

Electromagnetic Energy Conversion ELEC0431

Exercise session 8: Asynchronous machines

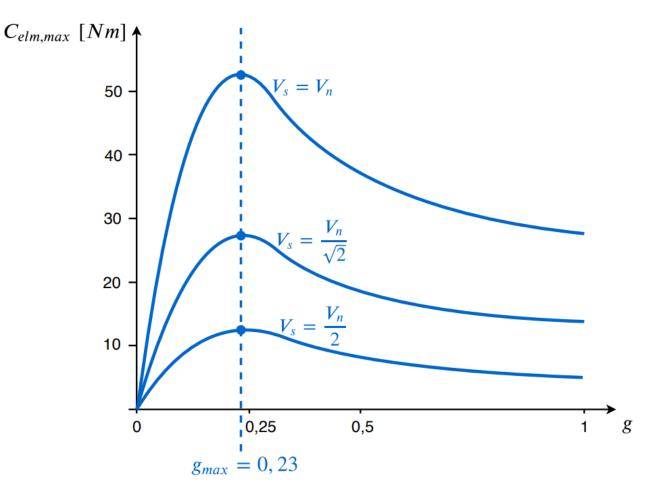
31 March 2023

Florent Purnode (florent.purnode@uliege.be)

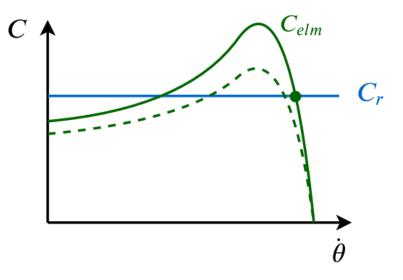
Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Belgium

On the nameplate of an asynchronous motor of a fan used in an air handling unit, the following characteristics are read:

4.4 kW; 230/400 V; 15.5/9 A; 50 Hz; 4 poles


Using a single-phase equivalent model of the asynchronous motor and neglecting the statoric leak inductance X_s :

- 1. Explain the meaning of each element on the nameplate.
- 2. The motor is used on a 230 V network, explain which winding coupling should be used for the stator.
- 3. Calculate the synchronous speed of rotation $\dot{\theta}_s$.
- 4. Given that the (DC) resistance value measured between two stator terminals is $R_a = 0.654 \Omega$, compute the value of the statoric resistance R_s of the equivalent single-phase model.
- 5. A calibrated motor is used to rotate the shaft of the unpowered considered motor, upto reaching the synchronous speed, at which the calibrated motor consumes 86 *W*. Calculate the mechanical losses of the motor and explain why assuming that these mechanical losses remain constant is a good approximation.
- 6. At the nominal operating point, without mechanical load, the motor draws a current of RMS value $I_{so} = 3.82 A$ for an active power $P_{so} = 300 W$. Calculate the resistance modelling ferromagnetic losses R_{H+F} and the statoric inductance L_{μ} .
- 7. The rotor shaft of the motor is stalled while a voltage of RMS value $U_{sc} = 57.5 V$ is applied for a consumed threephase active power $P_{sc,3\varphi} = 374 W$ and three-phase reactive power $Q_{sc,3\varphi} = 1.09 kvar$. Calculate the rotoric resistance R'_r and the leak inductance X'_r seen from the stator.


A direct voltage of value V_s and frequency f is applied on each phase of the motor. Neglecting the magnetizing branch:

- 8. Using the single-phase equivalent model of the asynchronous motor, express the RMS phase current value J_s in terms of V_s , R_s , R'_r , g and X'_r .
- 9. Calculate the transmitted power from the stator to the rotor.
- 10. Calculate the electromagnetic torque C_{elm} and give the maximal reachable torque Γ_{max} after showing that C_{elm} is maximal for a slip value g_{max} .

11. Plot C with respect to g for an applied voltage V_s equal to V_n , $\frac{V_n}{\sqrt{2}}$ and $\frac{V_n}{2}$.

12. Explain why a control on the rotor voltages is not suitable for speed variation for load having constant resistive torque.

→ Modifying the voltage has a very small impact on the rotation speed.

- → the machine must remain in the stable region which is narrow.
- 13. To limit the peak current when starting the motor, a star/delta starter is frequently used. Assuming that this transient mode is much longer compared to the period corresponding to the frequency *f* of the applied voltages, calculate the RMS current values of the line currents compared to those drawn by using a star/delta starter.