Electromagnetic Energy Conversion ELEC0431

Exercise session 4: Three-phase transformers

1 March 2024

Florent Purnode (fareettrumodeouirige bep
Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Belgium
$>$ Organization point: test and laboratories
$>$ Exercise 9

Organization point: test and laboratories

Test on phasors in the sinusoidal steady state and three-phase systems:

- The test is scheduled for next week (Friday $8^{\text {th }}$ of March) at 9:00 am.
- It takes place in the usual classroom (B37 auditorium 02).
- The test focuses on the material seen during the first and second exercise sessions. You can practice by solving the related homeworks.
- To take the test, take with you your calculator, ruler and protractor.
- This is a quick test of 30 minutes. It will be followed by its correction and a normal exercise session.

Laboratory schedule:

- The schedule for the laboratory sessions is now available on the course webpage.
- Make sure to read it and to update your own calendars accordingly!

Exercise 9

Three-phase power transformers are commonly used to adapt power line voltages and to provide some galvanic insulation between two parts of an electrical grid. The three-phase transformer, described by the normalized scheme hereunder, is connected to a balanced three-phase network of line voltages $\bar{U}_{A B}, \bar{U}_{B C}$ and $\bar{U}_{C A}$ of RMS voltage U_{1} on the primary side, whereas on the secondary side, a three-phase balanced system of line voltages $\bar{U}_{a b}, \bar{U}_{b c}$ and $\bar{U}_{c a}$ of RMS voltage U_{2} is obtained. The line current intensities in the primary and secondary windings are respectively denoted I_{1} and I_{2}.

Exercise 9

Another way to draw the circuit:

- Each winding at the primary is linked to a winding at the secondary.
- \rightarrow When the system is balanced, one can solve it by considering only one phase.
- We define:
$>$ The column ratio n_{c}. That is the ratio between primary and secondary phase voltages/currents:

$$
n_{c}=\frac{V_{2}}{V_{1}}=\frac{J_{1}}{J_{2}} \quad \text { or } \quad n_{c}=\frac{V_{1}}{V_{2}}=\frac{J_{2}}{J_{1}} .
$$

$>$ The transformer ratio n. That is the ratio between primary and secondary line voltages/currents:

$$
n=\frac{U_{2}}{U_{1}}=\frac{I_{1}}{I_{2}} \quad \text { or } \quad n=\frac{U_{1}}{U_{2}}=\frac{I_{2}}{I_{1}} .
$$

Another way to draw the circuit:

One can pass from the column ratio n_{c} to the transformer ratio n (and inversely) if the primary and secondary configurations (delta or star configurations) are known.
Here, with a primary delta configuration and secondary star configuration:

$$
n_{c}=\frac{n_{2}}{n_{1}}=\frac{V_{2}}{V_{1}}=\frac{U_{2} / \sqrt{3}}{U_{1}}=\frac{n}{\sqrt{3}}
$$

Exercise 9

Transformer characteristics:

- Apparent nominal power $\left|S_{n}\right|=250 \mathrm{kVA}$
- Line primary-winding nominal RMS voltages $U_{1 n}=5.2 \mathrm{kV}$
- Nominal frequency $f_{n}=50 \mathrm{~Hz}$
- Ferromagnetic losses are neglectable

Two tests have been performed to characterize the transformer:

- With open secondary windings, $U_{20}=400 \mathrm{~V} \& U_{1 o}=U_{1 n}$.
- With short-circuited secondary windings, $U_{1 s}=600 \mathrm{~V}, P_{3 \varphi}=7.35 \mathrm{~kW} \& I_{2 s}=350 \mathrm{~A}$.

1. Calculate the transformer ratio n so that it is greater than 1 .
2. For the first test condition (open circuit), draw a phasor diagram including the primary line voltages, the secondary phase voltages and the secondary line voltages.
3. Express and compute the column ratio n_{c} according to the transformer ratio n.
4. The transformer is composed of 3 cores of section $A_{c}=5 \mathrm{dm}^{2}$ and the magnetic field amplitude is $B_{m}=1.2 \mathrm{~T}$. Compute the number of turns of each primary winding and the number of turns of each secondary winding.
5. Using a single-phase equivalent model (impedances gathered and moved to the secondary windings), provide the Thevenin's model seen from a secondary winding and calculate the resistance R^{\prime} and the reactance X^{\prime}.

Exercise 9

The nominal regime is now considered by applying the line nominal voltage $U_{1 n}$ at the primary windings and connecting a three-phase balanced load on the secondary side (detailed here on right). Each branch is composed of a resistor of value $R^{\star}=554 \mathrm{~m} \Omega$ in series with a coil of value $L^{\star}=3.05 \mathrm{mH}$.
6. Calculate the power factor $\cos \left(\varphi_{2}\right)$ of this load.
7. Draw the phasor diagram corresponding to the balanced single-phase equivalent model. Deduce the RMS values of the line current intensities I_{2} and of the line voltage intensities U_{2}.
8. Compute the active power P_{2} flowing from the transformer to the load.
9. Calculate the transformer efficiency η.
10. Another load is used, compute the value of the resistance R° and the inductance L° such that this load is equivalent to the one detailed in previously.

