

Electromagnetic Energy Conversion ELEC0431

Exercise session 5: Synchronous machines

7 March 2025

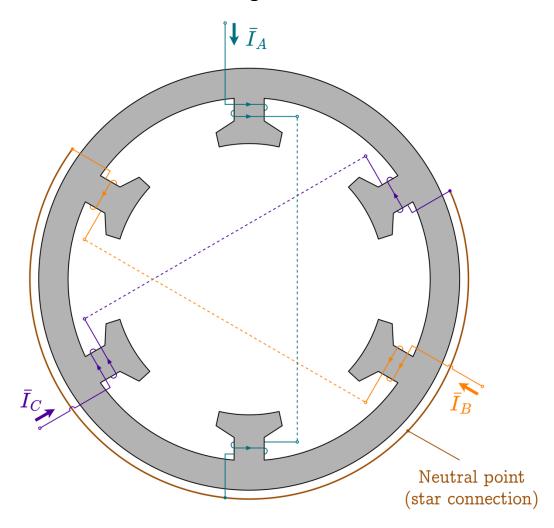
Florent Purnode (florent.purnode@uliege.be)

Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Belgium

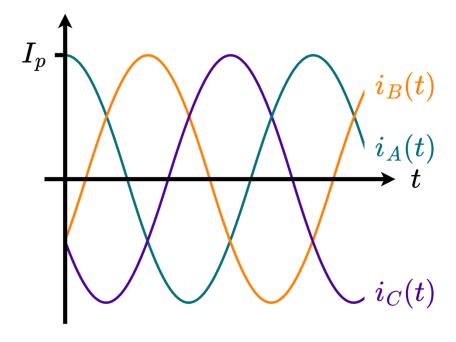
In this class...

- > Three-phase synchronous motors
- > Three-phase synchronous generators (alternators)
- > Exercise 9

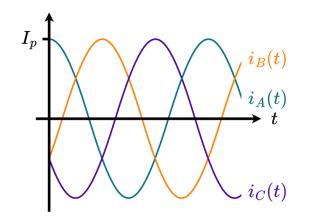
Three-phase synchronous motors


Stators in three-phase motors

Magnetic field in three-phase motors

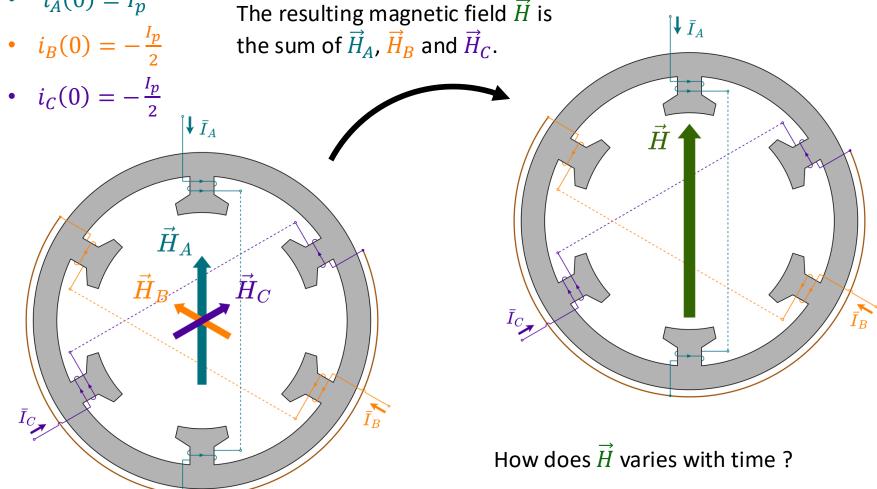

Three-phase synchronous motors

Stators in three-phase motors

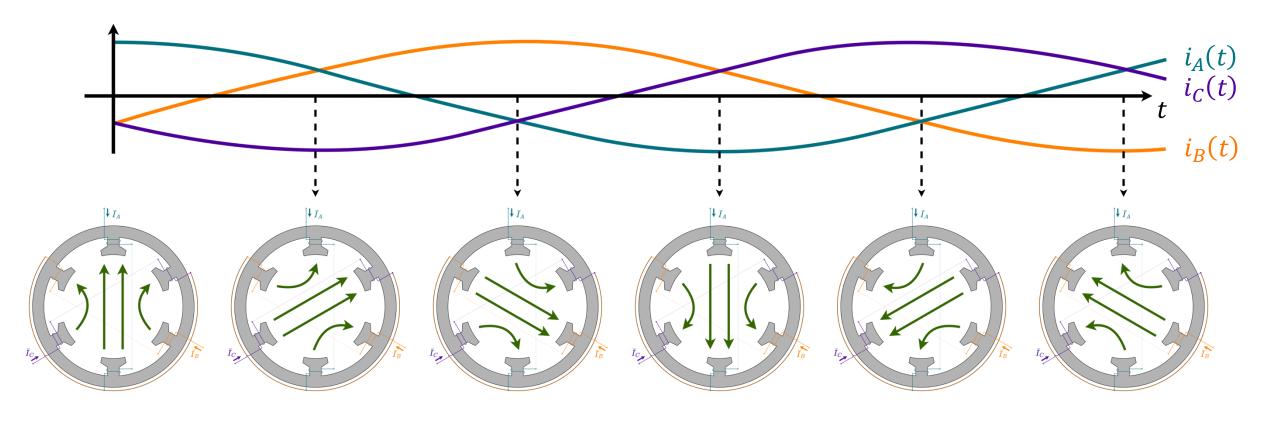

Let's consider a simple stator for a three-phase motor connected in a star configuration:

