
ELEC0431 Electromagnetic Energy Conversion
Corrective of Exercises

Prof. C. Geuzaine
Teaching Assistant N. Davister

May 21, 2020

Contents
1 Phasors and power in the sinusoidal steady state 2

Exercise 1: Voltage distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Exercise 2: Reactive power compensation . . . . . . . . . . . . . . . . . . . . . . . . . 2
Exercise 3: One-port small quiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Exercise 4: 2-Ports characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Power in three-phase systems 3
Exercise 5: Electrical Heater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Magnetic circuits & Transformers 4
Exercise 6: Reluctance computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Exercise 7: Four secondaries single-phase transformer . . . . . . . . . . . . . . . . . . 4
Exercise 8: Three-phase transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Exercise 9: Single-phase autotransformer . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 AC synchronous machines 5
Exercise 10: Constant air gap alternator . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Exercise 11: Three-phase turbo-alternator . . . . . . . . . . . . . . . . . . . . . . . . . 13
Exercise 12: Alternator and synchronous condenser . . . . . . . . . . . . . . . . . . . . 13

5 AC asynchronous machines 14
Exercise 13: Asynchronous motor 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Exercise 14: Asynchronous motor 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Exercise 15: Wind turbine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 DC machines 30
Exercise 16: DC brushed motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Exercise 17: Regenerative braking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Exercise 18: DC generator-motor mechanical coupling . . . . . . . . . . . . . . . . . . 39

7 Electronic control system 40
Exercise 19: DC-DC buck converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Exercise 20: DC-DC boost converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

1



1 Phasors and power in the sinusoidal steady state

Exercise 1: Voltage distribution

Exercise 2: Reactive power compensation

Exercise 3: One-port small quiz

Exercise 4: 2-Ports characterization

2



2 Power in three-phase systems

Exercise 5: Electrical Heater
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3 Magnetic circuits & Transformers

Exercise 6: Reluctance computation

Exercise 7: Four secondaries single-phase transformer

Exercise 8: Three-phase transformer

Exercise 9: Single-phase autotransformer

I1

RHF Lµ

Rs I2
Ls

U1 U2

ideal

1 : m

Figure 1: Single phase transformer equivalent circuit

1) m = 5
2) Rl = 50 Ω ; Xm = 6.3 Ω
3) Rs = 0.24 Ω ; Xs = 0.32 Ω
4) ∆U2 = 4.61 V; U2 = 95.2 V
5) P2 = 916 W
6) I1 = 62.3 A
7) η = 95.6 %
8) U ′1 = 80 V
9) I ′1o = 0.8 A
10) R′s = 15 mΩ; X ′s = 20 mΩ
11) RC = 2.39 ms
12) Rm = 5.41 Ω ; ηm = 99.2 %
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4 AC synchronous machines

Exercise 10: Constant air gap alternator
1. Physical explanations and advantages

The three synchronous alternators are fixed to the same shaft.

The permanent magnet alternator is the smallest of the three machines (regarding power)
and produces some three-phase current alternating current as it rotates.
The current produced is then rectified (it becomes DC current) and used for the excitation
of the second machine.

The second machine (here the inversed alternator) is used to increase the power between
the small permanent magnet alternator and the main alternator.

It is called an inversed alternator because the fixed part contains the excitation winding
(DC current) (normally in the rotor for a conventionnal machine) and the moving part
contains the three-phase windings (normally in the stator for a conventionnal machine).

The three-phase currents are then rectified and used for the excitation of the main alternator.
Remark that the rectifier is also rotating along the inversed alternator.

The main alternator rotor is then excited with the excitation current Ie and the mechanical
power applied on the shaft is transfered into three-phase electrical power in the conductors
(a, b, c, n).

Advantages :

The permanent magnet machine allows an autonomous start (no excitation current is
required for this machine). Also, this machine is brushless, meaning that no spark are
produced when it is rotating. This is an important point for the design of safe aircraft.
A brushed DC generator could not be used instead of the permanent magnet alternator
because it would create sparks.

The electrical connections of the inversed alternator are simpler and do not require any
connecting ring either for the excitation winding or the three-phase windings

2. Express f in terms of θ̇e, km and p

θ̇ = km θ̇e (1)

where θ̇ is the machine synchronous speed ; km = 2,67 is the gearbox ratio ; θ̇e is the aircraft
reactor speed.

Then,

f = p θ̇ = p km θ̇e (θ̇ and θ̇e expressed in turn/s) (2)

f = p
θ̇

60
=
p km θ̇e

60
(θ̇ and θ̇e expressed in rpm) (3)

f =
p θ̇

2π
=
p km θ̇e

2π
(θ̇ and θ̇e expressed in rad/s) (4)
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3. Deduce p, fmin and fmax

The alternator frequency is 370 Hz when its rotation speed is 11 000 rpm. 11 000 rpm =
183,3 turn/s. Then, p = f

θ̇
= 370

183,3 = 2, 018 and the number of pair of poles p = 2.

θ̇e,min = 4160 rpm and θ̇e,max = 9000 rpm. Then,

fmin =
p km θ̇e,min

60
= 370, 24Hz (5)

fmax =
p km θ̇e,max

60
= 801Hz (6)

4. Justify the relevance of working at variable frequency

• The high frequency (higher the industrial 50 Hz) enables the use of smaller components
(L and C).

• The mechanic is easier, there is only one gearbox with one ratio.

• The rotation speed of the reactor can vary even if there are only two pairs of poles.

5. Nominal current Isn

Isn =
Sn
3V

=
150 000

3 · 115
= 434, 783 A (7)

6. Express es(t), the emf and deduce Es

Considering θ̇ in rad/s,

φ = ΦM cos
(
p(θ̇ t− θ0)

)
(8)

es(t) = −dφ
dt

(9)

= p θ̇ ΦM sin
(
p(θ̇ t− θ0)

)
(10)

= 2πf ΦM sin
(
p(θ̇ t− θ0)

)
(11)

= Em sin
(
p(θ̇ t− θ0)

)
(12)
(13)

and

Es =
Em√

2
=
√

2π f ΦM (14)

7. Coil factor kb, induced emf E and E wrt Ie

The coil factor kb is a global coefficient that takes some non idealities into account, such as :
the leakage flux between the rotor and stator, the angular section of the turns of a phase.

