

Electromagnetic Energy Conversion ELEC0431

Exercise session 4: Three-phase transformers

4 March 2022

Florent Purnode (florent.purnode@uliege.be) – Nicolas Davister (ndavister@uliege.be)

Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Belgium

Lab sessions

Doodle and groups

Reminder:

Make groups of 4 students and choose at least 6 slots available in the doodle:

https://doodle.com/poll/u2i2bqsdam537wyy?utm_source=poll&utm_medium=link

Complete this doodle by indicating the names of all participants:

 $Firstname_1 LASTNAME_1 - \cdots - Firstname_4 LASTNAME_4$

In case your group is not complete, send me a mail: <u>florent.purnode@uliege.be</u> and Do Not fill the doodle alone.

Deadline for answering the doodle is Monday March 7. If the deadline is not met, groups will be made randomly.

Reminders

Three-phase systems

Three-phase systems

The network is balanced \rightarrow The loads Z are identical. \overline{V}_a , \overline{V}_b and \overline{V}_c have the same amplitude and are dephased by 120°.

Three-phase systems

- V: Phase voltage = voltage across one load / source
- U: Line voltage = voltage measured between two different phases
- J: Phase current = current flowing through one load / source
- *I*: Line current = current flowing through one line

Star and triangle connections

Three-phase loads can be arranged either in star (Y) or in triangle (Δ)

 $Y \rightarrow \text{line current } \bar{I} = \text{phase current } \bar{J}$

 $\Delta \rightarrow$ phase voltage \overline{V} = line voltage \overline{U}

Reminders

The transformer

The ideal transformer

The transformer ratio n

 $n \coloneqq n_1 / n_2$

 $\bar{I}_2 = n \, \bar{I}_1$ $\bar{U}_1 = n \, \bar{U}_2$

Shifting impedances

$$\overline{I}_1 = n \, \overline{I}_2 \quad \& \quad \overline{U}_2 = n \, \overline{U}_1$$

The impedance can be shifted from the secondary to the primary:

Seen from the secondary, the impedance is $Z = \frac{U_2}{\overline{I}_2}$ Seen from the primary, the impedance is $Z' = \frac{\overline{U}_1}{\overline{I}_1} = \frac{\overline{U}_2/n}{n \overline{I}_2} = \frac{1}{n^2} \frac{\overline{U}_2}{\overline{I}_2} = \frac{Z}{n^2}$

Practical transformer

Simplified model

Under the approximations $R'_2 \ll R_{H+F}$ and $X'_2 \ll X_{\mu}$, the primary and secondary components can be gathered together.

Measuring components

- \rightarrow How to measure R_1, X_1 , etc. ?
 - Open circuit test
 - Short circuit test

Note that, in practice, transformers are build in order to minimize the losses. Thus: $R_1, R_2' \ll R_{H+F} \quad \& \quad X_1, X_2' \ll X_{\mu}$

Open circuit test

- First simplification: $\overline{I}'_2 = 0 \rightarrow No$ current in R'_2 and in X'_2 .
- Second simplification: $R_1 \ll R_{H+F} \& X_1 \ll X_{\mu} \Rightarrow R_1$ and X_1 can be ignored.

$$\square Only R_{H+F} \text{ and } X_{\mu} \text{ remain.}$$

Open circuit test

$$\square \qquad P_{1o} = \frac{U_{1o}^2}{R_{H+F}} \quad \& \quad Q_{1o} = \frac{U_{1o}^2}{X_{\mu}} \quad \square \qquad \bigvee \quad R_{H+F} = \frac{U_{1o}^2}{P_{1o}} \quad \& \quad X_{\mu} = \frac{U_{1o}^2}{Q_{1o}}$$

Where P_{1o} and Q_{1o} are the active and reactive powers consumed during the open circuit test.

