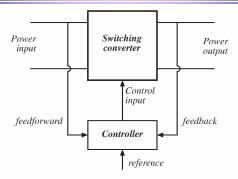

Fundamentals of Power Electronics Second edition

Robert W. Erickson
Dragan Maksimovic
University of Colorado, Boulder

1.1 Introduction to Power Processing

Dc-dc conversion: Change and control voltage magnitude

Ac-dc rectification: Possibly control dc voltage, ac current


Dc-ac inversion: Produce sinusoid of controllable

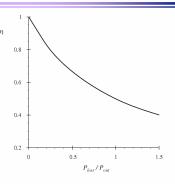
magnitude and frequency

Ac-ac cycloconversion: Change and control voltage magnitude

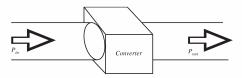
and frequency

Control is invariably required

High efficiency is essential

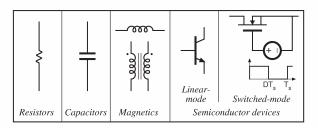

$$\eta = \frac{P_{out}}{P_{in}}$$

$$P_{loss} = P_{in} - P_{out} = P_{out} \left(\frac{1}{\eta} - 1 \right)$$

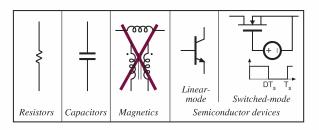

High efficiency leads to low power loss within converter

Small size and reliable operation is then feasible

Efficiency is a good measure of converter performance

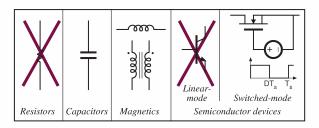


A high-efficiency converter



A goal of current converter technology is to construct converters of small size and weight, which process substantial power at high efficiency

Devices available to the circuit designer

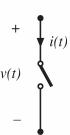


Devices available to the circuit designer

Signal processing: avoid magnetics

Devices available to the circuit designer

Power processing: avoid lossy elements


Power loss in an ideal switch

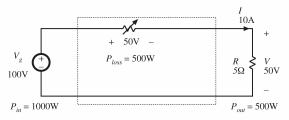
Switch closed: v(t) = 0

Switch open: i(t) = 0

In either event: p(t) = v(t) i(t) = 0

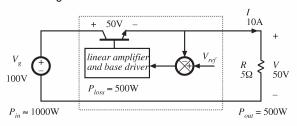
Ideal switch consumes zero power

A simple dc-dc converter example

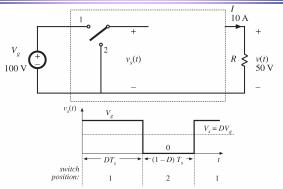

Input source: 100V

Output load: 50V, 10A, 500W

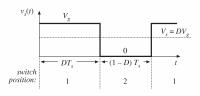
How can this converter be realized?


Dissipative realization

Resistive voltage divider



Dissipative realization

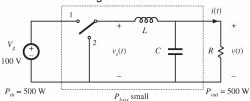

Series pass regulator: transistor operates in active region

Use of a SPDT switch

The switch changes the dc voltage level

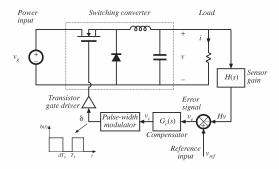
D = switch duty cycle $0 \le D \le 1$

 T_s = switching period

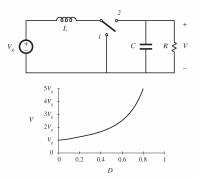

 f_s = switching frequency = 1 / T_s

DC component of $v_s(t)$ = average value:

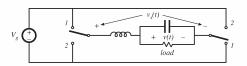
$$V_s = \frac{1}{T_s} \int_0^{T_s} v_s(t) \ dt = DV_g$$

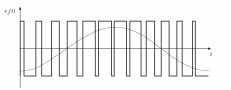

Addition of low pass filter

Addition of (ideally lossless) *L-C* low-pass filter, for removal of switching harmonics:



- Choose filter cutoff frequency f_0 much smaller than switching frequency f_0
- This circuit is known as the "buck converter"

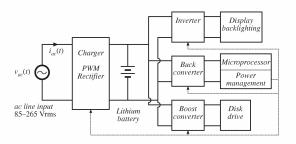

Addition of control system for regulation of output voltage



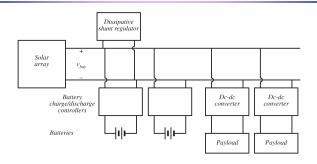
The boost converter

A single-phase inverter

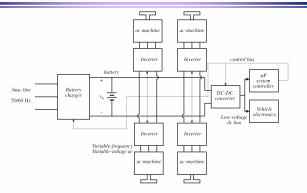
"H-bridge"


Modulate switch duty cycles to obtain sinusoidal low-frequency component

1.2 Several applications of power electronics


Power levels encountered in high-efficiency converters

- · less than 1 W in battery-operated portable equipment
- tens, hundreds, or thousands of watts in power supplies for computers or office equipment
- kW to MW in variable-speed motor drives
- 1000 MW in rectifiers and inverters for utility dc transmission lines


A laptop computer power supply system

Power system of an earth-orbiting spacecraft

An electric vehicle power and drive system

1.3 Elements of power electronics

Power electronics incorporates concepts from the fields of

analog circuits electronic devices control systems power systems magnetics electric machines

numerical simulation