Current and voltage as global quantities
Movement treatment
Coupled problems



Circuit coupling

* sources of magnetic fields in conductors (two models: massive and stranded)
o electric current densities (local quantities)
o current/voltage (global quantities) in a FE computation

* coupling with external circuit source (control/power electronics) is essential for
accounting for the operation of the device within the FE simulation

o sometimes it is enough to perform a set of static or dynamic simulations to
characterize the device: tiresome, often unfeasible (saturation, movement,
multiple sources...)

o strong coupling: all equations solved simultaneously
o weak coupling: iterative solution with a possibly adaptive time-step

S .o



Solid/massive conductor

* allows current redistribution (internal
eddy currents causing skin and
proximity effect)

* parameters:
o Voltage across conductor
o length

e equivalent to massive block of
conductive material

non-homogeneous -
current distribution

Isol l

jsol 1

|

v

sol




Stranded conductor

* equivalent to bundle of thin (<skin
depth) insulated conductors

* eddy currents in wires are
disregarded

e parameters: (homogenous) current
density, length, number of turns

* electrical conductivity: to correct for
cross section => ratio conductor
area /total area (fill factor)

* equivalent resistance (lumped
element) to couple with external
circuit

homogeneous current distribution w




Circuit equations

Vapp sol Iapp Str ‘ ‘
* direct substitution
o solid conductor + given voltage source
(incl. short-circuit)
k; k, k, 0
o stranded conductor + given current b kprjoly kA =] L,
source (incl. open circuit) ko kK _Np,
* extra circuit equations | A
o modified nodal analysis (MNA) Kk
. - 4
o signal flow graph ki Kyjoly K, T all
. ! N,p,
o block structure => suitable solver Gk o o
o off-diagonal: coupling terms R i O L | | v,
. jol —=5 R,
o can be made symmetric B




Circuit equations

 direct substitution

©)

©)

solid conductor + given voltage source
(incl. short-circuit)

stranded conductor + given current
source (incl. open circuit)

* extra circuit equations

©)

©)

©)

©)

modified nodal analysis (MNA)
signal flow graph

block structure => suitable solver
off-diagonal: coupling terms

Vapp sol Iapp Str ‘ ‘

dA
SA+Ty —— = K, R,'Vy + KT

dA
Vi = Ryly + KME

dA
Vs = Rgls + KSE

dI
DEVS +D,, Vi + R + de—tl =V,

o can be made symmetric w



Global conditions of currents and voltages

?zougeéén 7 f\/V‘ * {4, is a source of e.m.f. located between
S IS T 7 . .
U, Q5 € Qe T T, two sections close to each other, i.e. two

electrodes (coinciding cuts in practice)

* voltage V; & current /; are associated to
this source

e current /; flows through surface T,;
* 7. IS path connecting the two electrodes

/ e-dl=1V,;
N
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Differential k-forms
The exterior derivative d applied on a k-form gives a k+1-form

* 0O-form, (e.g. potentials @, v):

(@)

(@)

(@)

(@)

continuous scalar fields (conform)
generated by nodal functions
value (point evaluation) at node
exterior derivative is grad

 1-form, e.g. h, e, (potentials a, t):

(@)

vector fields with continuous tangential
trace (curl-conform)

generated by edge functions
circulation (line integral) along edge
exterior derivative is curl

e 2-form, e.qg. b, |:

(@)

vector fields with continuous normal trace
(div-conform)

generated by facet functions
flux (surface integral) through facet
exterior derivative is div

S .o



a — v formulation 10
a magnetic vector potential

M ag N etOd yn am I CS v electric scalar potential potential

Define ain Q and v in Q. (discontinuous across electrodes):

* gasal-formandvasaO0-form, b = curla

 satisfyingthelocalBC exnjp, =0 €= —0ya — grad v

* andglobal BC V; =V, Vi € Cy (i.e. the circulation of —grad v around conducting
domain Q; is equal to V).

