = oY |;_.. QI dY tothe generalised position

Approximation by two independent FE solutions

OWhag

I=cte

Wnag(1,Y — AY/2)

Wmag :meagdﬂ FEA

S .o

AY



Magnetic force computation s
Virtual work — nonlinear case

Nonlinear case (saturation, no PMs, no induced currents)

A

w(I)
¥, ¥) Wnag (1, Y) = /0 L
I
Winag.eo(1,Y) = / w(I,Y)ar
0

- Winag(I,Y) + Winag.co(I,Y) = TU(I,Y)

OWmag
oY
OWhag,co
aY I=cte
Wnageoll, Y + AY/2) = Winageol 1LY = AY/2)
AY

FY(Iay) —

U —=cte

Y
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Virtual work In trouble

* displacement should be enough for accuracy
* displacement should be large for stability

ana co Wma co(Ia 0 —+ AQ/Q) _ Wma co(Ia 0 — A9/2)
g; ~ g, g,

T — ~
¢ a0 |,_.. I

* typical procedure

o compute W,.. (I, 6,) for many angle positions 0,
o smooth curve by e.g., FFT filtering
Winageo(1,05) =Y ex(D)e”?,  omit all A > At
o compute torque A
OWnag,co(1,0)

_ _ A0
Tg = 99 = ZZ)\C)\(I)G

e TR
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Virtual work implementation in GetDP

magnetic energy contained in layer of elements around the body

I boundary moves virtually up

volume to calculate force on

S .o
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Maxwell stress tensor

* From Lorentz force we can write:  f=jxb=curlh xb=vcurlbxb
* developing this equation for e.g. the x component

B ob, . b,  Ob, . Oby
fw—”(bza‘bz%"’y%”ay)

* adding and subtracting by %% and considering 86 (b2) = 2b, %%
fw=V(%%(b2) b %b by%—%%(b%rb%rbz))
= (%( - —IbI ) + 8%””:“2 + a%yby — bydivh
= (a%( ——|b| ) + mgf 82; ) Y

S .o
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Maxwell stress tensor (cont'd)

* The remaining expression ( 9 Ob,.b, N abxby>

_ 2+
Jo=v|{ 45 (b !b! )+, 9y
* may be recognized as the dlvergence of a vector with components

(T, L1
o = fu = (02— 510
: _ 0T,
leT:I: — < 8y = fa:y — V(bxby)
0T,
{92 — facz — V(bxbz)

* a similar development can be performed for the other components of the force

S .o
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Maxwell stress tensor (cont'd)

1 1

Maxwell stress tensor T = —bb — ——|b|*I (N/m?)
1o 200
R _
_ 1
T=v bybe b2 — 5|b|2 byb.
1
b.bs boby b2 — 5[
force density f=divT
force F:/ diVTdV:/T-ndS
v s

Using the divergence theorem,
the volume integral is reduced to a surface integral

n outward normal to boundary S = 9V m



Maxwell stress tensor
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Maxwell stress tensor vs. virtual work

* MST needs only FE solution

* Loss of accuracy (based on derived values)
o Introduction of a contour around domain of interest -> additional error source
o Some round-off errors in calculation of contour coordinates

o Problem when normal and tangential components of the local flux densities
differ by orders of magnitude -> Integration may involve the subtraction of large

numbers
* Accuracy improved by
o Smoothing algorithms (e.g. averaging of results on different contours)

o different integration schemes

S .o



Eggshell method/Arkkio’s method "
=> Averaging Maxwell stress tensor

* remind that the aim of force computation is to determine the velocity/displacement of the
moving parts
* eggshell region enclosing moving piece, non constant thickness Qspen =2 Y

* set velocity to zero in Z, confining the non-zero velocity in the shell, and in Y |
« (virtual) velocity associated with displacement o g o

v =~v0u, gradv = grad~ydiu < z
* 7 is any smooth function,
= 1 on inner shell surface QSh%, v