E = kb Ns Es (15)

with
Es =

√
2 π f ΦM (16)
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Figure 2: Emf as a function of the excitation current.

Also, in the linear range,

ΦM =
ΦM0

Ie0
Ie (17)

Then,

E = kb Ns
√

2 π f
ΦM0

Ie0
Ie (18)

= 0.85 16
√

2 π 370
0, 00684

2, 95
1 = 51, 84V (for fmin=370 Hz) (19)

= 0.85 16
√

2 π 800
0, 00684

2, 95
1 = 112, 08V (for fmax=800 Hz) (20)

8. Total fluxes Ψa,b,c

Ψa = Ls ia +Ms ib +Ms ic +Maf Ie (21)
= Ls ia +Ms ib +Ms ic +M cos(p θ) Ie (22)

(23)
Ψb = Ms ia + Ls ib +Ms ic +Mbf Ie (24)

= Ms ia + Ls ib +Ms ic +M cos(p θ − 2π

3
) Ie (25)

(26)
Ψc = Ms ia +Ms ib + Ls ic +Mcf Ie (27)

= Ms ia +Ms ib + Ls ic +M cos(p θ − 4π

3
) Ie (28)

9. νa,b,c

νa = −Rs ia −
dΨa

dt
; νb = −Rs ib −

dΨb

dt
; νc = −Rs ic −

dΨc

dt
(29)
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Figure 3: Rotor and stator windings.

With Rs the resistance of each phase and Ψa,b,c the flux linkage of each phase.

10. Show that ...

Ψa(t) = Ls ia(t) +Ms ib(t) +Ms ic(t) +M cos(p θ̇ t) Ie (30)

= Ls ia(t) +Ms

(
ib(t) + ic(t)

)
+M cos(p θ̇ t) Ie (31)

With ib(t) + ic(t) = −ia(t) <=> ia(t) + ib(t) + ic(t) = 0

Then,

Ψa(t) = (Ls −Ms) ia(t) +M cos(p θ̇ t) Ie (32)

= L ia(t) +M cos(p θ̇ t) Ie (33)
(34)

−dΨa(t)

dt
= −L dia(t)

dt
+ p θ̇M sin(p θ̇ t) Ie (35)

−dΨa(t)

dt
= −L dia(t)

dt
+ ea (36)

is obtained by defining, L : the cyclic impedance and ea : the internal emf of phase a.

Finally, one can get,

νa = −Rs ia(t) − dΨa(t)

dt
= ea −Rs ia(t)− L dia(t)

dt
(37)

The same derivation remains valid for phases b and c.

11. Compute λ for Ie = 0,4 ; 3 and 5,4 A

ω = 2π f = 2π
(2× 11100

60

)
= 2324, 78 rad/s (38)
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Ie E λ
0,4 21,2 0,02279787
3 137 0,01964345
5,4 148 0,011789256

Table 1: λ parameter computation.

λ =
E

ω Ie
(39)

12. E wrt Ir for fmin = 370 Hz and fmax = 770 Hz

[�]��

�( ) [� ]��

0 2 4 6
 

Values for 370 Hz are  
obtained from Table 1

370 Hz

770 Hz

10,4

100

200

300

0

21,12

  137
  148

3 5,4

44,11

285,1

308

Values for 770 Hz are  
the same multiplied by  
the factor  770

370

Figure 4: Emf as a function of the excitation current in the non linear case.

13. Calculate the synchronous reactance Xs for the linear part of the curve

The curve is linear for Ie ∈ [0; 2]. One can take the values corresponding to Ie = 1, 6 A in
order to minimize the measurement error and still remain in the linear part.

For Ie = 1, 6 A, the no load voltage is E = 84,8 V and the short circuit current is Is = 379
A.

Zs = Rs + j Xs (40)

Zs =
E

Is
=

84, 8

379
= 0, 2237Ω (41)

Taking the winding resistance Rs = 0,4 mΩ into account.
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Xs =
√
Z2
s −R2

s = 0, 223699Ω (42)

Then, Ls = 96,22 µH and it is clear that the resistance Rs can be neglected in the electrical
model of the machine.

14. Plot Is wrt Ie for fmin = 370 Hz and fmax = 770 Hz

( ) [�]�� ��

0 2 4 6
 

370 Hz 
   and 
770 Hz 

10,4

500

1000

1500

0
5,4

1280

1040

0,8 1,6 2,4 3 53,6 4,2

94,8

190

379

670

4,8

770

569

 

Measurements
Linearization

Figure 5: Short circuit current as a function of the excitation current.

As,
E = λω Ie (obtained from question 11) (43)

and
Is =

E

Xs
(obtained from question 13) (44)

One can deduce that :
Is =

E

Xs
=
λω Ie
ω Ls

=
λ

Ls
Ie (45)

Therefore, the short circuit current Is is proportionnal to the excitation current Ie (less
true out of the linear zone, but considered linear as λ does not vary much) and the short
circuit current Is does not depend of the frequency.

15. Resisitve load at 500 Hz with Ie = 2 A

Table 1 of the statement provides an emf of 106 V for Ie = 2 A and a frequency of 370 Hz.
At 500 Hz, the emf becomes E = 106 500

370 = 143,24 V.
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(a)

I =
E

RL + j Xs
(46)

I =
E√

R2
L +X2

s

=
143, 24√

0, 52 + (2π 500 96, 22× 10−6)2
= 245, 17 A (47)

V = RL I = 0, 5 245, 17 = 122, 59 V (48)

(b)

�
⎯ ⎯⎯⎯⎯

�
⎯ ⎯⎯

�
⎯ ⎯⎯⎯

� � �� �
⎯ ⎯⎯

   

   

Figure 6: Phasor diagram for the purely resistive load.

(c) The load current is proportionnal to the frequency. Then, if the frequency increases,
both the output voltage and current increase.

16. Resistive-inductive load

(a)

�
⎯ ⎯⎯⎯⎯

�
⎯ ⎯⎯

�
⎯ ⎯⎯⎯

� � �� �
⎯ ⎯⎯

��

��

��

�
⎯ ⎯⎯⎯

�
⎯ ⎯⎯⎯⎯

�
⎯ ⎯⎯

cos � = 0, 75 => � = 41, 4∘

� = 41, 4∘

   

Figure 7: Phasor diagram for the resistive-inductive load.