This strongly satisfies
curle = —9;b, divb=0, exnl|p, =0, V;=V;, Vie Oy

What needs to be weakly imposed is
curlh =3, j=oce, h=vb, hxnlr, =0, I,=1;ViecC]

S .o
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Choosing the potentials

* We still have freedom on the choice of the potentials. Indeed, the fields b and e do not
vary for any scalar field ¢

t
a%a—l—/ grad ¢ dt
0

vV—UV— @

* There are different possibilities for gauging a and v

* One global shape function vg,; in each €, is sufficient for representing a unit voltage, st.
we have:

N
grad v = Z Vigrad vg ;

1=1

S .o



Choosing the potentials N
2D case with in-plane magnetic flux b

N
b= curla e = —0;a — grad v gradv = Z Vigrad vg

1=1
* MVP along z with nodal basis functions %

a=> annt
mn

NB it is a Coulomb gauge with diva =0

o gradvg; is along 2 and constant (=1) in each €,
(V is a voltage per unit length)
* Remaining constant fixed by BC

KU LEUVEN

GetDP workshop on superconductors at CERN, April 2022, Julian Dular



Choosing the potentials N
3D case

In €., define v ; to be zero everywhere except on transition layer in (2. ;:
layer of one element, on one side of the electrodes, in each (). ;
(v has no longer a physical interpretation)

N
gradv = Z Vigrad vg

1=1

a is generated by edge elements

In )., a is unique, e.g. outside the transition layer, e = —0;a
(reduced vector potential)
In Q¢ we need a gauge for making a unique

KU LEUVEN

GetDP workshop on superconductors at CERN, April 2022, Julian Dular
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Co-t In QF, only curl @ = b has a physical meaning. One DOF
O-lree gauge per facet is sufficient (and necessary), instead of one DOF

per edge.

The support entities of the 1-form a are the edges.

To associate a unique edge to each facet: consider only
edges in a co-tree, i.e. the complementary of a tree:

a— Z de YPe.

ecQ.U(co-tree in QF)

VEN

NB: Be careful on the conducting domain boundary 92, no gauge there because «a is already unique.

GetDP workshop on superconductors at CERN, April 2022, Julian Dular
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Surface term in MVP formulation

(veurla x n ,grad V'), = (h xn , gradV)

8QC aS)C

0S¢
h ,n x grad V')

d(transition layer)

(

= (h ,n x grad V')
(
I/

Vi=1V

KU LEUVEN

GetDP workshop on superconductors at CERN, April 2022, Julian Dular
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MVP formulation with V and |

Finally, the | a-formulation |amounts to find a and v in the choser
function spaces such that, Va’ and v/,

(veurla ,curla’), — (h x ng ,a’>Fh

+ (0 0a ,a’)QC + (o grad v ,a’)QC =0,

N
(o D , grad v’)QC + (o grad v, grad V) Q = ZIiVi(V/),
i=1

with [; = 7,' fori e Cy,
and V;(v') = V! (i.e. the DOF associated with the unit voltage
function v ;).

KU LEUVEN

GetDP workshop on superconductors at CERN, April 2022, Julian Dular
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MVP formulation interpretation

When the test function v/ = v, ; is chosen (V;(v4;) = 1), the
second equation reads

(o (Oa+grad v) ,grad vg;), = I;

= (ce,—grad Vd’i)Qc = 1.

"Flux of oe (=j) averaged over a transition layer = total current”

NB: The flux of e depends on the chosen cross-section as ce is not
. a 2-form ‘as i should bel. Conservation of current is weakli satisfied.ﬂ
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Current as a strong global quantity

h— Z . Edge FEs to interpolate curl-conform fields (h)

eTe se edge BF associated with edge e
he = circulation of h along edge e = difference of scalar potentials at the two
& edges in ) ends of the edge in the non-conducting domain

=> Coupling of edge FEs (field) and nodal FEs (scalar potential)
Explicit constraints for circulations and zero curl, i.e. currents i

E. inner edges in €.

Nf nodes in Qg and aﬂf

\ C cuts

curlh = 7 in Q.

Basis functions
curlh = 0 in QCC ¢ — Cbcont + ¢discont S QCC

) .o
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Current as a strong global quantity

h = Z hkSk -+ Z ¢ngrad wn + Z Iici h gb = ¢cont + deiscont S Qg
kEE. eNC 1€C

Treatment of multivalued potentials
e coefficients Iiare circulations along

well-defined paths

e ci are vector ‘circulation’ BFs linked
to a group of edges from a cut,
accounting for discontinuity

Introducing cuts for making Qf simply connected \

Transition layer of qi

=> |ts circulation equals 1 along a
closed path around €.