Short circuit test

Simplification: $R_1, R'_2 \ll R_{H+F} \quad \& \quad X_1, X'_2 \ll X_\mu \rightarrow R_{H+F}$ and X_μ can be ignored.

$$\square \land Only R_1, R'_2, X_1 \text{ and } X'_2 \text{ remain.}$$

Short circuit test

Where P_{1s} and Q_{1s} are the active and reactive powers consumed during the short circuit test.

The three-phase transformer, described by the normalized scheme, is connected to a balanced three-phase network of composed voltages u_{AB} , u_{BC} , u_{CA} of RMS voltage U_1 on the primary side, whereas on the secondary side, a three-phase balanced system of composed voltages u_{ab} , u_{bc} , u_{ca} of RMS voltage U_2 is obtained.

The line current intensities in the primary and secondary windings are respectively denoted I_1 and I_2 . The transformer has the following characteristics:

- Apparent nominal power $S_n = 250$ kVA;
- Composed primary winding RMS voltages $U_{1n} = 5.2 \text{ kV}$;
- Nominal frequency $f_n = 50$ Hz;

and ferromagnetic losses are neglected. To characterize the transformer two tests have been performed:

- Using open secondary windings, the transformer generates a composed voltage of RMS value U₂₀ = 400 V at each secondary winding, for an applied composed nominal voltage of RMS value U_{1n};
- Using short-circuited secondary windings, a composed voltage of RMS value $U_{1s} = 600$ V is applied at each primary winding for a total primary power P = 7.35 kW, producing line current of RMS intensity $I_{2s} = 350$ A.

1. Calculate the transformer ratio n so that it is greater than 1.

In the statement:

- Composed primary winding RMS voltages $U_{1n} = 5.2 \ kV$
- Output RMS voltage in open circuit $U_{2o} = 400 V$

2. For the first test condition (open secondary windings), draw a Fresnel diagram including the primary composed voltages u_{AB} , u_{BC} , u_{CA} , the direct secondary voltage v_a , v_b , v_c and the secondary composed voltages u_{ab} , u_{bc} , u_{ca} .

3. Express and compute the column ratio $n_c = \frac{N_1}{N_2}$ according to n.

4. Given that the transformer is composed of three cores of section $A_c = 5 dm^2$, and that the magnetic field amplitude is $B_m = 1.2 T$, compute the number of turns N_1 of each primary winding and deduce the value of the number of turns of each winding N_2 .

In the statement:

- Composed primary winding RMS voltages $U_{1n} = 5.2 \ kV$
- Nominal frequency $f_n = 50 Hz$

5. Using a simple single-phase equivalent model (leak resistance and inductance moved to the secondary windings), provide the Thevenin's model seen from a secondary winding and calculate the resistance $R_{eq}(R')$ and the reactance $X_{eq}(X')$ of this model.

In the statement:

- Short-circuit input voltages $U_{1s} = 600 V$
- Short-circuit total primary power $P = 7,35 \, kW$
- Short-circuit secondary line current $I_{2s} = 350 A$

The nominal regime is now considered by applying the composed nominal voltage U_{1n} at the primary windings and connecting a three-phase balanced load on the secondary side (detailed in 2). Each branch is composed of a resistor of value $R^* = 554 \text{ m}\Omega$ in series with a coil of value $L^* = 3.05 \text{ mH}$.

6. Calculate the power factor $\cos(\varphi_2)$ of this load.

```
In the statement: R^* = 554 m\Omega and L^* = 3.05 mH
```

7. Draw the Fresnel diagram corresponding to the balanced single-phase equivalent model. Deduce the RMS values of the current intensities I_2 and the composed voltages U_2 .

In the statement: Composed primary winding RMS voltages $U_{1n} = 5.2 kV$

8. Compute the power P_2 flowing from the transformer to the load.

9. Calculate the transformer efficiency η .

10. Another load is used. Compute the value of the resistance R° and of the inductance L° such that this load is equivalent to the previous one.

