

Electromagnetic Energy Conversion ELEC0431

Exercise session 10: Electronic control systems

28 April 2023

Florent Purnode (florent.purnode@uliege.be)

Montefiore Institute, Department of Electrical Engineering and Computer Science, University of Liège, Belgium

- Exercise 24: Regenerative braking
- Exercise 26: DC-DC buck converter
- Exercise 27: DC-DC boost converter

You want to build a drone. For this, you use DC motors running at 20 V and a 20 V battery. However, the camera and the control part work at 5 V. When the drone is waiting to take off, the control part is in standby and takes only 3 V. How to obtain 5 or 3 V from the 20 V battery to supply the control part?

How to obtain 5 or 3 V from the 20 V battery ?

→ Use a resistive voltage divider

We have the 5 V to power the control part.
Not possible to get the 3 V.
Huge power losses.

How to obtain 5 or 3 V from the 20 V battery ?

→ Use a series pass regulator

- \odot We have the 5 V to power the control part.
- \odot Possible to get the 3 V.
- \otimes Huge power losses.

How to obtain 5 or 3 V from the 20 V battery ?

→ Use a DC-DC converter

D is the "duty cycle". It is the proportion of time during which the MOSFET conducts (0 < D < 1).

We have the 5 V to power the control part.
Possible to get the 3 V.
High efficiency

NB: The analysis is made assuming that components are ideal (mosfet and diode), which is not the case in practice.

Exercises

Exercise 24: Regenerative braking Exercise 26: DC-DC buck converter Exercise 27: DC-DC boost converter

Exercise 24: Regenerative braking

Hybrid electric vehicles are generally provided with regenerative braking, allowing to load onboard battery when the vehicle is braking or when the vehicle acts as a driving load. In this exercise, the DC motor, having an electromotive force E and internal resistance $R = 0.5 \Omega$ is connected (when the regenerative breaking is active) to a battery delivering a current I under the voltage V = 100 V using a chopper DC-DC converter:

- 1. Find the mean value of v(t): V_m .
- 2. Find the link between the mean input current I_m and the mean output current I.
- 3. Express the voltage V with respect to I_m , E, R and the duty cycle D.
- 4. Compute the duty cycle *D* allowing to obtain $V_m = 60$ V.
- 5. Compute the mean braking current I_m when the motor delivers an electromotive force E = 70 V for $V_m = 60 V$.
- 6. Calculate the braking power *E* I_m and the braking torque C_m if the motor speed of rotation is $\dot{\theta} = 955 RPM$.

Exercise 26: DC-DC buck converter

DC-DC converters are used to adapt two different voltage levels. For instance, in particular model of an electric car, the battery voltage is set to E = 302 V, whereas the auxiliaries (lights, cigar lighter, window and wiper motors, ...) are working with $V_o = 12 V$. A DC-DC buck converter is used to reduce the battery high voltage to the lower value (12 V) with high efficiency. The DC-DC buck converter can be modelled by the following circuit.

1. Find the waveforms of the voltage across the ideal switch (v_s) and the voltage across the inductance (v_L). Deduce the inductance current waveform from it.

Exercise 26: DC-DC buck converter

Assume steady-state conditions.

- 2. Express the ratio $\frac{V_o}{F}$ in terms of the duty cycle D.
- 3. Give the value of *D* in this situation.

The current ripple Δi is defined as the absolute difference between the maximum of current (during a switching period) and the average current *I* (over the same switching period).

- 4. Find the expression of the inductor current ripple Δi_L in terms of V_o , E, D, T_s and L.
- 5. Estimate the inductor current ripple Δi_L for a switching frequency $f_s = 1 \ KHz$ and an inductance of 50 mH. Compare the value of the current ripple to the value of the output current if the auxiliaries draw 12 W.

Exercise 27: DC-DC boost converter

DC-DC converters are used to adapt two different voltage levels. In some electronic calculator, the battery voltage is set as $V_{in} = 3 V$, whereas the electronic parts work under $V_{out} = 9 V$. A DC-DC boost converter is used to increase the battery low voltage to the higher value (9 V) with high efficiency. The DC-DC boost converter can be modelled by the following circuit.

1. Find the waveforms of the voltage across the ideal switch (v_s) and the voltage across the inductance (v_L). Deduce the inductance current waveform from it.

Exercise 26: DC-DC buck converter

Assume steady-state conditions.

- 2. Express the ratio $\frac{V_{out}}{V_{in}}$ in terms of the duty cycle *D*.
- 3. Give the value of *D* in this situation.

The current ripple Δi is defined as the absolute difference between the maximum of current (during a switching period) and the average current *I* (over the same switching period).

- 4. Find the expression of the inductor current ripple Δi_L in terms of V_{out} , V_{in} , D, T_s and L.
- 5. Estimate the inductor current ripple Δi_L for a switching frequency $f_s = 30 \ KHz$ and an inductance of 75 mH. Compare the value of the current ripple to the value of the output current if the system draws $15 \ mW$.