. - Elementary geometrical entities
c; = —gradg; in {}, (nodes, edges) and global ones

n X c; =—n x gradg; on 0L, (groups of edges) m
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Voltage as a weak global quantity= > _ rxse + > dnva+ ) _ L
ke neNE icC
Strong formulation < € €

curl pcurl h + 0;(ph) =0 in €., div (u(hs — grad (b)) =0 in QY
Weak formulation of Faraday equation
find A such that

/,u@th-wdﬂ+/ pcurlh-curlwdﬂ—l—/nxes-wdF:O, YVw
Q Q r

h = Z hisk + Z ongrad i, + Z Iic; system of equations
ke&, neNC icC (symmetrical matrix)
grad ¢, = vy,
test function w = s, v,,~> no additional contribution to surface integral

test function w = ¢; = contribution to surface integral

electromotive force = weak global quantity

/nxesode’:/nxeS-cidI’:/nxes : (—gradqi)dfzj{esxdlzv-
N T T i‘ w
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Voltage as a weak global quantity
and circuit relations

electromotive force 70 L
2. T
nxeg-c;dl' = j{e xdl=V;, — —
/r S ; i Z("’ (..---—-—--——‘——- < Natural way to compute a
— =24~ weak voltage !
Cut C 56_ My Better than an explicit non-
e 30’ ________ Lz unique line integration

J.o

-

~
3 1
-

\ ’ j .
2 e

—— _F,—F_

s -

When the test function ¢; (I{c;) = 1) is —
chosen, we get the equation:

/ 1 Oh-c; dQ +/ o teurl h-curl ¢; dQ = -V, Weak circuit relation
Q Q. between voltage & current

Flux change uh (= b) + circulation of pj (= e),
both averaged over a transition layer = total voltage”.

“0;(Magnetic flux) + Resistance x Current = Voltage”
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FunctionSpace{ h = Z: hiSk + Z gbngrad %, + Z Iic;

{ Name h_space; Type Formfi;
BasisFunction { ke&. neNE 1€C
// Nodal functions
{ Name gradpsin; NameOfCoef phin; Function BF_GradNode;
Support Omega-h_-OmegaCC_AndBnd; Entity NodesOf[OmegaCC]; }
{ Name gradpsin; NameOfCoef phin2; Function BF_GroupOfEdges;
Support Omega_h.OmegaC; Entity GroupsOfEdgesOnNodesOf[BndOmegaC]; }
// Edge functions
{ Name psie; NameOfCoef he; Function BF_Edge;
Support Omega-h_-OmegaC_AndBnd; Entity EdgesOf[ All , Not BndOmegaC]; }
// Cut functions
{ Name ci; NameOfCoef |i; Function BF_GradGroupOfNodes;
Support ElementsOf[Omega-h.-OmegaCC, OnPositiveSideOf Cuts];
Entity GroupsOfNodesOf[Cuts]; }
{ Name ci; NameOfCoef 1i2; Function BF_GroupOfEdges;
Support Omega_h_OmegaC_AndBnd;
Entity GroupsOfEdgesOf[Cuts, InSupport TransitionLayerAndBndOmegaC]; }

}
GlobalQuantity {
{ Name | ; Type AliasOf ; NameOfCoef Ii ; }
{ Name V ; Type AssociatedWith ; NameOfCoef li ; }
}
Constraint {
{[...]}

{[.-.1}%
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Massive and stranded inductors

* Massive inductor => direct application
e Stranded inductor (uniform current density) => additional treatment
* Reaction field + Source field due to a magnetomotive force N; (= turns)

(one basis function for each stranded inductor)  h=h, + ) I, jh,;
find h such that JEQs

/,u(?th-wdﬂ—l—/ 0_1curlh-curlwdQ—|—/
Q Qe

o 1js - curlwdf) = —/n X es - wdl
Qs

r

holds Yw

/ pOth - ws ; A2 + Is,j/ a‘ljs,j -curlwg ; dQg = =V, Vw,
Q Qs

Weak circuit relation between Vj and /j for stranded inductor j

Natural way to compute the magnetic flux through all the wires ! m
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Stranded inductor — source field

h= ) hpsp+ o, + > Iic; Simplified source computation:
nEMe J * projection method
 electrokinetic problem

S57

/ curl h ; - curlw d€l ; :/ Js,; - curlw dfg ;
Q 25

/ Saj

ion, o teurl hs ;- curlwdQ,; =0

coil reg

| Qs,j

: ll/\\\ EAVA NI
- Jawwmmwww :




