

ELEC0041

Modelling and Design of Electromagnetic Systems

C. Geuzaine & P. Dular Université de Liège, Institut Montefiore B28 B-4000 Liège, Belgique

Part I Electromagnetic Models

Electromagnetic Models

Electromagnetic Models

Electrostatics

Distribution of electric field due to static charges and/or levels of electric potential

- -////-
- Electrokinetics
 - Distribution of static electric current in conductors
- Electrodynamics
 - Distribution of electric field and electric current in materials (insulating and conducting)
- Magnetostatics
 - Distribution of static magnetic field due to magnets and continuous currents
- Magnetodynamics
 - Distribution of magnetic field and eddy current due to moving magnets and time variable currents
- Full Wave
 - Propagation of electromagnetic fields

Maxwell's Equations

$$egin{aligned} \mathbf{curl}\, m{h} &= m{j} + \partial_t m{d} \ \mathbf{curl}\, m{e} &= -\partial_t m{b} \ && \mathrm{div}\, m{b} &= 0 \ && \mathrm{div}\, m{d} &=
ho_q \ \end{aligned}$$

Maxwell-Ampère's equation Faraday's equation

Conservation equations

- h magnetic field (A/m)
- $m{b}$ magnetic flux density (T)
- j current density (A/m²)

- e electric field (V/m)
- d electric displacement (C/m²)
- ho_q charge density (C/m³)

Integral form: Ampère's Law

$$\operatorname{curl} h = j$$

(ACE)

$$\Rightarrow \oint_{\partial S} \boldsymbol{h} \cdot d\boldsymbol{l} = I$$

Magnetomotive force (m.m.f.) Circulation of magnetic field along closed curve equals algebraic sum of currents crossing the underlying surface

Conservation of current:
$$\operatorname{div} \boldsymbol{j} = 0$$

 $\Rightarrow \oint_{\partial V} \boldsymbol{j} \cdot \boldsymbol{n} \, ds = 0$ Sum of

Sum of currents arriving at a node is zero

Integral form: Faraday's Law

$$\operatorname{curl} oldsymbol{e} = -\partial_t oldsymbol{b}$$

$$\Rightarrow \oint_{\partial S} \boldsymbol{e} \cdot d\boldsymbol{l} = -\partial_t \Phi$$

Any variation of magnetic flux through a circuit gives rise to an electromotive force

Electromotive force (e.m.f.)

For a circuit moving at speed v :

 \boldsymbol{n}

f.e.m. =
$$\oint_{\partial S(t)} \mathbf{f} / q \cdot d\mathbf{l} = \oint_{\partial S(t)} (\mathbf{e} + \mathbf{v} \times \mathbf{b}) \cdot d\mathbf{l} = -d_t \int_{S(t)} \mathbf{b} \cdot \mathbf{n} \, ds$$

Conservation of magnetic flux density: $\operatorname{div} \boldsymbol{b} = 0$ $\Rightarrow \oint_{\partial V} \boldsymbol{b} \cdot \boldsymbol{n} \, ds = 0$ Magnetic flux lines are closed

 ∂S

Lorentz Force

Interaction of electromagnetic fields with a point charge moving at speed \boldsymbol{v}

$$\boldsymbol{f} = q(\boldsymbol{e} + \boldsymbol{v} \times \boldsymbol{b})$$

For a conductor (electrically neutral, only negative charges moving):

$$f=j imes b={
m curl}\,h imes b$$
 Laplace Force

Electromagnetic Power

Poynting vector: $oldsymbol{s} = oldsymbol{e} imes oldsymbol{h}$

Power exchanged with a volume (interior normal):

$$P = \oint_{\partial V} \boldsymbol{s} \cdot \boldsymbol{n} \, d\boldsymbol{s} = -\int_{V} \operatorname{div} \boldsymbol{s} \, d\boldsymbol{v} = \int_{V} \boldsymbol{p} \, d\boldsymbol{v}$$

Power density:

$$p = -\operatorname{div} \boldsymbol{e} \times \boldsymbol{h} = -\boldsymbol{h} \cdot \operatorname{rot} \boldsymbol{e} + \boldsymbol{e} \cdot \operatorname{rot} \boldsymbol{h}$$
$$\Rightarrow p = \boldsymbol{h} \cdot \partial_t \boldsymbol{b} + \boldsymbol{e} \cdot \boldsymbol{j} + \boldsymbol{e} \cdot \partial_t \boldsymbol{d}$$

Material Constitutive Relations

 $oldsymbol{b} = \mu oldsymbol{h}$ Magnetic relation $oldsymbol{d} = arepsilon oldsymbol{e}$ Dielectric relation $oldsymbol{j} = \sigma oldsymbol{e}$ Ohm's law

Characteristics of materials:

- μ magnetic permeability (H/m)
- ε dielectric permittivity (F/m)
- σ electric conductivity (S/m)

constants (linear materials), functions of electromagnetic fields (nonlinear materials), tensorial (anisotropic materials), functions of other physical fields (temperature, ...)

