

Part III

Introduction to the Finite Element Technique for Electromagnetic Modelling

Classical and weak formulations

Partial differential problem

Classical and weak formulations

Classical and weak formulations

Magnetostatic formulations

Magnetostatic formulations

Multivalued scalar potential

Kernel of the curl (in a domain Ω)

ker (curl) = { \mathbf{v} : curl \mathbf{v} = 0 }

Multivalued scalar potential - Cut

Vector potential - gauge condition

Magnetodynamic formulations

Magnetodynamic formulations

Magnetodynamic formulations

Electrostatic problem

Electrokinetic problem

Magnetostatic problem

Magnetodynamic problem

Continuous mathematical structure

Domain Ω , **Boundary** $\partial \Omega = \Gamma_h \cup \Gamma_e$

Discrete mathematical structure

Discrete mathematical structure

Finite elements

* Finite element (K, P_{K} , Σ_{K})

- K = domain of space (tetrahedron, hexahedron, prism)
- P_K = function space of finite dimension n_K , defined in K
- ∑_K = set of n_K degrees of freedom represented by n_K linear functionals φ_i, 1 ≤ i ≤ n_K, defined in P_K and whose values belong to IR

Finite elements

Unisolvance

 $\forall u \in P_K$, u is uniquely defined by the degrees of freedom

Interpolation

Finite element space

Union of finite elements $(K_j, P_{Kj}, \Sigma_{Kj})$ such as :

- the union of the K_i fill the studied domain (= mesh)
- some continuity conditions are satisfied across the element interfaces

Sequence of finite element spaces

Sequence of finite element spaces

	Functions	Properties	Functionals	Degrees of freedom				
S ⁰	$\{s_i, i \in N\}$	$s_i(x_j) = \delta_{ij}$	Point evaluation	Nodal value	Nodal element			
S ¹	$\{\mathbf{s}_i, i \in E\}$	$\int_{j} \mathbf{s}_{i} \cdot d\mathbf{l} = \delta_{ij}_{\forall_{i,j} \in E}$	Curve integral	Circulation along edge	Edge element			
S ²	$\{\mathbf{s}_i, i \in F\}$	$\int_{j} \mathbf{s}_{i} \cdot \mathbf{n} ds = \delta_{ij}$	Surface integral	Flux across face	Face element			
S ³	$\{s_i, i \in V\}$	$\int_{j} s_i dv = \delta_{ij}_{\forall i,j \in V}$	Volume integral	Volume integral	Volume element			
$u_{K} = \sum \phi_{i}(u) s_{i}$								
Bases $i_{i} finite elements$								

Sequence of finite element spaces

	Base functions	Continuity across element interfaces	Codomains of the operators	
S ⁰	$\{s_i, i \in N\}$	value	S ⁰	
S ¹	$\{\mathbf{s}_i, i \in E\}$	tangential component	grad $S^0 \subset S^1$	$\overline{\mathbf{J}}$
S ²	$\{\mathbf{s}_i, i \in F\}$	normal component	curl S ¹ \subset S ²	
S ³	$\{s_i, i \in V\}$	discontinuity	div S ² \subset S ³	v S ²
		Conformity	Sequence	
			$S^0 \xrightarrow{\text{grad}} S^1 \xrightarrow{\text{curl}} S^2$	<u>div</u>

Function spaces S⁰ et S³

For each node $i \in N \rightarrow$ scalar field

 $\mathbf{s}_{i}(\mathbf{x}) = \mathbf{p}_{i}(\mathbf{x}) \in \mathbf{S}^{0}$

$$p_i = \begin{cases} 1 & \text{at node } i \\ 0 & \text{at all other nodes} \end{cases}$$

 p_i continuous in Ω

For each Volume $v \in V \rightarrow$ scalar field

$$s_v = 1 / vol(v) \in S^3$$

Edge function space S¹

For each edge $e_{ij} = \{i, j\} \in E \rightarrow$ vector field

$$\mathbf{s}_{e_{ij}} = p_j \operatorname{grad} \sum_{r \in N_{F,ji}} p_r - p_i \operatorname{grad} \sum_{r \in N_{F,ij}} p_r \quad \mathbf{s}_e \in S^1$$

Edge function space S¹

Function space S²

For each facet $f \in F \rightarrow$ vector field f = f_{ijk(l)} = {i, j, k (, l) } = {q₁, q₂, q₃ (, q₄) }

Particular subspaces of S¹

Kernel of the curl operator

Kernel of the curl operator

Gauged subspace of S¹

Mesh of electromagnetic devices

Electromagnetic fields extend to infinity (unbounded domain)

Approximate boundary conditions:

• zero fields at finite distance

Rigorous boundary conditions:

• "infinite" finite elements (geometrical transformations)

• boundary elements (FEM-BEM coupling)

Electromagnetic fields are confined (bounded domain)

Rigorous boundary conditions

Mesh of electromagnetic devices

- Electromagnetic fields enter the materials up to a distance depending of physical characteristics and constraints
 - Skin depth δ (δ<< if ω, σ, μ >>)

$$\delta = \sqrt{\frac{2}{\omega \, \sigma \, \mu}}$$

• use of surface elements when $\delta \rightarrow 0$

Mesh of electromagnetic devices

Types of elements

- ◆ 2D : triangles, quadrangles
- 3D : tetrahedra, hexahedra, prisms, pyramids
- Coupling of volume and surface elements
 - boundary conditions
 - thin plates
 - interfaces between regions
 - cuts (for making domains simply connected)
- Special elements (air gaps between moving pieces, ...)