Conclusions FE formulations with »
massive and stranded inductors

h-¢ magnetodynamic formulation — use of edge & nodal FEs for h and ¢

* Natural coupling between h and ¢ with BFs for either massive or stranded inductors
* Definition of current in a strong sense/voltage in a weak sense

* Efficient definition of a source magnetic field: limited support

* Natural coupling between fields, currents and voltages

a-v, magnetodynamic formulation — use of edge & nodal FEs for a and v,

* Natural coupling between a and v, for massive inductors, adaptation for stranded
iInductors

* Definition of voltage in a strong sense/current in a weak sense

* Efficient definition of a source electric scalar potential v, in massive inductors: limited
support

* Natural coupling between fields and currents and voltage

KU LEUVEN



http://www.compumag.org/jsite/images/stories/newsletter/ICS-00-07-2-Dular.pdf
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Application — Massive inductor

[ Inductor-Core system in air ]

% ‘4 ! SurfInf D a-form., 200 Hz
S lng e B
! > (a) S —
L‘ * h-form., 200 Hz
(,:’) Air E
) ¢ Inductor: ! e
()O > : , th"SOH ””””””””””””
cut T surf hto N T
W core = 1, 10, 100, 6=5.9 10’m S/m
Frequency f= 50, 200 Hz
Computation of resistance / M core = 100
and inductance ; ap L ol
e T ez
Complementarity between a-v and h-¢ olfe o
formulations — validation at global level

L L L L 1
2000 10000




Application — Stranded inductor

[ Inductor-Core system in air ]

[ Computation of a source field ]

h

S

27

“’r,core -

> , _l;\\‘.
T h-form., u,=100
28 . ;;; i _A_._._A_f o _v_,_;_ég_ ST
N * o a-form., =
U core — 10 ¢ / | ‘ : 26 @: e h-form., u=10
f o vl A ,, ‘;; g 24 5" “ ﬁa_fo,mv_;',;@ 7777777777777777777777777
N — 1 é 22}
Computation of reaction field, total field | ,£ .|
and inductance! s}
) e e
Complementarity between h-¢ and a-v 14 b arform, =t

formulations — validation at global level

1 1 1
2000 3000 4000




Coupled problems involving
electromagnetism

EM + thermal problem
EM + mechanical problem
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Why studying coupled-field problems?

civil engineering systems involve integration of structural/solid mechanics, fluid/gas/air dynamics,
acoustics, propagation, magnetodynamics, electrodynamics, thermal fields, material processing,
control, etc.

an interdisciplinary approach is more effective than single-discipline approach

tackle coupled-field problems taking advantage of all the know-how (design, modeling and
analysis software) for the individual disciplines

Examples involving electromagnetism:

o structure-electromagnetic interaction: electrical machines, magnetically levitated vehicle,
electromagnetic break, microelectromechanical systems MEMs (resonators, gyroscope,
sensors of all categories, accelerometers)...

o thermal-electromagnetic interaction: induction heating, electromagnetic stirring and melting,
hyperthermia in bio-electromagnetism...

S .o



30

Coupled problem

* Definition:
coupled system or formulation, defined on multiple domains, possibly

overlapping, involving dependent variables that cannot be eliminated at the
equation level

e Strong and weak coupling:

strength of the interaction between the sub-problems involved. The degree of
mutual influence is often unknown/poorly known due to nonlinear coupling
mechanisms

(strong => weak; weak => strong)
e Strong and weak nonlinear numerical solution algorithm

S .o
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Coupled problem — Classification

e Extent:

fields interact on partially or entirely overlapping domains (e.g. thermal-
magnetic), or interact through an interface (e.g. a massive body and its cooling

flow)

 Discretization method:

Continuous sub-problems are discretized to obtain a mathematical model with
finite unknowns => homogeneous or hybrid discretization

* Global non-linear numerical solution algorithm:

When equations are combined and solved simultaneously in one large matrix
system, a fully coupled algorithm is applied

S .o
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Physical couplings — Electromagnetic fields &

* supply circuits (lumped parameters), control system

e thermal/temperature fields

* Solid/rigid body movement: rotation/translation

* (elastic) deformation & vibrations

* fluid flows: cooling, molten metals, ...