(b)
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Use

E = ω λ Ie (49)

I =
E√

R2
c +

(
ω(Lc + Ls)

)2
(50)

V =
√
R2
c + (ω Lc)2 I (51)

To expresss

I =
ω λ Ie√

R2
c +

(
ω(Lc + Ls)

)2
(52)

V =
√
R2
c + (ω Lc)2

ω λ Ie√
R2
c +

(
ω(Lc + Ls)

)2
(53)

(c)
With

P3φ = Cr θ̇ (54)

θ̇ =
ω

p
(55)

P3φ = 3 P1φ (56)

P1φ = Rc I
2 = Rc

(ω λ Ie)
2

R2
c +

(
ω(Lc + Ls)

)2 (57)

One finally obtain

Cr = 3 p Rc
ω (λ Ie)

2

R2
c +

(
ω(Lc + Ls)

)2 (58)

(d)
Rc = 0,5 Ω, Lc = 150 µH and Ls = 96,224 µH.

Ie λ E I V Cr
fmin = 370 Hz 0,4 0,02300512 21,2 27,89 17 1

ωmin = 2324,8 rad/s 3 0,01982202 137 180,5 109,88 41,92
5,4 0,01189643 148 194,73 118,7 48,93

fmax = 800 Hz 0,4 0,02300512 45,84 34,34 31 0,7
ωmin = 5026,5 rad/s 3 0,01982202 296,22 221,9 200 29,39

5,4 0,01189643 320 239,7 216,8 34,3

Table 2: λ parameter computation.

(e)
A higher frequency means a lower power factor.

PF =
Rc√

R2
c + ω2 L2

c

(59)
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Exercise 11: Three-phase turbo-alternator

Exercise 12: Alternator and synchronous condenser
1) φ = 27◦ ; I = 4.16 kA
2) Q = -66 kvar
3) Graph
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5 AC asynchronous machines

Exercise 13: Asynchronous motor 1
1. Synchronous speed θ̇s, number of pairs of poles p, nominal slip gn

The synchronous speed θ̇s is close to the nominal rotation speed θ̇n = 1 460 rpm. Then, θ̇s
= 1 500 rpm.

θ̇s =
1500

60
= 25s−1 (60)

p =
f

θ̇s
=

50

25
= 2 (61)

The slip corresponds to the relative difference between the synchronous speed θ̇s and the
rotation speed θ̇n such that

gn =
θ̇s − θ̇n
θ̇s

=
1500− 1460

1500
= 2, 67% (62)

Recall of the power balance for an asynchronous motor

Stator Air gap Rotor Shaft

� ���−���

Stator losses : +��� ���

Joules Ferro

���� ����

        Useful  
mechanical power

Three-phase  
active power

Rotor losses : ���

Joules Mechanical  
losses : ��

(1)
(2) (3)

(1) = � − −���−��� ��� ���

(2) = −���� ���−��� ���

(3) = −���� ���� ��

The shaft output power (here 5.5 kW)
     

     

Figure 8: Power balance of the asynchronous motor.
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The ferromagnetic losses in the rotor can ben neglected since the frequency of the rotoric
currents is much smaller than the grid frequency (i.e. the frequency of the statoric currents) :
gn f << f and pfr ' 0 (good approximation for small slip).

Understanding R′
2

g

= +
�′

2

�
�′

2

(1 − �)

�
�′

2

The        term represents the  
 
transmission of power from stator 
 
to rotor, such that 
 
 

�′

2

�

= 3���−���

�′

2

�
� ′2
2

     

    

Figure 9: Power transmission between the stator and the rotor of the asynchronous motor.

Pst−rot = 3
R′2
g
I ′22 (63)

pjr = 3R′2 I
′2
2 (64)

Pelm = Pst−rot − pjr = 3
R′2
g
I ′22 (1− g) (65)

(66)

Which leads to

Pelm = (1− g)Pst−rot (67)

pjr = g Pst−rot (68)

2. Stator resistance Rs     

��

��

��

�0

�0

   

   

Figure 10: Stator model (star-shaped).
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Rs =
U0

2 I0
=

20.6

2 · 10
= 1, 03 Ω

3. RHF and Xµ

     

    

� ′
�

��

����

���

���

⎯ ⎯⎯⎯⎯⎯⎯

��

⎯ ⎯⎯⎯⎯⎯

= + ��� �� ��

���

⎯ ⎯⎯⎯⎯⎯⎯

��

⎯ ⎯⎯⎯⎯⎯

= + ���� ��� ���

   

   

�′
�

�

Figure 11: Equivalent circuit of the asynchronous motor running at nominal speed.

Iso = 3, 07 A (69)

Vn =
Un√

3
=

400√
3

= 230, 94 V (70)

Pso =
245

3
= 81, 667 W (71)

Sso = Vn Iso = 708, 986 VA (72)

Qso =
√
S2
so − P 2

so = 704, 27var (73)

Pµ = Pso −Rs I2
so = 81, 667− 1, 03 · 3, 072 = 71, 96 W (74)

Qµ = Qso −Xs I
2
so = 704, 27− 1, 03 · 3, 072 = 694, 56 var (75)

Sµ =
√
P 2
µ +Q2

µ = 698, 28 VA (76)

Vµ =
Sµ
Iso

= 227, 45 V (relatively close to Vn) (77)

At the rotor, the losses can be decomposed as

R′r
g
I ′2r = R′r I

′2
r︸ ︷︷ ︸

rotor Joule losses

+
(1− g)R′r

g
I ′2r︸ ︷︷ ︸

mechanical losses

(78)

You are told that the ferromagnetic losses equal the mechanical losses.

Then,
V 2
µ

RHF︸ ︷︷ ︸
ferromagnetic losses =

+
(1− g) R′r

g
I ′2r︸ ︷︷ ︸

mechanical losses

= Pµ (79)
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→ 2
V 2
µ

RHF
= Pµ (80)

RHF = 2
V 2
µ

Pµ
= 2

227, 452

71, 96
= 1437, 88Ω (81)

Xµ = 2
V 2
µ

Qµ
= 2

227, 452

694, 56
= 74, 99Ω (82)

The losses seen from the magnetizing (µ) branch are Pµ = 71, 96 W in the equivalent circuit
of one phase. Half of those losses account for the mechanical losses pm,1φ = 35, 98 W and
the other half account for the ferromagnetic losses pf,1φ = 35, 98 W. The total mechanical
and ferromagnetic losses of the three-phase motor correspond to

pm = 3 pm,1φ = 3 · 35, 98 = 107, 94 W (83)
pf = 3 pf,1φ = 3 · 35, 98 = 107, 94 W (84)

4. Nominal operating point : Pst−rot, pjs, P

The mechanical losses are considered independent of the rotation speed. Then, pm(1460 rpm) =
pm(1500 rpm) ' 108 W.

