

Electromagnetic Energy Conversion ELEC0431

Exercise session 5: Synchronous machines

10 March 2023

Florent Purnode (florent.purnode@uliege.be)

Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Belgium

Synchronous three-phase generator

Exercise 16: Three-phase turbo-alternator

Synchronous three-phase generator

Exercise 16: Three-phase turbo-alternator

Turbo-alternators are alternators coupled to turbines allowing to convert the mechanical power of a moving fluid (steam or liquid) to electrical power. In this exercise the turbo-alternator has the following nominal characteristics:

- Power $P_n = 600 MW$
- Frequency $f_n = 50 Hz$
- Speed of rotation $\dot{\theta}_n = 3000 RPM$
- Power factor $\cos \phi_n = 0.9$

- Line voltages $U_n = 20 \ kV$
- Ferromagnetic losses $p_f = 543 \ kW$
- Mechanical losses $p_m = 1.35 MW$

- Rotor resistance $R_e = 0.17 \Omega$
- Excitation system efficiency $\eta e = 0.92$

 I_e [A]

400

700

963

1200

1450

1900

• Stator phase resistance $R = 2.3 m\Omega$.

To characterize the turbo-alternator three tests have been performed:

- ▶ Using open stator windings, at the nominal speed of rotation $\dot{\theta}_n$, the RMS direct voltage values have been measured with respect to the RMS current intensity I_e flowing through the inductor (table on the right).
- Solution Short-circuited stator windings, at the nominal speed of rotation $\dot{\theta}_n$, using an excitation current of RMS value $I_e = 1.18 \ kA$ has allowed a current flow in each phase winding of the stator reaching the half of the RMS nominal value.
- Using an inductive load, an excitation current of RMS value I_e = 2.085 kA has allowed a current flow in each phase winding of the stator reaching the half of the RMS nominal value. Also, the output voltage was measured as half the nominal voltage.

9.1	
11.5	
13	
14	
15	
	•

 E_{v} [kV]

5.2

Exercise 16: Three-phase turbo-alternator

- 1. Calculate the nominal RMS intensity I_n of the stator currents.
- 2. Compute the total losses and the turbo-alternator efficiency at the nominal operating point, knowing the RMS excitation current value is $I_e = 3.2 kA$ and that the alternator is in star configuration.
- 3. Calculate the needed mechanical power for each of the considered test.

Using Behn-Eschenburg diagram with the experimental measurements and neglecting resistive losses in the rotor:

- 4. Calculate the (unsaturated) synchronous reactance X_s of the turbo-alternator.
- 5. Plot the Behn-Eschenburg diagram for the nominal operating point.
- 6. Compute the RMS value E_{v} of the synchronous electromotive force.
- 7. Draw the internal lag δ_{int} angle and give its value.