It is powered by a balanced three-phase electrical grid so that the currents \bar{I}_A , \bar{I}_B and \bar{I}_C are out of phase by 120° and have equal peak amplitude I_p .

Magnetic field in three-phase motors



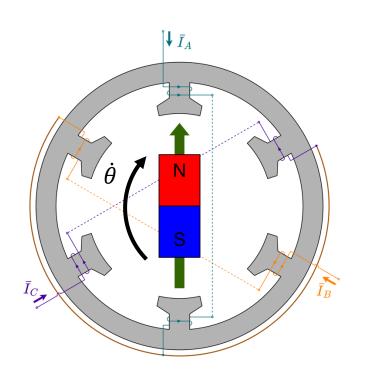
At t = 0:

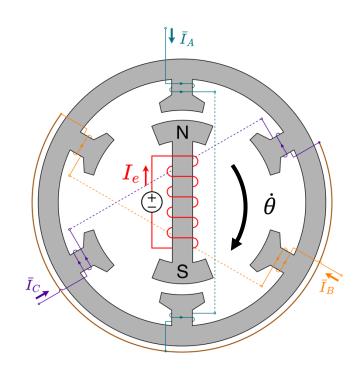

- $i_A(0) = I_p$

By ampere's law, we know these currents will generate magnetic fields.

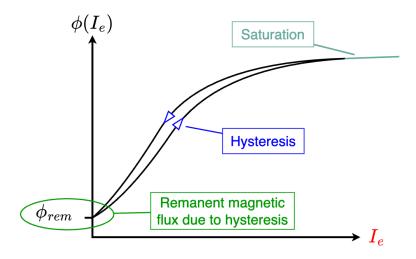
As a first approximation, we consider that generates \vec{H}_A , generates \vec{H}_B and generates \vec{H}_C .

Magnetic field in three-phase motors


The magnetic field generated in the stator is constant in amplitude and rotates at the frequency of the three-phase power source.

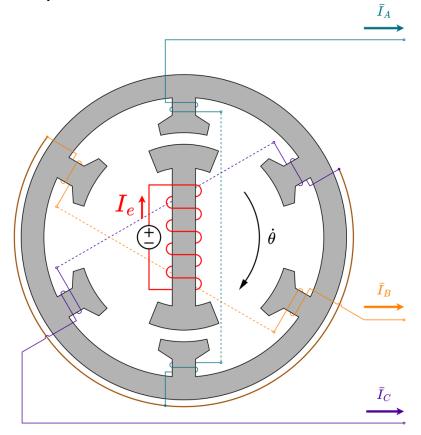

Three-phase synchronous motors

One can put a permanent magnet or an electromagnet in the stator.


In both cases, they will align with the magnetic field and rotate at the same frequency as the three-phase power source

→ Synchronous motor

Note that electromagnets use ferromagnetic materials exhibiting hysteresis and saturation:



Three-phase synchronous generators (alternators)

Induced emf \overline{E}_v Behn-Eschenburg's model
Number of pairs of poles
Exercise 9

Induced emf \bar{E}_{ν}

Three-phase synchronous generators and three-phase synchronous motors are built similarly.

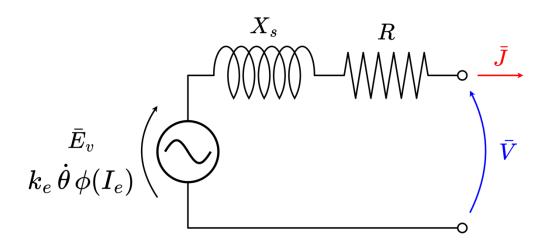
An electromagnet generates a flux $\phi(I_e)$, rotating with the shaft of the machine.

As the magnetic flux perceived by the stator windings varies, it produces an emf, whose amplitude is proportional to $\frac{d\phi(I_e)}{dt}$.

Since it rotates at a speed $\dot{\theta}$, $\frac{d\phi(I_e)}{dt}$ is proportional to $\dot{\theta}$ $\phi(I_e)$.