Magnetic Relation

 $m{b} = \mum{h}$ $\mu = \mu_r\mu_0 \left\{ egin{array}{c} \mu_r ext{ Relative magnetic permeability} \ \mu_0 ext{ Vacuum permeability (} 4\pi 10^{-7} ext{H/m})
ight.$

- Diamagnetic and paramagnetic materials $\mu_r \approx 1$ Linear materials (silver, copper, aluminum)
- Ferromagnetic materials $\mu_r \gg 1$, $\mu_r = \mu_r(h)$

Nonlinear materials (steel, iron)

Ferromagnetic-paramagnetic transition for T > T_{Curie} (T_{Curie} of iron : 1043 K)

Steinmetz formula: $p_{\rm hyst} = \omega k_h b_{\rm max}^{\nu}$

Dielectric Relation

ε_r at room temperature for f < 1kHz

Air	1.0006	
Teflon	2.1	
Polyethylene	2.25	
Paper	3.85	
Glass	3.7 - 10	
Concrete	4.5	
Water	80	

Ohm's Law

$$oldsymbol{j}=\sigmaoldsymbol{e}$$
 (Resistivity $ho=rac{1}{\sigma}$)

Simple models for temperature dependency

• Metals :
$$\rho = \rho_0 (1 + \alpha (T - T_0))$$

	$\rho_0 (T_0 = 20^\circ C) \\ (\Omega m)$	$lpha (^{\circ}C^{-1})$
Aluminum	2.7 10 ⁻⁸	4 10 ⁻³
Copper	1.7 10 ⁻⁸	3.9 10 ⁻³
Iron	9.6 10 ⁻⁸	6.5 10 ⁻³

• Glass :
$$\ln \rho = A + \frac{B}{T}$$

Common glass: $\ln \rho = -4.6 + \frac{7678}{T}$

• Ionic solutions : $\sigma = \sigma_0 + \alpha (T - T_0)$

Tap water:
$$\sigma_0 = 0.055 \,\Omega^{-1} m^{-1}$$

 $\alpha = 1.65 \,10^{-3} \,^{\circ}C^{-1}\Omega^{-1} m^{-1}$
 $T_0 = 20^{\circ}C$

1

0

Argon Hydrogène 3 4,5 6 8 10 20 30 Température (10³ K) 13

Model Choice

Maxwell's equations & constitutive relations in frequency domain, without sources:

$$\Delta \boldsymbol{e} - i\omega\sigma\mu\boldsymbol{e} + \omega^2\varepsilon\mu\boldsymbol{e} = 0$$

• domain size L• skin depth $\delta = \sqrt{\frac{2}{\omega \sigma \mu}}$ • wavelength $\lambda = \frac{2\pi}{k}$, with $\begin{cases} \text{wave number } k = \frac{\omega}{c} \\ \text{speed of light } c = \frac{1}{\sqrt{\varepsilon \mu}} \end{cases}$ Using characteristic lengths \bullet domain size L

allows to write in non-dimensional form:

$$\left(\frac{3}{L^2} - \frac{2i}{\delta^2} + \frac{4\pi^2}{\lambda^2}\right)\mathbf{e} = 0$$

Model Choice

$$\left(\frac{3}{L^2} - \frac{2i}{\delta^2} + \frac{4\pi^2}{\lambda^2}\right)\boldsymbol{e} = 0$$

- $g_1 \gg 1$ uncoupled electric or magnetic problems
 - $q_2 \gg 1$ magnetostatics
 - $g_2 \lesssim 1$ magnetodynamics
 - $g_3 \gg 1$ electrokinetics
 - $g_3 \approx 1$ electrodynamics
 - $g_3 \ll 1$ electrostatics
- $g_1 \lesssim 1$ full wave ($g_1 \rightarrow 0$ high-frequency asymptotics)

Electrostatics

 $egin{aligned} \Omega_0 & ext{Exterior region} \ \Omega_{c,i} & ext{Conductors} \ \Omega_{d,i} & ext{Dielectrics} \end{aligned}$ $egin{aligned} ext{Boundary conditions} \ egin{aligned} n imes egin{aligned} e|_{\Gamma_{0e}} &= 0 \ egin{aligned} n \cdot eta|_{\Gamma_{0d}} &= 0 \end{aligned}$

Example: electric scalar potential formulation

div
$$\varepsilon \operatorname{\mathbf{grad}} v = -\rho_q$$
 with $e = -\operatorname{\mathbf{grad}} v$