From the equation (3) of the power balance

Pmec = Pelm − pm (85)
Pelm = Pmec + pm = 5 500 + 108 = 5 608 W (86)

From (67)

Pelm = Pst−rot (1− g) (87)

Pst−rot =
Pelm
1− g

=
5 608

1− 0, 02667
= 5 761, 6 W (88)

The Joule losses in the stator are

pjs = 3Rs I
2
sn = 3 · 1, 03 · 112 = 373, 89 W (89)

The ferromagnetic losses are kept constant

pf = 108 W (90)

Finally, the three-phase active power can be computed as

P = Pst−rot + pjs + pf = 5761, 6 + 373, 4 + 108 = 6 243 W (91)
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5. Find R′r and L′r (seen from the stator)

     

    

� ′
�

��

����

���

��

⎯ ⎯⎯⎯⎯

���

⎯ ⎯⎯⎯⎯⎯⎯⎯

= + ���� ��� ���

��

⎯ ⎯⎯⎯⎯

��

⎯ ⎯⎯⎯⎯⎯

= + ��� �� ��

   

   

� ′
�

⎯ ⎯⎯⎯⎯

���

⎯ ⎯⎯⎯⎯⎯⎯⎯

= + ��� �� ��

( )�� ( )��

�′
�

�

    

Figure 12: Equivalent circuit of the asynchronous motor in operation.

In order to determine R′r and X ′r, find Pr, Qr and I ′r and deduce

R′r = g
Pr
I ′2r

(92)

X ′r =
Qr
I ′2r

(93)

Then,

Ps =
P

3
= 2 081 W (94)

Ss = Vs Is = 230, 94 · 11 = 2 540, 34 VA (95)

Qs =
√
S2
s − P 2

s = 1 457 var (96)

φs = arccos
(Ps
Ss

)
= 35◦ (97)

Accross the magnetizing branch,

Pµs = Ps −Rs I2
s = 2 081− 1, 03 · 112 = 1 956, 37 W (98)

Qµs = Qs −Xs I
2
s = 1 457− 1.03 · 112 = 1 332, 37 W (99)

Sµs =
√
P 2
µ +Q2

µ = 2 366, 9 VA (100)

Vµs =
Sµs
Is

=
2 366, 9

11
= 215, 2 V (101)

Then, on the rotor side of the equivalent circuit,

Pr = Pµs −
V 2
µs

RHF
= 1 956, 37− 215, 22

1 437, 88
= 1 923, 2 W (102)

Qr = Qµs −
V 2
µs

Xµ
= 1 332, 37− 215, 22

74, 99
= 714, 8 var (103)

Sr =
√
P 2
r +Q2

r = 2 051, 7VA (104)

φr = arccos
(Pr
Sr

)
= 20, 43◦ (105)
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I ′r =
Sr
Vµs

=
2 052, 24

215, 2
= 9, 537 A (106)

Finally,

R′r = g
Pr
I ′2r

= 0, 02667
1 923, 2

9, 5372
= 0, 564 Ω (107)

X ′r =
Qr
I ′2r

=
714, 8

9, 5372
= 7, 86 Ω (108)

L′r = 25 mH (109)

6. Cmec, Celm, cosφn and ηn (for the nominal operating point)

Pmec = Cmec,n θ̇n (110)

Then, the output torque is given by

Cmec,n =
Pmec

θ̇n
=

5 500

1 460 · 2π
60

= 35, 97 Nm (111)

The electromagnetic torque is

Celm,n =
Pelm

θ̇n
=

5 608

1 460 · 2π
60

= 36, 7 Nm (112)

The cosφn can be computed by two ways,

cosφn =
P

Sn
=

6 243√
3 · 400 · 11

= 0, 818 (113)

or
φs = φn => cosφn = 0, 818 (114)

Finally, the efficiency during nominal operation is

ηn =
Pmec
P

=
5 500

6 242
= 88, 1% (115)

7. Is and cosφ for θ̇ = 0 rpm

At 0 rpm, the motor is stalled, the slip becomes g = 1, R
′
r

g = R′r and the equivalent circuit
of the asynchronous motor becomes
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Figure 13: Equivalent circuit of the asynchronous motor when stalled.

Zr = R′r + j X ′r (116)

Yr =
1

Zr
=

1

R′r + j X ′r
(117)

Yµ =
1

RHF
+ j

1

Xµ
(118)

Yµr = Yµ + Yr =
1

RHF
+ j

1

Xµ
+

1

R′r + j X ′r
(119)

Zµr =
1

Yµr
=

1
1

RHF
+ j 1

Xµ
+ 1

R′
r+j X′

r

(120)

Zeq = Rs + j Xs + Zµr = Rs + j Xs +
1

1
RHF

+ j 1
Xµ

+ 1
R′
r+j X′

r

(121)

Zeq = 1, 03 + j 1, 03 +
1

1
1 437,8 + j 1

75 + 1
0,564+j 7,87

= 9, 969∠ 79, 67◦ (122)

Is =
Vs
Zeq

=
230

9, 969∠ 79, 67◦
= 23, 07∠ −79, 67◦︸ ︷︷ ︸

φ

(123)

cosφ = cos(−79, 67◦) = 0, 179 (124)
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Exercise 14: Asynchronous motor 2

1. Explain the nameplate

Nominal active power : Pn = 4, 4 kW

RMS voltages : 230︸︷︷︸
∆

/ 400︸︷︷︸
Y

V

Line currents : 15, 5︸︷︷︸
∆

/ 9︸︷︷︸
Y

A

Nominal frequency : fn = 50 Hz

Number of pairs of poles : 4 poles → 2 pairs of poles → p = 2

2. Which coupling for a 230 V network ?

230 V network means that the RMS value of thez composed voltages is U = 230 V. Then,
the armature (stator) of the machine should be connected in ∆.

3. Synchronous speed θ̇s

θ̇s =
fn
p

=
50

2
= 25 Hz = 1500 rpm = 157 rad/s (125)

4. Stator resistance Rs

Ra corresponds to the total resitance measured between two terminals of the stator. Then,
Rs, the resistance of one phase is two times smaller than Ra = U0

I0
.     