= 0 on outer shell surface

F = T grad’)’ dQsneir

Qshell

* integration of Maxwell stress tensor on an enclosing-surface
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Linear actuator

100
X: classical
C 1071} force calculation
o)
G 1072
)
=
T 1073
o
1074
force (N) 8l _
1800 10 force calculation®
e translator 1 : - : : :
ansiato 600 101 5 3 2 s 5
1400 | 0 10 10 10 10
e airgap1 44 | number of degrees of freedom
~ airgap2 1990
800 | 1 _
— back iron 600 analytical calculation
400 | measurements
——e symmetry ., finite
0 , , _ _ element
« periodicity 0 10 20 30 40 50 simulation

frequency (Hz)
KU LEUVEN

Ex. paper Prof. De Gersem (TU Darmstadt)



Force computation in GetDP o lee es, w |
Maxwell stress tensor T=v| b B pE b

2 1 2
 PostProcessing $1=b | b buby b2 =5l

Tmax[] = (SquDyadicProduct[$1]-0.5*SquNorm[$1]*TensorDiag[1,1,1])/mu0 ;
{ Name F; Value { Integral {
[ SymmetryFactor * Tmax[{d a}] * {d un} ] ; In DomainAirlayer ; Jacobian Vol ; Integration Il ; } } }
{ Name Fy ; Value { Term { Type Global; [ CompY[$fmag] ] ; In DomainDummy ; } } }
// Magnetic force stored in run time variable $fmag, keeping just the Y component
// {d un} = {Grad un} => layer with arbitrary thickness, use smooth function un=Y

e PostOperation
Print[ F[DomainAirlayer], OnGlobal, Format TimeTable, File Fmax.dat, StorelnVariable $fmag, LastTimeStepOnly ];

I/ Save result of PostOperation in variable $fmag
Print[ Fy, OnRegion DomainDummy, Format TimeTable, LastTimeStepOnly,
SendToServer Force MST [N], Color LightYellow ]; // If translational movement, only the vertical component




Losses
Joule losses, iron losses, dielectric
losses...
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Electromagnetic power

* Poynting vector s=exh

* Power exchanged with a volume (interior normal)

Pz% s-ndS:—/divsdv:/pdv
)% 1% 1%

p=—divex h=—h-curle+e-curlh
—=p=h-0b+e-j+e-0,d

* Power density

magnetic  conduction electric

S .o



Eddy current/Joule losses

84

* |n a conducting material submitted to time-varying field, loops of induced currents

appear, i.e. eddy currents appear
° Sk|n eﬁ:eCtS Solid wire — Radius R = 2mm

Frequency 1

* Proximity effect

v A\ 3
External 50Hz 5kHz 15kHz 100kHz

J. Biela, “Design, modelling and optimization of magnetic components for power electronics converters”, 2017

Current tends to flow at
the surface due to skin
& proximity effects

The higher the

frequency, the higher
the AC resistance

KU LEUVEN
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Eddy current/Joule losses

* |n a conducting material submitted to time-varying field, loops of induced currents
appear, i.e. eddy currents appear

e Skin and proximity effects
* Eddy currents in conductors generate heat and EM forces

o Positive effects:
* heat may be used for induction heating
« EM forces may be used for levitation creating movement or for braking (regenerative)

o Undesirable effects:
« power loss in transformers (laminated cores for reducing the eddy currents)

* hot spots in insulations
1 . 1 j°
Joule = Y61(€2.) /Q ©J Vol(Q.) /Q o

| R
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—
lron losses -
~—
In general, the magnetic losses are classified in _- f |
- B0 retonans Oy rotatr
* Hysteresis losses p o
discontinuous character at the microscopic scale of the )

] . Tor nhysteretic Curve
magnetization process (energy loss by each Major loop Anhysteretic C
Barkhausen jump) S/ |/ /[ ymencure

~hisat “he) i

A -
gl

+hC +hsat h

* Dynamic losses
o Eddy current losses
conducting material submitted to time varying field
o EXcess losses or anomalous losses

due to the existence of magnetic domains, that
enhance eddy currents in the proximities of domain

walls, magnetic skin effect w

Minor loop

b Barkhausen jumps
.