* “material fields” (material behaviour depends on other physics)

* multi-scale problems (e.g., scale of the circuit, scale of the lamination, scale of
the machine, scale of the power grid)

o Mmulti-scale in space
o multi-scale in time

S .o



PoOwWER ELECTRONICS,
CIRCUIT

voltage, current, power

Electrical energy transfer — fields

‘

CONTROL
SYSTEM

Sensors

33

m saturation

semi-
MConductor

MAGNETIC ELECTRICAL
FIELD FIELD
/\ joule-, dielectric
m iron losses losses mat.
char. char.
forces || || motional THERMAL mat.
induction
FIELD char.
: cooling
expansion,
v compression
MOTION D —— FLuiD FLow
FIELD FIELD
fluid friction

frictiow

turbulence w
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Electrical energy transfer — time scales

thermal heating

magnetic transient

one mechanical rotation

fundamental electrical frequency period

PWM modulation pulse

circuit transient

power electronics component switching time '

1.0E-07
1.0E-06—
1.0E-05—
1.0E-04—
1.0E-03—
1.0E-02—
1.0E-01-
1.0E+00
1.0E+01
1.0E+02—
1.0E+03
1.0E+04—
1.0E+05-

Phenomenon Time [s]




Typical disturbances to the loading of power devices in a PV *
system

_ day hour min sec ms Us
Time scale | | | | | |

o
Temp. / Solar

. Solar
Enviromental |

Control Grid  Switching

Electrical | |

/ i o
Model level | : : |

. Ambient temperature, VI control, Sw.
Disturbances Solar irradiance Power grid transient