��

��

��

�0

�0

   

   

Figure 14: Stator model (star-shaped).

Rs =
Ra
2

=
0, 654

2
= 0, 327 Ω
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5. Mechanical losses at synchronous speed

The asynchronous machine is put into potion by an external motor rotating at θ̇s and
remains unpowered at the stator. Therefore, the mechanical power provided by the external
potor exactly compensate the mechanical losses of the asynchronous machine : pm = 86 W.

The mechanical losses depends on the rotation speed. The nominal rotation speed is close
to the synchronous rotation speed (low slip), that is why the variation in mechanical losses
can be neglected.

6. Determine RHF and Lµ

During the no load test, the active power in the stator Pso is

Pso = pjs︸︷︷︸
stator joule losses

+ pf︸︷︷︸
ferromagnetic losses

+ pm︸︷︷︸
mechanical losses

(126)
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Figure 15: Equivalent circuit of the asynchronous motor running at synchronous speed.

Iso = 3, 82 A (127)

Vn =
Un√

3
=

230√
3

= 132, 79 V (128)

Pso =
300

3
= 100 W (129)

Sso = Vn Iso = 507, 26 VA (130)

Qso =
√
S2
so − P 2

so = 497, 3var (131)

Pµ = Pso −Rs I2
so = 100− 0, 327 · 3, 822 = 95, 23 W (132)

Qµ = Qso − Xs︸︷︷︸
'0

I2
so = Qso = 497, 3 var (133)

Sµ =
√
P 2
µ +Q2

µ = 506, 34 VA (134)

Vµ =
Sµ
Iso

=
506, 34

3, 82
= 132, 55 V (relatively close to Vn) (135)

At this point, the mechanical losses are still taken into account and must be subtracted.
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Then, the ferromagnetic losses correspond to

pf = Pµ −
pm
3

= 95, 23− 86

3
= 66, 56 W (136)

RHF =
V 2
µ

Pf
=

132, 552

66, 56
= 264 Ω (137)

Xµ =
V 2
µ

Qµ
=

132, 552

497, 3
= 35, 2 Ω (138)

Lµ =
Xµ

100π
= 0, 112 H (139)

7. Stalled rotor test

Stalled rotor → g = 1 → R′
r

g = R′r
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Figure 16: Equivalent circuit of the stalled asynchronous motor.
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Ps =
374

3
= 124, 67 W (140)

Qs =
1090

3
= 363, 3 var (141)

Ss =
√
P 2
s +Q2

s = 384, 1 VA (142)

Vs =
Us√

3
=

57, 5√
3

= 33, 2 V (143)

Is =
Ps − j Qs

Vs
=

124, 67− j 363, 3

33, 2
= 11, 57∠− 71, 06◦ (144)

Is = 11, 57 A (145)
Vµ = Vs −Rs Is = 33, 2− 0, 327 · 11, 57 = 29, 42 V (146)

Iµ =
Vµ
Zeq,µ

=
Vµ(

1
RHF

− j 1
Xµ

)−1 =
29, 42(

1
264 − j

1
35,2

)−1 = 0, 843∠− 82◦ (147)

I ′r = Is − Iµ = (11, 57∠− 71, 06◦) − (0, 843∠− 82◦) = 10, 74∠− 70, 21◦ (148)
I ′r = 10, 74 A (149)

Pr = Ps −Rs I2
s −

V 2
µ

RHF
= 124, 67− 0, 327 · 11, 572 − 29, 422

264
= 77, 62 W (150)

Qr = Qs −
V 2
µ

Xµ
= 363, 3− 29, 422

35, 2
= 338, 71 var (151)

R′r =
Pr
I ′2r

=
77, 62

10, 742
= 0, 673 Ω (152)

X ′r =
Qr
I ′2r

=
338, 71

10, 742
= 2, 93 Ω (153)

8. Express Is in terms of Vs, Rs, R′r, g and X ′r.

Neglecting the magnetizing brnahc and the magnetizing current Iµ,

Is =
Vs

Rs +
R′
r

g + j X ′r
(154)

Is =
Vs√(

Rs +
R′
r

g

)2

+X ′2r

(155)

9. Transmitted power from stator to rotor.

Pst−rot = 3
R′r
g
I2
s = 3

R′r
g

V 2
s(

Rs +
R′
r

g

)2

+
(
X ′r

)2 (156)
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10. Show that Celm is maximum for gmand compute Celm.

As Pelm = (1− g)Pst−rot and θ̇ = (1− g) θ̇s , the torque can be expressed as

Celm =
Pelm

θ̇
=
Pst−rot

θ̇s
(157)

Celm =
Pst−rot

θ̇s
= 3

V 2
s

θ̇s

R′
r

g(
Rs +

R′
r

g

)2

+
(
X ′r

)2 (158)

d Celm
d g

= 3
R′r V

2
s

θ̇s

−
1
g2

((
Rs +

R′
r

g

)2

+ (X ′r)
2

)
+ 1

g 2
(
Rs +

R′
r

g

)(
−R

′
r

g2

)
((

Rs +
R′
r

g

)2

+ (X ′r)
2

)2

 (159)

d Celm
d g

= 3
R′r V

2
s

g2 θ̇s

 R2
s −

(
R′
r

g

)2

+X ′2r((
Rs +

R′
r

g

)2

+ (X ′r)
2

)2

 (160)

From that expression, d Celmd g = 0 if R2
s −

(
R′
r

g

)2

+X ′2r = 0

Meaning, for a slip such that

gmax = +
R′r√

R2
s +X ′2r

(positive slip for the motor) (161)

And for such a slip, gmax, the maximum electromagnetic torque is

Celm,max = 3
V 2
s

θ̇s

√
R2
s +X ′2r(

Rs +
√
R2
s +X ′2r

)2

+X ′2r

= 3
V 2
s

2 θ̇s

1

Rs +
√
R2
s +X ′2r

(162)

Neglecting the stator resistance, Rs, the result is

Celm,max = 3
V 2
s

θ̇s

1

X ′r
(same as theory) (163)
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11. Plot Celm wrt g for Vs = Vn, Vs = Vn√
2
and Vs = Vn

2 .

