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u + weak solution

u v v v v( , L* ) , ( f , ) + Qg ( ) ds
'

- = 0 , . /V(%)

Classical and weak formulations

u + classical solution

L u = f in  %
B u = g on  ' = !%

Classical formulation

Partial differential problem

Weak formulation

( u , v ) = u(x) v(x) dx
%

- , u, v/L2 (%)

( u , v ) = u(x) . v(x) dx
%

- , u, v /L2 (%)

Notations

v + test function Continuous level : 0 ( 0 system
Discrete level : n ( n system
      1  numerical solution
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Classical and weak formulations
Application to the electrostatic problem

curl e = 0
div d = 0

d = # e

n ( e 2'e = 0 n . d 2'd = 0
'e 'd

Electrostatic
classical formulation

Weak formulation
of  div d = 0

(+ boundary condition)

( d , grad v' ) = 0   ,   . v' / V(%)

d = # e &      e = – grad v   3   curl e = 0

( – # grad v , grad v' ) = 0   ,   . v' / V(%) Electrostatic 
weak formulation with v

with  V(%) = { v / H0(%) ; v2'e = 0 }

( div d , v' ) + < n . d , v' >' = 0   ,   . v' / V(%)

div d = 0
4

n . d 2'd = 0
4

1
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Classical and weak formulations
Application to the magnetostatic problem

curl h = j
div b = 0
b = µ h

n ( h 2'h = 0 n . b 2'e = 0
'h 'e

Magnetostatic
classical formulation

Weak formulation
of  div b = 0

(+ boundary condition)

( b , grad 5' ) = 0   ,   . 5' / 6(%)

b = µ h &      h = hs – grad 5   (with  curl hs = j)   3   curl h = j

( µ (hs – grad 5) , grad 5' ) = 0   ,   . 5' / 6(%) Magnetostatic 
weak formulation with 5

with  6(%) = { 5 / H0(%) ; 52'h = 0 }

( div b , 5' ) + < n . b , 5' >' = 0   ,   . 5' / 6(%)

div b = 0
4

n . b 2'e = 0
4

1
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Maxwell equations
(magnetic - static)

Magnetostatic formulations

a Formulation5 Formulation

curl h = j
div b = 0

b = µ h

"h" side "b" side

Tuesday 26 October 2010
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Magnetostatic formulations

a Formulation5 Formulation

Multivalued potential

Cuts

Non-unique potential

Gauge condition

Magnetic scalar potential 5 Magnetic vector potential a

curl ( µ–1  curl a ) = j

b =  curl a
hs  given such as  curl hs = j

(non-unique)
div ( µ ( hs – grad 5 ) ) = 0

h = hs – grad 5

curl h = j div b = 0b = µ h

Basis equations

(h) (b)(m)

1 (h) OK (b) OK 8

9 (b) & (m) (h) & (m) &
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Multivalued scalar potential

Kernel of the curl (in a domain %)
ker ( curl ) = { v : curl v = 0 }

dom(grad)

dom(curl)

ker(curl)

cod(grad)

cod ( grad ) ) ker ( curl )

cod(curl)

. 0

grad

curl

curl

Tuesday 26 October 2010
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AB AB

h . dl
:

- = , grad 5 . dl
:

- = 5A , 5B

Multivalued scalar potential - Cut

curl h = 0     in %
h = – grad 5     in %

Scalar potential 5
1
?

OK
8

Circulation of h along path :AB in %

1   5A – 5B = 0  ;  I     !  !  !

Closed path :AB (A+B)
surrounding a conductor (with current I)

< 5 =  I

5 must be discontinuous ... through a cut
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Vector potential - gauge condition

div b = 0     in %
b = curl a     in %

Vector potential a
1
?