S .o
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Tem t d d 6
e pe ra U re e pe n e n Ce e soft magnetic material _ . _
~~~ T 5 E
- —n, temp. =
— 10A/m Ssy u._.’
70 ; 1000 7 00 A/ <= 7
= fourth order hyperbola 5 ) T4E
_ 60 1 ..6 1.000 A/m ‘.‘e
g - =~ first order hyperbola approximation g‘ ;
% 50 1 2 100 33
=
o g —1.0004/m 2
[] o o
2 40 o t209
2 2 3
3 5 10 £
2 a0 e 1,000 00 A/m :
& Tt
o
T
£ 201
?‘J’ 1 T T T T T T T T 0
] 0 100 200 300 400 500 600 700 800
10 1 . -
electrical conductivity Temperature [°C] 12
0 T T T T T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 20°C 40°C  60°C  80°C  100°C

Temperature (°C)

B, M[T]

permanent magnets |
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Coupled problem issues

* How to tackle using FEM ?
o Mmultiple meshes (non-conforming) => in principle projection required!
o extra non-linear iteration
* weak solution approach
o outer non-linear loop iterating between subproblems
* strong solution approach
o all linearized FEM subproblems in one matrix
o ill-conditioned system and high numerical stiffness

S .o



Strong coupled approach *
Properties of the Jacobian (Newton algorithm)

 complicated procedure for computation: 0 Fill-in pattern
. . . I Iw""“"p{“‘;
o dependencies, projection, ... S R £
o hot always possible 0
o ill-conditioned 1000/”3.
o asymmetric \ '
o requires expensive solvers 1500;\~ .
Foy
2000!3('
\
5
2500\( .
V%
0 1500

nz = 42888

S .o
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Global convergence issues

* problem:

o excellent convergence behavior when close to the solution but getting in the
vicinity of the solution is a major issue

o global convergence requirement
* solution: additional measures to ensure convergence

o relaxation — evolution in the desired direction

o estimate optimal damping parameter(s) — decreasing residual
* stability — choice of time step

o smoother pseudo-transient continuation method leading to the desired steady-
state solution

S .o
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Coupled (pseudo-)transient problem approaches
e.g. Magneto-thermal =

* different time steps for the different sub-problems
o Simulate at the time step of e.g. the magnetic problem
o Simulate at the time step of e.g. the thermal problem

_4000 0005 001 0015 002 0025 003

time [s]

o simulate using both time scales and extrapolate D )
* assume ‘a continuously changing steady-state’ NI
* envelope approach: r(t) = X (t,w)e?

X = envelope function MM _________________________ /|X(t)|

with slow time scale & parameter o /\ /\/\ [\ /\/\M/\ -

linked to the fast time scale J\/W\/\/W VVVVVVVUY

dealt with in the frequency domain | b »




Coupled problems involving
electromagnetism
Examples



Electro/Magneto—mechanical coupling "
Rigid body

* Translational or rotational motion: all points of body with same (angular) speed

dv dQ
F... = m—- — MU — Aov? T, . = IE — A0 = A 0?

* Magnetic/electric source for mechanics

Fmag/ele = / divITdV = T ndS = F.q (OI‘ Tmag/ele — Text)
Vv oV

* Electromagnetic formulation
o €.g. magnetostatics, magnetodynamics

Floa :f{ [(n-b)h— 1(h.b)n] ds :j’{ v [(n-b)b— 1\b\2n] ds
oV 2 oV 2
o e.g. electrostatics

Fl. = jév [(n-d)e— %(e-d)n] dszjq{ ‘ [(n-e)e— %\e\%] ds

: o



Electro/Magneto—mechanical coupling

Elastic body

* Use of EM formulation for computing the local mechanical source

o e.g.electrostatics =>  fq = div [(d e) — %(d : e);]

1
o €.g. magnetostatics => fmag = div [(h -b) — §(h : b);]

e Mechanical formulation

o €.g. elastic deformation, local displacement

_ 80:10 55) 0 | elasticity tensor
Yy
| 0 0 o, E = E
D= ay Oy O = (1+v)(1-2)
J. 0 O,
0 9. 9,

1 —v
%
%

Young modulus F, Poisson ratio v

D'EDu+ f=0

U
1 —v
U

0

v

1 0
1l—v
1—2v
2 1£2V
0 2
0 0

43
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Coupled electrostatic-mechanical simulation schemes

O 9
conditions

Electric potential
Electric potential
l Electric Field
Electric Field

v

Coupling forces

Iteration k

Coupling forces

Electric Field

Electric Field

Iteration k

Mechanical deformation |¢—

A& Nonlinear Mechanics

Displacement
changed?

No

Mechanical deformation

Iteration j

Linear Mechanics

Displacement
changed?

No

l Solution |

Solution
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ICa

-mechani

Electro

shunt capacitive MEM switch

|'KU LEUVEN
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Coupled magneto-mechanical simulation schemes

o

*— Boundary Geometry
. d conditions
oundary Geometry
|-

conditions
Magnetic vector potential

No
Converged?

Coupling forces

Iteration i

Magnetic vector potential

Magnetic field

A 4
Coupling forces

——

Iteration k

Nonlinear Magnetics

Iteration k

Mechanical deformation |«

Mechanical deformation

Iteration j

No

Converged?

Nonlinear Mechanics

Yes

Displacement
changed?

Displacement
changed?

No
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Magneto-mechanical |
Switched
i reluctance
1// = machin
';1"‘ computati
M‘ * magnetic torque |
2 * angular displacement’ |
' MEMS ;
magnetometer y

computation of
