

Electromagnetic Energy Conversion ELEC0431

Exercise session 7: Asynchronous machines

24 March 2023

Florent Purnode (florent.purnode@uliege.be)

Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Belgium

Asynchronous motor

Exercise 19: Asynchronous motor for washer cleaner

- 1. The stator generates a rotating magnetic field
- 2. Closed loop wire with varying magnetic field
 - ➔ Faraday's law: emf
- 1. The emf leads to a current
- 2. Current in a magnetic field

→ Laplace:
$$\overline{F} = q \overline{v} \wedge \overline{B}$$

- *1.* \overline{F} makes the rotor rotate
- ✓ Self starting
 ✓ brushless & no permanent magnet → easy to build

If the rotor doesn't move \rightarrow high varying fluxes \rightarrow high current \rightarrow acceleration

If the rotors turns at the same speed as the magnetic field → no varying fluxes
 No Laplace force → Deceleration due to consumed active power (losses and load)

The rotor of the asynchronous motor rotates at a speed $\dot{\theta}$ lower than the speed of the magnetic field $\dot{\theta}_s$, called the synchronous speed of rotation.

The slip g ("glissement" in French) links the two speeds:

$$g = \frac{\dot{\theta}_s - \dot{\theta}}{\dot{\theta}_s}$$

Note:

- If the stator doesn't move $\Rightarrow \dot{\theta} = 0 \Rightarrow g = 1$
- if the stator moves at the synchronous speed $\Rightarrow \dot{\theta} = \dot{\theta}_s \Rightarrow g = 0$

The asynchronous motor has an equivalent circuit similar to the one of a transformer:

Exercise 19: Asynchronous motor for washer cleaner

A star-shaped asynchronous motor of a high-pressure washer cleaner has the following nominal characteristics:

• Power $P_n = 5.5 \ kW$

• RMS composed voltage value $U_{sn} = 400 V$ Speed of rotation $\dot{\theta}_n = 1460 RPM$

• Frequency $f_n = 50 Hz$

• RMS line current intensities $I_{sn} = 11 A$

Assume that the stator reactance X_s is equal to the stator resistance R_s . Use a single-phase equivalent model of the asynchronous motor when needed.

- 1. Calculate the synchronous speed of rotation $\dot{\theta}_s$, the number of pair of poles p of the motor and the nominal slip g_n .
- 2. Determine the value of the stator resistance R_s given that a DC current $I_0 = 10 A$ flows when a DC voltage $U_0 = 20.6 V$ is applied between two lines.
- 3. At the nominal operating point, without mechanical load, the motor draws a current of RMS value $I_{so} = 3.07 A$ for an active power $P_{so} = 245 W$. Calculate the overall losses and calculate the resistance modelling ferromagnetic losses R_{H+F} and the magnetizing inductance L_{μ} , assuming that mechanical losses equal ferromagnetic losses;

Consider that the machine operates at nominal speed and produces the nominal mechanical power P_n to the mechanical load. The nominal mechanical power can also be denoted P_{mec} .

- 4. At the nominal operating point, calculate the transmitted power from the stator to the rotor and the Joules losses in the stator p_{js} and deduce the total consumed power P.
- 5. Calculate the rotoric resistance R'_r and the leak inductance L'_r seen from the stator.
- 6. At the nominal operating point, calculate the mechanical torque Γ_{un} and the electromagnetic torque Γ_n , the power factor $\cos \varphi_n$ and the efficiency η_n .
- 7. Compute the RMS value I_s of the line currents, and the power factor $\cos \varphi$ at a rotation speed of 0 *RPM*.