OK
8

b = curl a = curl ( a + grad = )

Non-uniqueness of vector potential a

Coulomb gauge   div a = 0

ex.:
w(r)=r

> vector field with non-closed lines
linking any 2 points in %

Gauge   a . > = 0

Gauge condition
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Magnetodynamic formulations

"h" side "b" side

Maxwell equations
(quasi-stationary)

h-5 Formulation

a-v Formulationt-> Formulation

a* Formulation

curl h = j
curl e = – !t b

div b = 0

b = µ h
j = $ e

Tuesday 26 October 2010
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Magnetodynamic formulations

t-> Formulationh-5 Formulation

Magnetic field h
Magnetic scalar potential 5

Electric vector potential t
Magnetic scalar potential >

curl ($–1 curl t) + !t (µ (t – grad >)) = 0

div (µ (t – grad >)) = 0

curl h = j
curl e = – !t b

div b = 0b = µ h

Basis equations

(h) (b)

curl hs = js

h ds %c

h = hs – grad 5 ds %c
C

1 (h) OK

j = $ e

curl ($–1 curl h) + !t (µ h) = 0

div (µ (hs – grad 5)) = 0

j =  curl t
(h) OK 8

h = t – grad >

9 in %c &

9 in %c
C &

9 (b) &

+ Gauge
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Magnetodynamic formulations

a-v Formulationa* Formulation

Magnetic vector potential a* Magnetic vector potential a
Electric scalar potential v

curl (µ–1 curl a) + $ (!t a + grad v)) = js

curl h = j
curl e = – !t b

div b = 0b = µ h

Basis equations

(h) (b)j = $ e

curl (µ–1 curl a*) + $ !t a* = js

b =  curl a
(b) OK 8

e = – !t a – grad v

b =  curl a*
1 (b) OK

e = – !t a*

+ Gauge in %

9 (h) &

+ Gauge in %c
C
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"e" side "d" side

Electrostatic problem

Basis equations
curl e = 0 div d = "d = # e

e = – grad v d = curl u

) *

#  e  = d d

"

(u)

grad

curl

div

e

e

e

e

0

0

(–v)Fe
0

Fe
1

Fe
2

Fe
3

div

curl

grad

d

d

d

Fd
3

Fd
2

Fd
1

Fd
0

eS 0

Se
1

Se
2

Se
3

Sd
3

Sd
2

Sd
1

Sd
0
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"e" side "j" side

Electrokinetic problem

Basis equations
curl e = 0 div j = 0j = $ e

e = – grad v j = curl t

) *

$ e  = j j

0

(t)

grad

curl

div

e

e

e

e

0

0

(–v)Fe
0

Fe
1

Fe
2

Fe
3

div

curl

grad

j

j

j

F j
3

F j
2

F j
1

F j
0

eS 0

Se
1

Se
2

Se
3

S j
3

S j
2

S j
1

S j
0
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"h" side "b" side

Magnetostatic problem

Basis equations
curl h = j div b = 0b = µ h

h = – grad 5 b = curl a

) *
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"h" side "b" side

Magnetodynamic problem

h = t – grad 5 b = curl a

) *

curl h = j
curl e = – !t b

div b = 0b = µ h

Basis equations

j = $ e

e = – !t a – grad v

Tuesday 26 October 2010
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 dom (grade) = Fe0 = { v / L2(%) ; grad v / L2(%) , v2'e = 0 }
 dom (curle) = Fe1 = { a / L2(%) ; curl a / L2(%) , n ? a2'e = 0 }
 dom (dive) = Fe2 = { b / L2(%) ; div b / L2(%) , n . b2'e = 0 }

Boundary conditions on 'e

 dom (gradh) = Fh0 = { 5 / L2(%) ; grad 5 / L2(%) , 52'h = 0 }
 dom (curlh) = Fh1 = { h / L2(%) ; curl h / L2(%) , n ? h2'h = 0 }
 dom (divh) = Fh2 = { j / L2(%) ; div j / L2(%) , n . j2'h = 0 }

Boundary conditions on 'h

Function spaces  Fe0 ) L2, Fe1 ) L2, Fe2 ) L2, Fe3 ) L2

Function spaces  Fh0 ) L2, Fh1 ) L2, Fh2 ) L2, Fh3 ) L2Basis structure

Basis structure

Continuous mathematical structure

gradh Fh0 ) Fh1 ,   curlh Fh1 ) Fh2 ,   divh Fh2 ) Fh3

Fh0
grad h@ & @ @ @ Fh1

curlh@ & @ @ Fh2
div h@ & @ @ Fh3Sequence

gradh Fe0 ) Fe1 ,   curle Fe1 ) Fe2 ,   dive Fe2 ) Fe3

Fe3
div e9 @ @ @ Fe2

curle9 @ @ @ Fe1
grad e9 @ @ @ @ Fe0Sequence

Domain %, Boundary !% = 'h U 'e
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Discrete mathematical structure

Continuous function spaces & domain
Classical and weak formulations 

Continuous problem

Finite element method

Discrete function spaces piecewise defined
in a discrete domain (mesh) 

Discrete problem

Discretization Approximation

Classical & weak formulations & ?
Properties of the fields & ?