* magnetic force

* tfrans. displacement

relay computation of
* magnetic force

* elastic deformation




Magneto-mechanical

Total current (3200 A)
distributed in 8 groups in parallel

Courant (A), cas CC3, 4x8 galettes

800

700 |

600

500

400

300

200

Currents
non-uniformly distr

IGroupe 1I e

100 L

Flux

.850e+03
.718e+03
.587e+03
.455e+03
.324e+03
.192e+03

1
1
1
1
1
1
1.061e+03
9.293e+02
7.977e+02
6.662e+02
5.347e+02
4.032e+02
2.716e+02
1.401e+02
— 8.602e+00

Jxb_S

/

!

25 30 35 40 45 50

|
|
i
|

Il’nesand EM force (N/m)

/ f
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Magneto-thermal coupling

* Magnetodynamic formulation
curlvcurla + o (0;a + gradv) = 3,, div ( — o(0¢a + grad v)) =0 in Q¢

with b = curla, e = —gradv — 0;a

* Electromagnetic energy as thermal source => Joule losses p=e€e-j
* Thermal formulation, e.g. heat conduction problem —div (kgradT) =

10

4

{po — p1 rctan 1T —273.15 -1,
s T,

La
[yl

o

2
i

k = thermal conductivity

]

1" = temperature

—_
[y

conductivité électrigue de 'acier (3/m)

p = thermal power = Joule losses

—_

temperature-dependent conductivity p =0 ' = resistivity

0 QDD ADEI EDD BDEI 1 DDD 1200
Température (°C)

=
i
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Magneto-thermal coupling

Foil winding
inductor

=\ T

1

\\\\\\\\\
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Magnetic/electrostatic/thermal coupling

* High voltage power cable
o ohmic losses in conductors
o dielectric losses in insulation
o magnetic losses —hysteresis & eddy currents in shield

electric field . magnetic field
i applied: ) &n _
T, voltages
currents=
|
ground /)
potential =Y
""""" \ -~/ ommicand,
thermal convection Z. /- o losses. |
\ By ]
¥

Different discretisations

@_ : I;,ﬁ%ffa‘?"'
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Magneto-thermal
Induction heating

eddy current distribution

computation of

* Joule losses

* temperature

* additional non-linearity o(T)

temperature distribution




Movement treatment

Eulerian vs Lagrangian approach
Moving-band techniques
Mortar method
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Movement with one degree of freedom
Solid body motion

* |n most electromechanical systems, one degree of freedom suffices to describe
the movement

e contacts and frictions appear in the equation of motion

* Translational motion: all the points of the body have the same velocity
dv

Fext = ma — )\1’0 — )\2’02
* Rotational motion: all the points of the body rotate at an angular velocity
dQ
Toxi = I—- = A Q — X 02
F... = external force
m = 1masse T..+ = external torque
v = speed I = Inertia
A1 = dry friction coefficient () = angular speed

Ao = viscous friction coefficient m
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Eulerian approach d \—@)_1?

* all phenomena described from same reference (standstill/laboratory) frame

e modifiled Ohm'slaw j=oce+ovxb

* terms associated with speed are transformed v = scalar potential, v = speed
curl (veurla) 4+ o (0ra +a x Q + grad (v —a - v)) = J,

curl (pcurlt) + p (0¢(t — grad ¢) + Q x (t — grad ¢)) =0
* two types of terms

o Wwith a total derivative: it measures changes in a material point of the body in
motion. This can be evaluated by finite differences. In general, the simplest
way to calculate it is to move the mesh with the moving part

o Wwith a (rotational) speed: source of numerical instabilities

S .o
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Eulerian approach d \—@_1?

* discretization with classical interpolation functions and Galerkin approach leads
to stability problems

* transport term gives rise to non-physical oscillations that grow with the speed

* with nodal basis functions (first degree Lagrange polynomials) and Galerkin
approach, there is a number that measures the unstable nature of the numerical
solution P. = povl,

* oscillations appear for P.>2 ,as I. is the characteristic length of the mesh
elements, a good mesh allows for a non-oscillating solution (rest of the
parameters are fixed by the problem)

e quality of the solution can be improved by using a Petrov-Galerkin method, with a
weighting function better adapted to the physical solution

* Eulerian approach not used in practice, Lagrangian approach is preferrii |i i!ﬁ
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Lagrangian approach

 phenomena observed from each material point: a reference frame for each part of
moving part (n moving parts => n reference frames)

* Maxwell’'s equations with same form in fixed and moving reference frame
curl (vcurla) + o (0:a + grad v) = j,
curl (pcurlt) 4+ p 0y (t — grad ¢) =0 @
* each part of the problem is ‘at rest’ in the associated frame Ay
* mesh attached to each moving part Ti» &aé
* any speed term is discarded
* relation between Euler and Lagrangian approach, e.g., for the electric field

/ / .
a = aia; + asPay, + azPay a1l air

€Euler = €Lagrange +vXxb

S .o
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Sliding surface

Explicitly considering motion (Lagrange)

— Stator