At Vs = Vn = 132,79 V ; the torque is

Celm,max = 3
132, 792

1 500 · 2π
60

√
0, 3272 + 2, 842(

0, 327 +
√

0, 3272 + 2, 842
)2

+ 2, 842

= 52, 86 Nm (164)

At Vs = Vn√
2
= 93,9 V ; the torque is

Celm,max = 3
93, 92

1 500 · 2π
60

√
0, 3272 + 2, 842(

0, 327 +
√

0, 3272 + 2, 842
)2

+ 2, 842

= 26, 43 Nm (165)

At Vs = Vn
2 = 66,4 V ; the torque is

Celm,max = 3
66, 42

1 500 · 2π
60

√
0, 3272 + 2, 842(

0, 327 +
√

0, 3272 + 2, 842
)2

+ 2, 842

= 13, 21 Nm (166)

All maximum torques occur at the same slip

gmax =
0, 677√

0, 3272 + 2, 842
= 0, 237 (167)
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12. Why the control of the voltage is not suited for speed variations at a constant torque.

First of all, the mechanical behavior of different loads (pump, car, fan...) can be separated
in 4 main categories.

�

�˙

=  cst��

" Levage "
�

�˙

=  linéaire��

" Traction "

�

�˙

=  parabolique��

" Ventilateur à pâles "

∝ �˙

∝ �˙
2

�

�˙

=  hyperbolique��

" Compresseur à piston "

∝

1

�˙

   

In the first case, decreasing the voltage enables to decrease the speed, but with very small
impact. Moreover, the machine must remain in the stable region which is narrow.

→ The voltage control is not suited for speed variation (at a constant resistive torque).

�

�˙

��

�

�˙

�� ∝ �˙
2

   

����

����

     

    

In the other case, if the load is a fan (such as in this exercise), the speed can be easily
controlled only by varying the voltage.

27



�

�˙

��

�

�˙

�� ∝ �˙
2

   

����

����

     

    

13. Comparison without and with star/delta starter.

The use of the star/delta connection allows to reduce the inrush current by a factor of 3.

�

�

�

�Δ

��

��

Winding current : =��

�Δ

3‾√
=

��

�

�

��

��

��
=��

��

3‾√

Winding current : �� = =
��

�

��

�3‾√
= =

�Δ

3‾√

1

3‾√

�Δ

3
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Exercise 15: Wind turbine
1) Γi =

U2
s

Rr+R
θ̇s−θ̇
θ̇2s

2) θ̇ = 159 rad/s at 2 MW with R = 0 and g = -1.25 % ;
θ̇ = 172 rad/s et 4 MW with R = 9 mΩ ; g = -9.23 %

29



6 DC machines

Exercise 16: DC brushed motor

1. Plot E wrt θ̇ for different excitation current (Ie1 and Ie2).

In both cases, the emf E is proportionnal to the rotation speed. The excitation current Ie1
is 75 % higher than Ie2 ( Ie1Ie2 = 1, 75 (*)) whereas the ratio of the emf is lower than 1,75 due
to the saturation.

[���]�˙

� [� ]

0 600 1200 1800
 

200

  80

160

240

0

= 0, 2 A��2

400 800 1000 1400 
 

1600

  40

120

200

= 0, 35 A��1

230

170

    

     

2. Show that the flux Φ is nont proportionnal to the excitation current Ie.

First, the electromotive force E is proportionnal to the flux Φ : E = k θ̇Φ.

Then, at 1600 rpm, E1

E2
= 230

170 = 1, 35 such that Φ1

Φ2
= 1, 35 (**).

Since (*) 6= (**), the flux Φ is not proportionnal to the excitation current Ie. This is due to
the saturation phenomenon.

3. Plot the voltage E wrt the excitation current Ie and justify.

The curve E(Ie) behaves as the B(H). The behaviour is linear for low excitation current Ie
and the saturation occurs at some point, when Ie increases more.
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Figure 17: DC motor emf as a function of the excitation current.

4. Draw the equivalent circuit of the motor.

The total power consumed by the motor corresponds to

P = U I + Ue Ie (168)

The joule losses in the stator are

pje = Re I
2
e = Ue Ie (169)

and the joule losses in the rotor are

pja = RI2 (170)

+
_

�

��

��

�

��

��

 = 4,6 Ω

 = 512,1 Ω

Stator equivalent circuit

Rotor equivalent circuit

   

   

Figure 18: Equivalent circuit of the DC motor.
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5. Plot the collective losses pc wrt the excitation current Ie.

pc︸︷︷︸
collective losses

= pm︸︷︷︸
mechanical losses

+ pf︸︷︷︸
ferromagnetic losses

(171)

For a no load test, the useful mechanical power (available et the shaft) is 0. Meaning that
all the electrical power P , injected into the machine, is consumed by the losses.

P = pja + pje + pc (172)
pc = P − pja − pje (173)

Remark that,
P = U I + Ue Ie (174)

which leads to
pc = U I −RI2 (175)

Then, the collective losses can be computed for different escitation currents.

Ie [A] U [V] I [A] pc [W]
0,1 85 0,92 74,3
0,2 151 0,56 83,1
0,3 198 0,45 88,2

Table 3: Collective losses pc as a function of Ie.
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[W]��
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6. Determine the mechanical losses pm.

For Ie = 0, there are no ferromagnetic losses. Then, only the mechanical losses pm occur.
Considering that the collective losses depend linearly on the excitation current, one can
deduce pm such that

pm = 88, 2 − 88, 2− 74, 3

0, 3− 0, 1
· 0, 3 = 67, 3 W (176)

7. Calculate the emf Eo and deduce Ie,o , the corresponding excitation current.

As the hole is drilled, one can measure Io = 3 A and Uo = 212 V. Then,

Eo = Uo −RIo = 212− 4, 6 · 3 = 198 V (177)

From the E(Ie) characteristics, one can deduce Ie,o = 0,31 A .