Questions
To build a discrete structure

as similar as possible
as the continuous structure

Objective

Thursday 4 November 2010
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Discrete mathematical structure

Sequence of finite element spaces
Sequence of function spaces 
& Mesh

Finite element space
Function space 
& Mesh

  

  

+ fi
i
!

+ fi
i
!

A 
B 
C D 

E 
F 
G D 

Finite element
Interpolation in a geometric 
element of simple shape

+  f

Thursday 4 November 2010
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Finite elements

! Finite element (K, PK, HK)
! K = domain of space (tetrahedron, hexahedron, prism)
! PK = function space of finite dimension nK, defined in K

! HK = set of nK degrees of freedom 
 represented by nK linear functionals 5i, 1 I i I nK, 
 defined in PK and whose values belong to IR

Thursday 4 November 2010
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Finite elements

! Unisolvance
. u / PK ,  u is uniquely defined by the degrees of freedom

! Interpolation

! Finite element space
Union of finite elements (Kj, PKj, HKj) such as :

" the union of the Kj fill the studied domain (+ mesh)
" some continuity conditions are satisfied across the element 

interfaces

Basis functions

Degrees of freedom

uK = 5i (u) pi
i=1

nK

J

Thursday 4 November 2010
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Sequence of finite element spaces

Geometric elements
Tetrahedral

(4 nodes)
Hexahedra

(8 nodes)
Prisms
(6 nodes)

Mesh

Geometric entities

Nodes
i / N

Edges
i / E

Faces
i / F

Volumes
i / V

Sequence of function spaces
S0 S1 S2 S3

Thursday 4 November 2010
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Sequence of finite element spaces

{si ,  i / N}

{si ,  i / E}

{si ,  i / F}

{si ,  i / V}

Bases Finite elements

S0

S1

S2

S3 Volume
element

Point 
evaluation

Curve 
integral
Surface 
integral
Volume 
integral

Nodal value

Circulation 
along edge
Flux across 

face
Volume 
integral

Functions Functionals Degrees of 
freedomProperties

Face
element

Edge
element

Nodal
element

. i, j /E

Thursday 4 November 2010
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Sequence of finite element spaces

Base 
functions

Continuity across 
element interfaces

Codomains of the 
operators

{si ,  i / N} value

{si ,  i / E} tangential component    grad S0 ) S1

{si ,  i / F} normal component    curl S1 ) S2

{si ,  i / V} discontinuity    div S2 ) S3

Conformity

S0 grad@ & @ @ S1 curl@ & @ @ S2 div@ & @ @ S3

Sequence

S0

S1 grad S0

S2 curl S1

S3 div S2

S0

S1

S2

S3
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Function spaces S0 et S3

For each node  i / N  &  scalar field

0

0 0

0 0

00

0

0

0pi = 1node i

si (x) = pi (x)    /  S0

pi = 1 at node i
0 at all other nodes

A 
B 
C 

pi continuous in %

sv = 1 / vol (v)    /  S3

For each Volume  v / V  &  scalar field

Thursday 4 November 2010
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Edge function space S1

For each edge  eij = {i, j} / E  &  vector field 

se / S1

N.B.: In an element : 3 edges/node

Illustration of the vector field seDefinition of the set of nodes NF,mn-

se ij
= pj grad pr

r/N F,ji 

J , pi grad pr
r/N F,ij 

J
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Edge function space S1

Geometric interpretation
of the vector field se

p j grad pr
r/N F j, i 

J
K NF, ji 

se ij
= pj grad pr

r/N F,ji 

J , pi grad pr
r/N F,ij 

J

, pi grad pr
r/N F,ij 

J
K NF, ij 
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Function space S2

For each facet f / F  &  vector field 
f = fijk(l) = {i, j, k (, l) } = {q1, q2, q3 (, q4) }

