
Modeling Infinity...

ELEC 041-Modeling and design of electromagnetic systems 



Infinite Domain and Truncation	

• Electromagnetic problem defined in a unbounded domain 

• A fictitious boundary Γ has to be introduced

• If arbitrary BC at finite distance, the radiated field is reflected towards the interior  

• A suitable boundary condition must be written on Γ 

• Compromise between: accuracy, implementation and computational efficiency 

➜ spurious fields
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Low Frequency: Shell Transformation



Low Frequency: Shell Transformation

Boundary conditions must be imposed at infinity 

➡ use of a shell transformation:

Jacobian matrix

This transformation applies to shells that are:
cylindrical
parallelepipedic
spherical
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Generalities in Wave Propagation	

Basic steps for solving a wave propagation problem:

• formulations and numerical approximations (finite elements, finite 
differences, spectral methods, ...)

• truncation of the infinite of computation 

• global conditions 

• local conditions 

• absorbing layers

• iterative solver + preconditioning
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Global Boundary Conditions

• Exact and non local

• It can be expressed as an integral operator set on the boundary Γ, e.g. 
through and integral representation formula

• Extremely expensive: while we are trying to solve a local PDE equation, 
the nonlocal form of the integral BC destroys the sparse matrix structure 
of the system 

• Not applicable in practical cases

• Dirichlet-to-Neumann condition



Local Boundary Conditions

• Mostly approximations = Absorbing boundary conditions (ABC)

• They preserve the sparsity of the finite element matrix

• Examples:

• Sommerfeld (Helmholtz) and Silver-Muller (Maxwell) 

• Including information about the shape of the boundary

• Bayliss-Gunzburger-Turkel (BGT) (spherical/circular)

• On-Surface Radiation Condition (convex boundaries)

• High-order: Engquist-Majda
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Local Boundary Conditions - Helmholtz

http://www.onelab.info/wiki/Multiple_scattering_with_Sommerfeld_absorbing_condition

http://www.onelab.info/wiki/Multiple_scattering_with_Sommerfeld_absorbing_condition
http://www.onelab.info/wiki/Multiple_scattering_with_Sommerfeld_absorbing_condition


Local Boundary Conditions - Maxwell
Silver-Muller

Total electric field

Incident field Scattered field
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PML vs ABC



• Domain bounded by dissipative layer = “absorbing shell”

• Perfectly Matched Layers

• Perfect wave transmission at interface, whatever the incidence 

• Media with modified EM characteristics:  non physical

• In the case of the 1D Helmholtz equation in the PML reads:

Absorbing Layers

http://www.onelab.info/wiki/Multiple_scattering_with_a_Perfectly_Matched_Layer_(PML)
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Absorbing Layers

Good Bad

The choice of the PML parameters is crucial for a good performance
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