- \bullet Formulation for $\, \bullet \,$ the exterior region $\, \Omega_{0} \,$
 - the dielectric regions $\Omega_{d,i}$
- In each conducting region $\Omega_{c,i}$, $v = v^i \Rightarrow v|_{\Gamma_{c,i}} = v^i$

Electrostatics

Cable bundles and high-voltage isolators

Electrostatics

Potential and electric field next to a 220 kV high voltage tower

Electrostatics

Shunt Capacitive MEM switch

Piezoelectric Motor

X

Electrostatics

Effectiveness of electric field shields

(T. Hubing, Clemson University)

Electrokinetics

Example: electric scalar potential formulation

 $\operatorname{div} \sigma \operatorname{\mathbf{grad}} v = 0$ with $e = -\operatorname{\mathbf{grad}} v$

- Formulation for the conducting region Ω_c
- On each electrode $\Gamma_{0e,i}$, $v = v^i \Rightarrow v|_{\Gamma_{0e,i}} = v^i$

Electrodynamics

$$\begin{aligned} \operatorname{curl} \boldsymbol{e} &= 0\\ \operatorname{curl} \boldsymbol{h} &= \boldsymbol{j} + \partial_t \boldsymbol{d} \Rightarrow \operatorname{div} \left(\boldsymbol{j} + \partial_t \boldsymbol{d} \right) = 0\\ \boldsymbol{j} &= \sigma \boldsymbol{e}\\ \boldsymbol{d} &= \varepsilon \boldsymbol{e} \end{aligned}$$

Example: electric scalar potential formulation

div $(\sigma \operatorname{\mathbf{grad}} v + \varepsilon \operatorname{\mathbf{grad}} \partial_t v) = 0$ with $e = -\operatorname{\mathbf{grad}} v$

Electrokinetics & Electrodynamics

Magnetostatics

 $\begin{aligned} \Omega & \text{Studied domain} \\ \Omega_m & \text{Magnetic domain} \\ \Omega_s & \text{Inductor} \end{aligned}$

 $m{j}=m{j}_s\,$ imposed source current density in inductor

With magnets:

$$oldsymbol{b} = \mu oldsymbol{h} + oldsymbol{b}_s \ oldsymbol{h} = rac{1}{\mu}oldsymbol{b} + oldsymbol{h}_s$$

Example: magnetic vector potential formulation ${f curl}\,{a=j_s}$ with ${f b=curl}\,{a}$

Magnetostatics

Magnetodynamics

- Ω Studied domain
- Ω_p Passive conductor and/or magnetic domain
- $\Omega_a\;$ Active conductor
- Ω_s Inductor

Example: magnetic vector potential formulation $\operatorname{curl} \frac{1}{\mu} \operatorname{curl} \boldsymbol{a} + \sigma(\partial_t \boldsymbol{a} + \operatorname{grad} v) = \boldsymbol{j}_s \text{ with } \boldsymbol{b} = \operatorname{curl} \boldsymbol{a}$ $\boldsymbol{e} = -\operatorname{grad} v - \partial_t \boldsymbol{a}$

Magnetodynamics

Inductor (portion : 1/8th)

Stranded inductor uniform current density (**j**_s) Massive inductor - non-uniform current density (j)

× ×

Magnetodynamics

Foil winding inductance - current density (in a cross-section)

With air gaps, Frequency f = 50 Hz

Magnetodynamics

Magnetodynamics

Magnetic field without defect

Eddy-current non-destructive testing

Magnetodynamics

Transverse induction heating

(nonlinear physical characteristics, moving plate, global quantities)

Search for optimization of temperature profile

Magnetodynamics

Magnetodynamics

Magnetic field lines and electromagnetic force (N/m) (8 groups, total current 3200 A)

Full Wave

$$egin{aligned} \mathbf{curl}\, m{h} &= m{j} + \partial_t m{d} \ \mathbf{curl}\, m{e} &= -\partial_t m{b} \ m{b} &= \mu m{h} \ m{d} &= arepsilon m{e} \ m{j} &= \sigma m{e} \end{aligned}$$

+ Silver-Müller radiation condition at infinity (outgoing waves)

Example: electric or magnetic field formulations

$$\operatorname{curl}\operatorname{curl}\boldsymbol{e} + \sigma\mu\partial_t\boldsymbol{e} + \varepsilon\mu\partial_t^2\boldsymbol{e} = 0$$

 $\operatorname{curl}\operatorname{curl}\boldsymbol{h} + \sigma\mu\partial_t\boldsymbol{h} + \varepsilon\mu\partial_t^2\boldsymbol{h} = 0$

Full Wave

- Frequency and time domain analyses
- Uncoupled resolution

Full Wave

Full Wave

Full Wave

Generalized optical cloaking ("polyjuice")

Microstructured optical fibers: photonic crystal & non-linear (Kerr) effects

Full Wave

Optical Coherence Tomography (OCT) of human retina

Incident Beam