—bsat
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Magnetic domains and bh-curve

* Subdivision of material in magnetic e N
dOmainS \ R Magnetic Domains
0.1mm
(a) (b) (c) (d) (e) (f)
b b b b b b
reversible irreversible

* Evolution of magnetisation

h h h h h h
Uniform magneiisation to

oo o\ % . o Y saiurqtiqn&rotatign.

crsareccomare I M ;
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Minor hysteresis loops

bl\

|
\\

Figure 1.6: (left): Set of symmetric minor hysteresis loops with the reversal points connections on the virgin
curve, (right): Path history generated by a field with oscillating amplitude, slowly decreasing from infinity to
zero, around a constant bias field value. Other final points can be reached by repeating the operation under
different bias values. The locus of all these final points constitutes the anhysteretic curve (in dashed line).
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Hysteresis losses

under periodic conditions with sinusoidal source

T

z be be
0 ba b

a

T ba be
/ h-atbdt:/ h_db:—/ h_db
L b b

B c a

time average power dissipation:

b, b.
/ h.db— / h_ db
b b

1
T

Phys:

a a

AW

a

the area within the hysteresis loop is the energy !

dissipated in one cycle m
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Dynamic hysteresis loops

1.0

%
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Figure 1.8: Dynamic influence on the hysteresis loops measured on a specimen of a non-oriented iron-
silicon alloy under sinusoidal induction of 1 T amplitude at different frequencies [26].

S .o
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Hysteresis losses and field simulation turning point

reversible area

* as a post-processing step ; B\ SO
e.g. by Steinmetz formula  Physt = Ohystkhyst 757 (ﬁ) ’ major loop
* within a time-harmonic field simulation
complex permeability , > u(?)
b(t) = b cos(wt) . g s p
h(t) = hcos(wt — @) h
/ minor loop

* within a transient simulation by a hysteresis model
Preisach model (purely mathematical, not limited to EM)
Jiles-Atherton model (inspired by physics of material)

Energy-based models (15t and 2"d [aw of thermodynamics to represent
hysteretic behaviour)

) .o
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Excess or anomalous losses

* magnetic “skin effect” is neglected => dynamic losses are bigger than so-called classical
losses Pex(t) = Payn(t) — Pal(t)

* magnetization process represented as a distribution of coercive fields locally associated
with magnetic objects

* if we define an excess field as part of the external field applied to compensate the field
created by the movement of the magnetic objects, the excess losses can be calculated

by means T
Pox = \/0GVy = / oblt)
T J, ot

* friction coefficient G is the constant of proportionality between the excess field and the

rate of change of magnetic flux
g g H.. — Gaﬁcgit)

* parameter V, is related to the number of magnetic objects and the excess field, linear

relation (experimental) Hey =n(t)Vy w

1.5
dt




mip) = f f Qs ha) g (D dhudha ()
uzhg

r (hu, hg)
m(hu»hd)h/\ - (P wtd
—> M(hy,hy) >
+msi ( ( )
\ —>| Ty, hyg) (%
h
\ .\ ’ o — m(1)
hg A h, = mmmmmmmmmmmmm -
— —— >
— M ERETTS

find a* such that

/(l/ curla™ x w;) ndl’ + / (1/ curl a*-curl w; + a@ta*.wi) dQ) = / Js-w; dQ
T Q Q

¥

holds Yw;(x) AQUIT ]  Material law is hysteretic

93




Energy consistent hysteresis model

o {Magnetic Tield)

Mmoa

J'.

