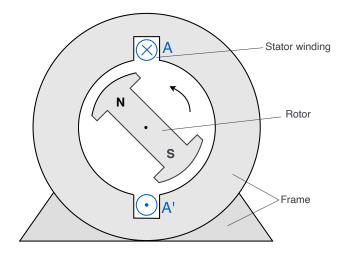
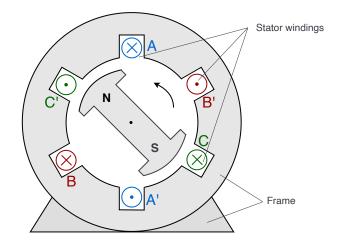
ELEC0431 : Exercise session 5

Synchronous machine

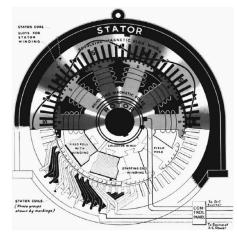

5 March 2021

Nicolas Davister

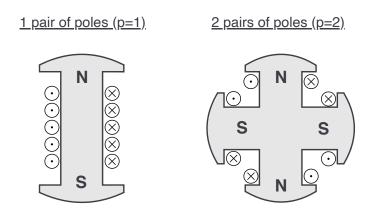
Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Belgium


Building of synchronous machines

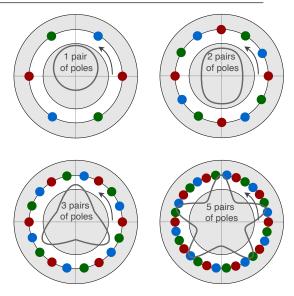
Single-phase synchronous machine


Building of synchronous machines

Three-phase synchronous machine


Synchronous AC machines - Working Principle

The rotor is made up of permanent magnets or DC electromagnets. The electromagnets are often referred to as the excitation (and excitation winding). The stator generates a rotating magnetic field rotating at $\frac{f}{p}$ rpm. The rotor follows the rotating magnetic field of the stator, lagging behind it or ahead of it by the mechanical angle.


Number of pairs of poles and synchronous speed

Number of pairs of poles on the rotor

Number of pairs of poles and synchronous speed

Number of pairs of poles on the rotor and the stator

Synchronous speed

The frequency f, the synchronous speed of the machine, $\dot{\theta}_s$ and the number of pairs of poles p are linked by

$$\dot{\theta}_s = \frac{f}{p} \tag{1}$$

Therefore, an alternator with 1 pair of poles must rotate at 3 000 rpm in order to produce a 50 Hz signal.

The reasoning is the same for the synchronous motor. A 1 pair of poles synchronous motor powered with 50 Hz voltages will rotate at 3 000 rpm.

Number of pairs of poles and synchronous speed

Synchronous speed

Number of pairs of poles	50 Hz	60 Hz
	Speed in rpm	
1	3000	3600
2	1500	1800
3	1000	1200
4	750	900
20	150	180

Mechanical angle

The mechanical angle δ_{mec} is related to the internal angle δ_{int} by the number of pairs of poles as

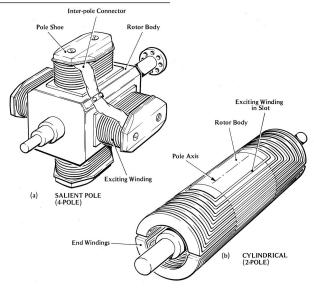
$$\delta_{mec} = \frac{\delta_{int}}{p} \tag{2}$$

Stator core

The stator core is laminated in order to reduce the eddy current losses. That is why stators are build with the stacking of metal sheets.

Stator windings

The stator windings are fixed to the core and placed into the slots. The windings are either made of copper wires or of copper bars for large currents (high power) applications. (ex : small stator wiring)



copper wires

copper bars

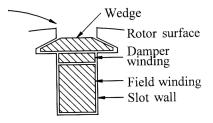
Salient pole rotor and round-rotor

Salient pole rotor

- Driven by low speed prime movers (in hydropower)
- High number of pairs of poles
- Big diameter and small length
- Air gap is not constant
- Made of laminated sheets (cheaper and easier to construct)

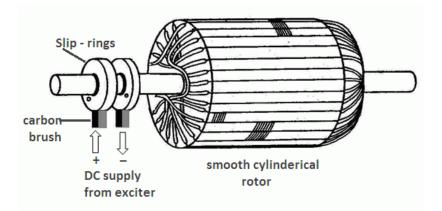
The windings of the rotor are held in place thanks to the pole head.

Round-rotor core

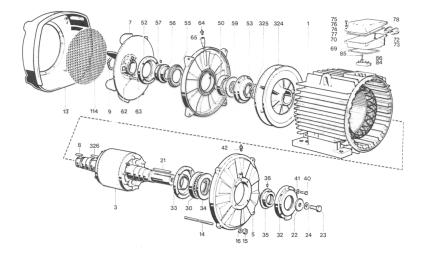

- Driven by high speed turbines
- Low number of pairs of poles (1 or 2)
- Small diameter and big length
- Constant air gap (almost)

Round-rotor winding

- Copper bars
- Stay in place thanks to wedges



Rewinding of round rotor example


Synchronous machine - slip rings

The electric current carried by the rotor is called the excitation current, I_e . This excitation current is brought to the rotor windings by means of slip rings.

Synchronous machine - exploded view

The following view presents how the different parts of the machine are assembled together.

The alternator

The alternator (history and further explanations)

Example of motor construction

Renault Zoe

Exercises