The RMS amplitude E_{ν} of the produced emf is thus given by:

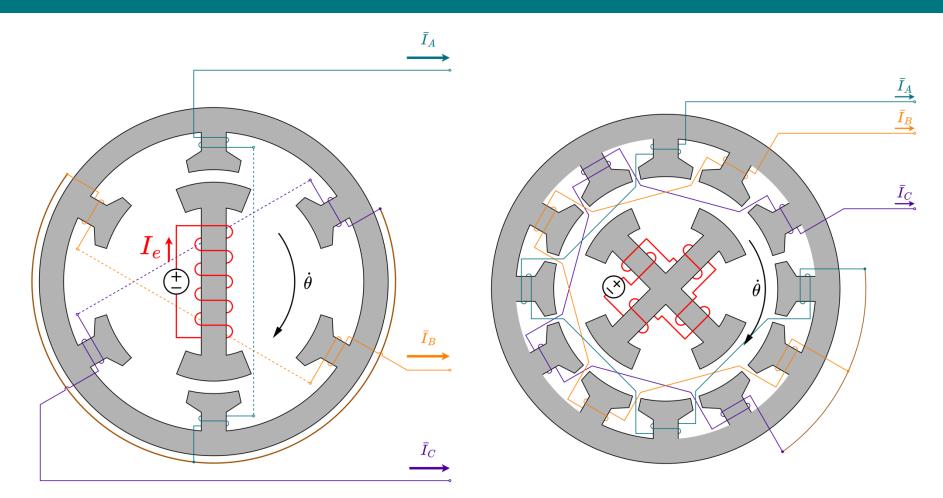
$$E_{v} = k_{e} \dot{\theta} \phi(I_{e}),$$


with k_e a scaling factor to determine.

Behn-Eschenburg's model

The emf \bar{E}_v generated in one phase is not directly equal to the corresponding output phase voltage \bar{V} . This is due to:

- the stator leakage fluxes,
- the armature reaction,
- the wire resistance.


When the ferromagnetic materials are not saturated, we can account for these effects using the Behn-Eschenburg's model:

Note:

- Often, $X_S \gg R$.
- Without any load, $\bar{J}=0$ and $\bar{E}_v=\bar{V} \Rightarrow E_v$ is the **no-load** emf.

Number of pairs of poles

The number of pairs of poles p links the speed of rotation $\dot{\theta}$ to the pulsation ω of the currents and voltages:

$$\dot{\theta} = \frac{\omega}{p}$$

Each phase has two poles

 \rightarrow One pair of poles (p=1)

Each phase has four poles

 \rightarrow Two pairs of poles (p=2)

Exercise 9: Three-phase turbo-alternator

Turbo-alternators are alternators coupled to turbines allowing to convert the mechanical power of a moving fluid (steam or liquid) to electrical power. In this exercise the turbo-alternator has the following nominal characteristics:

- Power $P_n = 600 MW$
- Frequency $f_n = 50 \, Hz$
- Speed of rotation $\dot{\theta}_n = 3000 \, RPM$
- Power factor $\cos \phi_n = 0.9$

- Line voltages $U_n = 20 \ kV$
- Ferromagnetic losses $p_f = 543 \ kW$
- Mechanical losses $p_m = 1.35 MW$

- Rotor resistance $R_e = 0.17 \Omega$
- Excitation system efficiency $\eta_e = 0.92$
- Stator phase resistance $R = 2.3 m\Omega$.

To characterize the turbo-alternator three tests have been performed:

- \triangleright Using open stator windings, at the nominal speed of rotation $\dot{\theta}_n$, the RMS direct voltage values have been measured with respect to the RMS current intensity I_e flowing through the inductor (table on the right).
- \blacktriangleright When turning at the nominal speed of rotation $\dot{\theta}_n$, using short-circuited stator windings and an excitation current I_e of 1.18~kA, an RMS current equal to half the nominal RMS value flows in each of the stator windings.
- When turning at the nominal speed of rotation $\dot{\theta}_n$, connecting an inductive load and using an excitation current I_e of 2.085 kA, an RMS current equal to half the nominal RMS value flows in each of the stator windings for an RMS line voltage of $10~\rm kV$.

I_e [A]	E_{v} [kV]
400	5.2
700	9.1
963	11.5
1200	13
1450	14
1900	15

Exercise 9: Three-phase turbo-alternator

- 1. Calculate the nominal RMS intensity I_n of the line currents.
- 2. Compute the total losses and the turbo-alternator efficiency at the nominal operating point, knowing the RMS excitation current value is $I_e = 3.2 \ kA$ and that the alternator is in star configuration.
- 3. Calculate the mechanical power the turbine must provide for each of the considered test.

Using Behn-Eschenburg's model with the experimental measurements:

- 4. Calculate the (unsaturated) synchronous reactance X_s of the turbo-alternator.
- 5. Draw the phasor diagram corresponding to the Behn-Eschenburg's model for the nominal operating point, assuming the current lags the voltage.
- 6. Compute the RMS value E_{ν} of the synchronous electromotive force.
- 7. Draw the internal angle δ_{int} and give its value.