Synchronous machines

Synchronous generator (alternator): transforms mechanical energy into electric energy; designed to generate sinusoidal voltages and currents; used in most power plants, for car alternators, etc.

Synchronous motor: transforms electric energy into mechanical energy; used for highpower applications (ships, original TGV, electric cars...)

Rotor (*inductor*) : 2p poles with excitation windings carrying DC current; nonlaminated magnetic material

 $\dot{\theta} = \omega/p$

Stator: polyphase (e.g. 3-phase) winding in slots; laminated magnetic material

No-load characteristic

Vector diagram with load

Diagram of magnetomotive forces and magnetic flux densities

- (1) The rotor winding, carrying the DC current I_e and rotating at speed ω/p , produces in the airgap a sliding m.m.f. \overline{F}_e (as seen from the stator).
- (2) The polyphase current \overline{I} in the stator winding produces a sliding m.m.f. $\overline{F_I}$ (in phase with I).
- (3) The resulting m.m.f. is $\overline{F}_r = \overline{F}_e + \overline{F}_I$.
- (4) \overline{F}_r generates a magnetic flux density B_r (with the same phase) in the airgap,, which induces sinusoidal e.m.f.s in the stator windings, with a phase lag of $\pi/2$.

Vector diagram with load

Potier diagram

'Which excitation current I_e should one impose in the synchronous machine to reach the operating point corresponding to a given voltage U and current I in the stator, with a phase shift of ϕ between U and I?'

Reaction

Demagnetizing reaction

The m.m.f. is smaller than the no-load m.m.f. $(I_r < I_e)$

Inductive behaviour of the load (I lagging behind U) Magnetizing reaction

The m.m.f. is larger than the no-load m.m.f. $(I_r > I_e)$

Capacitive behaviour of the load (I in front of U)

Zero power factor characteristic

Short-circuit characteristic

Simplified vector diagram

Behn-Eschenburg's method – Synchronous reactance X_s

When the magnetic materials are not saturated, the combined effect of the reaction and of stator leakage fluxes can be taken into account thanks to a single parameter: the synchronous reactance

 $rac{E_v}{I_e} = rac{E_r}{I_r} = \text{ constant}$

Experimental determination of X_s

Behn-Eschenburg's method – Synchronous reactance X_s $\mathbf{E}_{\mathbf{y}}$ $\Rightarrow \overline{E}_{v} = (R + j X_{s}) \overline{I}_{cc}$ $\overline{\mathbf{U}} = \mathbf{0}$ \Rightarrow R + j X_s = $\frac{\overline{E}_v}{\overline{I}_{aa}}$ with R << X_s Х, $X_s \approx \frac{E_v(I_e)}{I_{ee}(I_e)}$ Ι. Approximation when magnetic materials are saturated! jX,Ĩ Ē Ē jΧ_τĨ Ũ RĨ

Exterior characteristic

Alternator exterior characteristic

Evolution of the voltage U on a given stator phase as a function of the current Iin this phase, when the alternator drives a load characterized by a constant power factor, at constant speed and excitation

Network connection

Need for interconnection of electric power plants

Economical organization of power production + *Stability of the network despite local defects*

Synchronization of an alternaltor on an ideal (infinitely powerful) AC network

Large number of production units in parallel \Rightarrow constant voltage and frequency

The current should be zero when the connection is made \rightarrow 4 conditions

- 1. same pulsation ω (correct rotation speed)
 - 2. same amplitudes for E_v and U (adjusting I_e)
- 3. no phase shift between E_v and U
- 4. *identical phase ordering* (*in a 3-phase system*)

Behaviour with load

Behaviour with load

Static stability Internal angle $\delta_{int} > 0$ $\delta_{\text{int}} < 0$ synchronous motor alternator Increasing the mechanical torque leads to an increase of δ_{int} , and thus to a decrease of Increasing the mechanical $C_{elm} \Rightarrow unstable$ Unstable Unstable (breaking) torque leads to an increase of the absolute value δ_{it} $\pi/2$ $-\pi/2$ of δ_{int} , and thus to a decrease in the absolute value of C_{elm} ΠĽ. \Rightarrow unstable static stability

Increasing the mechanical (breaking) torque leads to an increase of the absolute value of δ_{int} and thus of $C_{elm} \Rightarrow stable$.

The equilibrium is reached when the two torques are equal.

Increasing the mechanical torque leads to an increase of δ_{int} and thus of $C_{elm} \Rightarrow stable$. The equilibrium is reached when the two torques are equal.

Behaviour with load

V-curves (Mordey curves)