* Modeling rotation in electrical machines

o sliding-surface techniques
» locked step approach
* linear/quadratic interpolation
* trigonometric interpolation

Frotor — Fstator

S .o
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Explicitly considering motion (Lagrange)

Band

* Modeling rotation in electrical machines

o sliding-surface techniques
» locked step approach
* linear/quadratic interpolation
* trigonometric interpolation

o alir-gap models
* moving-band techniques
* boundary elements
 discontinuous Galerkin technique
 air-gap element (spectral elements)
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Sliding-surface technique

* non-matching grids at interface
o linear interpolation/extrapolation
o mortar approach (transmission conditions
between elements via Lagrange multipliers)

l

@ eccentricity
@ consistency error
@ torque ripple

S .o
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Moving-band technique
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Interface conditions
* decoupled FE system | K || A |+ | G |
KS Ag gst| js |
el ] -
e continuity of normal component of
magnetic flux density (induction)

magnetic vector potential continuous

|
<

Qg — Ay

* continuity of tangential component of

magnetic field G
J o _ Select comps. at interface
fictitious source currents vanish ast = Qs

gst + gre =0 Prolongate interface comps.

Jst = Qg; ﬁst w



Interface conditions (cont'd)
Reminder matrix system 2D case

/ (1/ grad a-grad w; + Jata-wi) dQ) + /
Q

vOn,aw; dl’ = / Js-w; d
T

Q

K J[A]+[M]o[A]+|[G]|=][J]

ki = / v grad w; - grad w; df2
Q

A = [al aNa]T
myg j Z/ 0 W; Wy d(
Qe
Ji :/ Js Wi dQ}
Qs
g; = /Fuana, w; d) A [ast a'rt]T

63
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Locked-Step Approach
(Sliding-surface techniques)

* rotation over an integer number of mesh steps (very simple to use)
* FE with same properties, no additional unknowns

* but: mesh equidistant at the interface
restriction on the time step

Ary = K ip At
a = qAl ye
R

Kshift —

o O O =
oS O = O
O = O O

cyclic permutation




Linear interpolation °
(Sliding-surface techniques)

* mesh of lines on rotor and stator side performed independently

Gy = Ky, Ko
reduces to locked-step
a = qAf 4+ cAf approach when e =20

i ] eAO

o OO =
o= O O
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Coupled formulation

* rotation operators
o forward rotation operator H, =K} K.
o backward rotation operator HY = K'K®'. = H_,

* saddle-point formulation — we look for the stationary point

M 0 0 Qgt, K 0 — Q§; ﬁ [? At Jst
0 M, 0|0 |ay| + 0 K Z; Ayt | = | Jrt
g 0

0 0 0 grt _ﬁaQst 0 Qrt grt

* projected system (eliminate &..) PH (M9, + K) Pa = P
with projector b I 0
B [QﬁﬁaQst I— QE’EQI’J

S .o
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Moving band technique

=  “m
2
consistent change of mesh
small rotation @,y change of the according to eccentricity
small displacement d mesh topology

@ possibly bad meshes
@ difficulties when rotation
has to be considered

S .o



Mortar element method

* variational non-conforming domain
decomposition: moving and fixed domain

* movement without re-meshing the whole
computational domain

* transmission conditions weakly imposed via
e.g. Lagrange multipliers

* overlapping non-matching grid

= two overlapping FE models
e additive/multiplicative Schwarz
* flexible and accurate

68
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Mortar FE method — Lagrange multipliers

find a and a,; so that

/ o Oia - a’ df) +/ veurla - curla’ dQ) =0

/a@taM-aﬁwdQ%—/ veurlayy - curlaly, dQ =0
QM QM

holds Va' and a’j; in suitable function spaces

* Two spatial discretizations, one per subdomain

o nhon-matching grids

o completely independent in overlapping region
* Transfer of information from Q2 to Qy: CApy|r=DA
e Transfer of information from Qu to Q: FEA|y,=HAnm

KU LEUVEN



http://en.wikipedia.org/wiki/Lagrange_multipliers
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Mortar FE method — Lagrange multipliers

* The coupling matrices are described on the edges of the concern interface

Ae = Lagrange multipliers
= [ @) @)a) . dy= [ () (wi) wF = BFsin 0

wM = BFs in Qy

s = / (wFA) (WFA) | hyy = / (wFA.) (whA,)
ecry ecry

 C and E defined on same mesh: not difficult
* D and H defined on different meshes:
* division of elements of the triangulations
* overlapped by the edge e

4 08 -06 -04 -02 0O 02 04 06 08 1
x(m)

S .o


http://en.wikipedia.org/wiki/Lagrange_multipliers
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Hybrid FE-BE model

* FE model
o domains with nonlinear media and/or induced currents
o explicit mechanisms for truncating the domain required

o sparse system matrix

* BE model
o movement = no re-meshing, no moving band,...
o rigorous treatment for open problems
o dense system matrix

* Hybrid FE-BE model + acceleration method
o FE model for device at hand / \
o BE model for surrounding air and air gaps

o acceleration method:
. fast multipole method

- hierarchical matrix technique w
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