8. Compute the shaft output power, Pu.

The power balance and other power equations of the machine can be established as :

P = Pu + pja + pje + pc (178)
P = Uo Io + Ue Ie (179)

pja = RI2
o (180)

pje = Ue Ie (181)

Then,

Pu = P − pja − pje − pc (182)

= Uo Io + Ue Ie −RI2
o − Ue Ie − pc (183)

= Uo Io −RI2
o − pc (184)

= 212 · 3− 4, 6 · 32 − 89 = 506 W (185)

9. Deduce the resistive torque Cr.

During the nominal regime, the two torques balance each other such that

Cu︸︷︷︸
useful torque

= Cr︸︷︷︸
resistive torque

(186)

Cu =
Pu

θ̇
=

506

1 500 · 2π
60

= 3, 22 Nm (187)

33



Exercise 17: Regenerative braking

Basic principle of the switched DC-DC converter

The switches are supposed ideal. Meaning that they act as perfect short-circuits when closed and
perfect open-circuits when open. In practice, transistors are used and can not be considered as
ideal (i.e. ON resistance, OFF resistances,...).

Diodes are also supposed ideal even if, in practice, every diode will present a voltage drop when
the current flows.

For a switched-mode converter, one can consider that each period of time Ts (Ts : the switching
period) is divided into 2 sub-intervals : During sub-interval 1, the switch (transistor) is closed
and during sub-interval 2, the switch is open.

The duty cycle (D) corresponds to the proportion of Ts during which the switch remains closed.

Therefore, 2 sub-circuits exist (one for each sub-interval) and the converter’s behavior can be
summarized as following.
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As the inductance L is designed with a high value, the inductor current i(t) does not vary much
over a switching period (indeed, the goal of the inductance is to smoothen the current). The
inductor current can be correctly approximated by its mean value Im.

On average over a switching period the inductance current remains constant such that : i(t) ' Im

1. Find the mean value of v(t), here denoted Vm.

Over the switching period Ts, the mean value of v(t) can be defined as

Vm =
1

Ts

∫ Ts

0

v(t) dt =
1

Ts

∫ Ts

DTs

V dt =
1

Ts
(1−D) V Ts (188)

Vm = (1−D)V (189)

2. Find the link between the output current I and the input current Im.

The average input current Im is the current through the inductor. This current can be
linked to the output current by writing the power balance around the semiconductors (diode
and switch).

As the semiconductors are considered lossless, the power balance can directly be written as

Vm Im = V I (190)

Using the result of the previous question, one can find the link between the input and
output currents :

I = Im (1−D) (191)
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3. Express the voltage V with respect to Im, E, R and D.

Considering the time-averaged equivalent circuit,

one can apply the Kirchhoff Voltage Law to relate the switch average voltage Vm to the
input voltage E :

Vm = E − VR − VL (192)

Remark that the average voltage of the inductance is 0 : VL = 0 because the inductor
average current is constant over time. This leads to

Vm = E − VR (193)
Vm = E −RIm (194)

The relationship between the switch average voltage Vm and the output voltage V is already
known as Vm = (1−D) V , which finally leads to

V =
E −RIm
(1−D)

(195)

4. Compute the duty cycle D allowing to obtain Vm = 60 V.

The input voltage is V = 100 V and Vm = (1−D)V . Then, the duty cycle can be expressed
as :

D = 1− Vm
V

(196)

D = 1− 60

100
= 0, 4 (197)
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5. Compute the average braking current Im for E = 70 V, V = 100 V and Vm = 60 V.

The duty cycle has already been computed for V = 100 V and Vm = 60 V. The value
remains D = 0, 4.

Then, from question 3, one can use the expression

V =
E −RIm
(1−D)

(198)

to isolate the average inductor current, such that :

Im =
E − (1−D)V

R
=

70− 0, 6 · 100

0, 5
= 20 A (199)

6. Braking power E Im and the braking torque for θ̇ = 955 rpm.

E Im = 70 · 20 = 1400 W (200)

Cm =
E Im

θ̇
=

1400

955 · 2π
60

= 14 Nm (201)
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Exercise 18: DC generator-motor mechanical coupling
1) emf = 519,075 V
2) p = 17,11 W
3) P = 9603 W
4) C = 88.17 Nm
5) Em = 499 V ; θ̇ = 1000 rpm
6) Im = 420 A
7) C = 1910 Nm
8) Ratio = 15,7 %
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7 Electronic control system

Exercise 19: DC-DC buck converter

1

2

L

𝐸
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+
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𝐸
+
-

𝑣𝑠

𝑣𝐿

𝑖𝐿

Figure 19: Ideal buck converter equivalent circuit.

1. Find the waveforms of the voltages vs and vL.

1

2

L

𝐸

   

      

𝑉𝑜

+
-

𝑣𝑠

𝑣𝐿

𝑖𝐿

During 𝐷  : 𝑇𝑠
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

1

2

L

𝐸

   

      

𝑉𝑜

+
-

𝑣𝑠

𝑣𝐿

𝑖𝐿

During (1 − 𝐷)  : 𝑇𝑠
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

= 0𝑣𝑠 = 𝐸 −𝑣𝐿 𝑉𝑜 = 𝐸𝑣𝑠 = −𝑣𝐿 𝑉𝑜

𝑡𝑇𝑠𝐷 𝑇𝑠

(𝑡)𝑣𝑠

0

𝐸

𝑡

(𝑡)𝑣𝐿

0

𝐸 − 𝑉𝑜

−𝑉𝑜

𝑇𝑠𝐷 𝑇𝑠

𝑡

(𝑡)𝑖𝐿

0

𝐼

𝑇𝑠𝐷 𝑇𝑠

= 𝐿𝑣𝐿

𝑑𝑖𝐿

𝑑𝑡

=
𝑑𝑖𝐿

𝑑𝑡

𝑣𝐿

𝐿

Constant during 
each sub-interval

   𝑖𝑚𝑖𝑛

40



2. Deduce the waveform of the inductance current iL.

See the figure below. The current in the inductance behaves as

vL(t) = L
diL(t)

dt
(202)

iL(t2) = iL(t1) +

∫ t2

t1

vL(t)

L
dt (203)

The voltage across the inductance remains constant during each sub-interval. The current
first increases linearly during DTs and then decreases linearly during (1−D)Ts.

Remark that the steady-state condition imposes that the current must return to its initial
value imin at the end of the switching period. With this condition, the successive switching
periods have the same waveforms and the steady-state condition can be considered.

iL(Ts)︸ ︷︷ ︸
=imin

= iL(0)︸ ︷︷ ︸
=imin

+

∫ Ts

0

vL(t)

L
dt︸ ︷︷ ︸

=0

(204)

The steady-state condition can be fulfilled if∫ Ts

0

vL(t) dt = 0 (205)

3. Express the ratio Vo
E in terms of the duty cycle D.

On average, the inductance voltage is 0

∫ Ts

0

vL(t) dt = 0 (206)

∫ Ts

0

vL(t) dt =

∫ DTs

0

(E − Vo) dt+

∫ Ts

DTs

(−Vo) dt (207)

= (E − Vo)DTs + (−Vo) (1−D)Ts = 0 (208)

Simplifying the switching period Ts leads to

(E − Vo)D + (−Vo) (1−D) = 0 (209)
DE − Vo = 0 (210)

Vo
E

= D (211)
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4. Give the value of D in this situation.