N i

-

J\

F=3J% (Magnetic Polari zation)

Fa(t)

MVP (inverse model)
seeess MSP (direct model)

94

—— MVP (inverse model
--- MSP (direct model)

crene

MSP(direct model)

—_
[y B
—_—
: hirr
—
: J
—— MVP (inverse model) 501
| === MSP (direct model)
0.4 40
0.3 30
0.2 20}
0.1 £10
e =
S0 =0
=
0.1 107
0.2 20
0.3 30
0.4 : 407
b-loci
0.5 301
0.5 04 03 02 0.1 02 03 04 05
1 1
MVP(inverse 3 ST
0.8 IVP(inverse model) 0.8

— MVP{inverse model)
===== MSEP{direct model]

80 60

40 20

P

a0 6
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Eddy-current effects in laminated iron cores
LA o

m turns

exciting

m.m.f. mi
NS S
E - | dd laminated core to reduce
i A ( i )
i ——1 | eddy current losses due to
i - time-varying flux excitation
==

L\ eddy currents

>d
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Modeling eddy currents in laminated iron cores

stack as a set of massive stack as a single homogeneous
conductors with insulating layers non-conducting material

":::::::::::::::::::::::::::::::::;'u,..... homogenization

unworkable”'N two step approach

a posteriori estimation of eddy current
losses and hysteresis losses

* two step approach OK provided that the eddy current effect is negligible
* iron loss directly included in the constitutive law

‘e
‘e
.
u e
''''''
NN
‘e
5
.
G

db od? db

hdyn (b, E) = hstat(b) + ﬁ% (—|— eXCess term)

* flux parallel to lamination + excess term

* flux perpendicular to laminations via anisotropic conductivity tensor w
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Eddy current losses in laminated cores
Classical losses

* In alamination of thickness d, under a periodic field of period T, these losses are

given by .
od? 1 7 0b(t)

* For non-sinusoidal fluxes, these losses can be calculated by using a Fourier
expansion of the induction and summing the effects of all the harmonics:

or? f2d? 272
Po=— Ek:k b2

Vol(£2;) = volume of the lamination

b, = amplitude of the kth harmonic m



98

Dielectric loss

* dielectric constant => storage of electric energy in material (via polarization)
d=cpe+p=cp(e+ xce) =¢€o(l+ xe)e = €pere

* electrical conductivity => losses of electric energy in material (heat dissipation)
« complex dielectric constant € =¢€" — 1"

, o _ o CROREREATREAR)
o € = static dielectric contribution in C calculation SIRESISECEY

€' = energy loss in dielectric medium A . i PR
@) gy 6// € 5 dipolar @ ® ® ) Q ) ®
o losstangent tand = — I DD OO0 O

€
(how lossy material is for AC signals) 5 *
1

Pdi ] = / cue’ tan (0 62 dei 1

© T Vol(Qaiel) Jo,., (%) ©

| |
— 1 / we” e? dQyiel 103 100 10° 1012 1015

Vol(2gjel) Qdicl frequency (Hz) w



Losses and power 99
Frequency domain

Joule losses  I%(t) = I? cos®(wt + 1)

— %P <1+Cos(2wt+2fw))
L. 1 12w
_ §I2+§§R(ll€—2 t)
— %P—I—%S%(ll)cos%}t—%%([l)siant

Instantaneous and average (active) power

VI(t) =

_‘/\/
1
2
1
2
1
2

~>

cos(wt + vy ) cos(wt + )

I (cos(vv — 1) + cos(2wt + Yy + w))




Magnetic energy density, Lorentz force denS|ty 100
Frequencydomam .

Magnetic energy density _
%y b(t) - b(t) = ...
; [

— ZV(Q ) Q* i %(b . Qei2wt)) = 00 _ '

_ 12wt I
— Wmag,av + 8%( mag 2w € ) 05
—_ C\, .

— Wmag,av + §R< mag 2w) cos 2wt — \S<wmag,2w> sin 2wt

L 1 L
wmag,av:ZVQ'Q wmag,Qw:ZVQ'b (|QQ‘ < b-b )

1.0 -

Wnag (?)

Lorentz force density
. L * 1 1 2wt
(1) x b(t) = —9%( xb') + 23%( x betet)

1

= §R< xb*) + %?R(lxb) cos 2wt — 5%(j><b) sin 2wt

average force 2w component force m