Illustration of the vector field sf

sf = af pq c
c=1

# N f
J grad prr/N F,qc q c+1

JL 
M 
N 

O 

P 
Q ? grad prr/N F,qc q c,1

JL 
M 
N 

O 

P 
Q

sf / S2

 3  &  af = 2
#Nf =
 4  &  af = 1
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Particular subspaces of S1

Ampere equation
in a domain %cC

without current 
(R %c)

Applications

Gauge condition
on a vector potential

Definition of a
generalized source field hs

such that curl hs = js

h / S1(%)  ;  curl h = 0  in %cC ) %  &  h + ?

a / S1(%)  ;  b = curl a   / S2(%)  &  a + ?
 Gauge  a . > = 0
 to fix  a

Kernel of the curl operator

Gauged subspace
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Kernel of the curl operator

%c
!%c

Ec

hk

5n

5n'

%c
C

Nc  , E c
C C

Nc  , E c
C C

(interface)

Base of H + basis functions of
• inner edges of %c

• nodes of %c
C,

with those of !%c

H ={h /S1 (%) ; curl h = 0 in %c
C }

with

h = hk sk
k/E c

J + 5n vn
n/N c

C

J

vn = snj
nj/E c

C

J

h l
l/E c

C

h = h a s a
e/E

J = h k sk
k/E c

J + slJ

h l = h . dl
lab

- = ,grad 5 . dl
lab

- = 5a l
, 5 b l

(h = hk sk
k/E c

J + ) s l
l/E c

C

J a l
, 5b l

5

h = – grad 5 in %c
C

Case of simply connected domains
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Kernel of the curl operator

H ={h /S1 (%) ; curl h = 0 in %c
C }

5+ – 5– = 52'+
eci – 52'–

eci = Ii

qi  • defined in %c
C

 • unit discontinuity across 'eci
 • continuous in a transition layer
 • zero out of this layer

5 = 5cont + 5disc

discontinuity
of 5disc

with

edges of %c
C

starting from a node of the cut
and located on side '+'

but not on the cut

h = hk sk
k/A c

J + 5cont
n vn

n/N c
C

J + Ii ci
i/C

J

ci = snj

nj/A c
C

n/N eci
j/N c

C +
jSN eci

J

5 disc = I i q i
i/C

J

Basis of H + basis functions of
• inner edges of %c

• nodes of %c
C

• cuts of C

(cuts)
h = – grad 5 in %c

C

Case of multiply connected domains
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Gauged subspace of S1

b = curl a

co-tree   
" 
E 

Tree    + set of edges connecting
(in %) all the nodes of % without 
 forming any loop (E)
Co-tree + complementary set of the tree (E)

# 
" 

a = a e se
e/E

J / S1 (%) , b = bf sf
f/F

J / S2 (%)

  
a = a i si

i/
" 
E 

J /
" 
S 1 (%)

S1(%) = {a / S1(%) ; aj = 0 , . j / E}
" " 

Gauged space of S1(%)

with

b f = i(e,f ) ae
e/E

J , f /F matrix form: bf CFE
ae

=

Face-edge
incidence matrix

Gauged space in %

tree
  
# 
E 

Basis of S1(%) + co-tree edge basis functions
(explicit gauge definition)

" 
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! Electromagnetic fields extend to infinity (unbounded 
domain)

! Approximate boundary conditions:

" zero fields at finite distance

! Rigorous boundary conditions:

" "infinite" finite elements (geometrical transformations)

" boundary elements (FEM-BEM coupling)

! Electromagnetic fields are confined (bounded domain)
! Rigorous boundary conditions

Mesh of electromagnetic devices
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! Electromagnetic fields enter the materials up to a 
distance depending of physical characteristics and 
constraints

! Skin depth T  (T<< if >, $, µ >>)

! mesh fine enough near surfaces (material boundaries)

! use of surface elements when T & 0

Mesh of electromagnetic devices
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! Types of elements

! 2D : triangles, quadrangles

! 3D : tetrahedra, hexahedra, prisms, pyramids

! Coupling of volume and surface elements

" boundary conditions

" thin plates

" interfaces between regions

" cuts (for making domains simply connected)

! Special elements (air gaps between moving pieces, ...) 

Mesh of electromagnetic devices
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