Homework 17

In Belgium, most of the railways are powered using DC 3 kV voltage. High speed train lines are however supplied with AC 25 kV 50 Hz (single-phase) voltage, requiring the use of high-power single-phase transformers. In this exercise, such a transformer is considered. A nominal RMS voltage of $U_{1 n}=25 \mathrm{kV}$ with nominal frequency $f=50$ Hz is supplied to the primary winding with an apparent power $\left|S_{n}\right|=5.6 \mathrm{MVA}$.

To characterize the transformer two tests have been performed:

- Using open secondary winding with the nominal voltage applied to the primary, the transformer generates a voltage $U_{2 o}=1.36 \mathrm{kV}$ at the secondary winding, for a current drawn at the primary $I_{10}=1.25 \mathrm{~A}$, and a consumed active power $P_{1 o}=6.8 \mathrm{~kW}$.
- Using short-circuited secondary winding, the transformer consumes an active power $P_{1 s}=25 \mathrm{~kW}$, considering that a reduced voltage of 10.1% of $U_{1 n}$ was applied to the primary winding to maintain the secondary winding current to its nominal value $I_{2 n}$.

1. Calculate the transformer ratio n.
2. Determine the nominal RMS secondary current $I_{2 n}$ and primary current $I_{1 n}$.
3. Compute the power factor $\cos \varphi_{10}$ for the first test (open secondary winding) and deduce the phase shift φ_{10} of the current at the primary winding with respect to the primary winding voltage.
4. Give the reactive power Q_{10} for the first test (open secondary winding).

Homework 17 - Cont'd

5. Considering the model of a transformer with impedances moved and gathered at the primary, calculate the resistance R_{H+F} and the magnetizing inductance L_{μ}.
6. Compute the RMS current intensity $I_{2 s}$ in the secondary winding for the second test (shorted secondary winding), compute the primary winding voltage $U_{1 s}$, and calculate the values of the resistance R and of the inductance L of the primary winding in the equivalent model.
7. Considering that L is chosen large enough to provide sufficient smoothing at the input of the single-phase rectifiers, compare the values of R and $X=2 \pi f L$ and propose a simplified version of the equivalent model of the transformer.

The nominal regime is now considered by applying the nominal voltage $U_{1 n}$ at the primary winding and connecting a load at the secondary winding, drawing an RMS current $I_{2}=4.097 \mathrm{kA}$ with a power factor $\cos \varphi_{2}$, the current being ahead on the voltage. The current \bar{I}_{2} (or I_{2}^{\prime}) in the secondary winding is aimed to be in phase with the voltage \bar{U}_{1} of the primary winding.
8. Build the corresponding Fresnel diagram, clearly identifying the load voltage \bar{U}_{2}^{\prime}.
9. Compute the phase shift φ_{2} of the current \bar{I}_{2} with respect to \bar{U}_{2}, and deduce the load power factor $\cos \varphi_{2}$.
10. Compute the RMS voltage value U_{2} appearing at the secondary winding;

Homework 17 - Cont'd

11. Compute the reactive power Q_{2} drawn by the load at the secondary winding, and the reactive power Q_{1} at the primary winding.
12. Compute the active power P_{2} drawn by the load at the secondary winding, and the active power P_{1} at the primary winding.
13. Compute the transformer efficiency η.

Answers:

1. $n=18.382$
2. $\mathrm{I}_{2 \mathrm{n}}=4117.647 \mathrm{~A}, \mathrm{I}_{1 \mathrm{n}}=224 \mathrm{~A}$
3. $\cos \varphi_{10}=0.2176, \varphi_{10}=77.432^{\circ}$
$Q_{1 o}=30501.189 \mathrm{var}$
$R_{H+F}=91911.765 \Omega, L_{\mu}=65.225 \mathrm{H}$
4. $I_{2 s}=4117.647 \mathrm{~A}, U_{1 s}=2525 \mathrm{~V}, R=498.227 \mathrm{~m} \Omega, L=35.845 \mathrm{mH}$
5. $\quad R \ll X \rightarrow R$ can be neglected

$\varphi_{2}=-5.733^{\circ}, \cos \varphi_{2}=0.99499$
6. $U_{2}=1366.863 \mathrm{~V}$
7. $Q_{2}=-559.4 \mathrm{kvar}, Q_{1}=32.15 \mathrm{kvar}$
8. $P_{2}=5572 \mathrm{~kW}, P_{1}=5604 \mathrm{~kW}$
9. $\eta=99.43 \%$