In this case,

D =
Vo
E

=
12

302
= 3, 973% (212)

5. Find the expression of the inductor current ripple ∆iL in terms of Vo, E, D, Ts and L.

𝑡

(𝑡)𝑖𝐿

0

𝐼

𝑇𝑠𝐷 𝑇𝑠

Δ𝑖𝐿

Δ𝑖𝐿

=
𝑑𝑖𝐿

𝑑𝑡

𝑣𝐿

𝐿

=  during  𝐷
𝑑𝑖𝐿

𝑑𝑡

𝐸 − 𝑉𝑜

𝐿
𝑇𝑠

   

   

The ripple can be computed during the first sub-interval by observing that the slope diL
dt is

equal to E−Vo
L :

2 ∆iL =
E − Vo
L

DTs (213)

∆iL =
E − Vo

2L
DTs (214)

6. Estimate the inductor current ripple ∆iL and compare it to the output current.

∆iL =
E − Vo

2L
DTs =

302− 12

2 · 0, 05

12

302
· 0, 001 = 0, 11523 A (215)

For a 12 W output power, the output current is

Io =
Po
Vo

=
12

12
= 1 A (216)

Then the ripple is 12 % of the output current which is small enough.
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Exercise 20: DC-DC boost converter

1

2

L

𝑉𝑖𝑛

   

      

L

C R

   

      

𝑉𝑜𝑢𝑡 𝑉𝑜𝑢𝑡

+
-

𝑉𝑖𝑛

+
-

𝑣𝑠
𝑣𝐿

𝑖𝐿

Figure 20: Ideal boost converter equivalent circuit.

1. Find the waveforms of the voltages vs and vL.

2

1

L

𝑉𝑖𝑛

   

   

𝑉𝑜𝑢𝑡

+
-

𝑣𝑠𝑣𝐿

𝑖𝐿

During 𝐷  : 𝑇𝑠
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

2

1

L

𝑉𝑖𝑛

   

      

𝑉𝑜𝑢𝑡

+
-

𝑣𝐿

𝑖𝐿

During (1 − 𝐷)  : 𝑇𝑠
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

= 0𝑣𝑠 =𝑣𝐿 𝑉𝑖𝑛 =𝑣𝑠 𝑉𝑜𝑢𝑡 = −𝑣𝐿 𝑉𝑖𝑛 𝑉𝑜𝑢𝑡

𝑡𝑇𝑠𝐷 𝑇𝑠

(𝑡)𝑣𝑠

0

𝑉𝑜𝑢𝑡

𝑡

(𝑡)𝑣𝐿

0

𝑉𝑖𝑛

−𝑉𝑖𝑛 𝑉𝑜𝑢𝑡

𝑇𝑠𝐷 𝑇𝑠

𝑡

(𝑡)𝑖𝐿

0

𝐼

𝑇𝑠𝐷 𝑇𝑠

= 𝐿𝑣𝐿

𝑑𝑖𝐿

𝑑𝑡

=
𝑑𝑖𝐿

𝑑𝑡

𝑣𝐿

𝐿

Constant during 
each sub-interval

   𝑖𝑚𝑖𝑛

𝑣𝑠

2. Deduce the waveform of the inductance current iL.

See the figure below. The current in the inductance behaves as
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vL(t) = L
diL(t)

dt
(217)

iL(t2) = iL(t1) +

∫ t2

t1

vL(t)

L
dt (218)

The voltage across the inductance remains constant during each sub-interval. The current
first increases linearly during DTs and then decreases linearly during (1−D)Ts.

Remark that the steady-state condition imposes that the current must return to its initial
value imin at the end of the switching period. With this condition, the successive switching
periods have the same waveforms and the steady-state condition can be considered.

iL(Ts)︸ ︷︷ ︸
=imin

= iL(0)︸ ︷︷ ︸
=imin

+

∫ Ts

0

vL(t)

L
dt︸ ︷︷ ︸

=0

(219)

The steady-state condition can be fulfilled if∫ Ts

0

vL(t) dt = 0 (220)

3. Express the ratio Vo
E in terms of the duty cycle D.

On average, the inductance voltage is 0∫ Ts

0

vL(t) dt = 0 (221)

∫ Ts

0

vL(t) dt =

∫ DTs

0

(Vin) dt+

∫ Ts

DTs

(Vin − Vout) dt (222)

= (Vin)DTs + (Vin − Vout) (1−D)Ts = 0 (223)

Simplifying the switching period Ts leads to

(Vin)D + (Vin − Vout) (1−D) = 0 (224)
Vin − (1−D) Vout = 0 (225)

Vout
Vin

=
1

1−D
(226)

4. Give the value of D in this situation.

In this case,

D = 1− Vin
Vout

=
2

3
= 66, 6% (227)
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5. Find the expression of the inductor current ripple ∆iL in terms of Vo, E, D, Ts and L.

𝑡

(𝑡)𝑖𝐿

0

𝐼

𝑇𝑠𝐷 𝑇𝑠

Δ𝑖𝐿

Δ𝑖𝐿

=
𝑑𝑖𝐿

𝑑𝑡

𝑣𝐿

𝐿

=  during  𝐷
𝑑𝑖𝐿

𝑑𝑡

𝑉𝑖𝑛

𝐿
𝑇𝑠

   

   

The ripple can be computed during the first sub-interval by observing that the slope diL
dt is

equal to Vin
L :

2 ∆iL =
Vin
L

DTs (228)

∆iL =
Vin
2L

DTs (229)

6. Estimate the inductor current ripple ∆iL and compare it to the output current.

∆iL =
Vin
2L

DTs =
3

2 · 0, 075
· 2

3
· 1

30 000
= 0, 44 mA (230)

For a 15 mW output power, the output current is

Io =
Po
Vo

=
0, 015

9
= 1, 67 mA (231)

Then the ripple is 27 % of the output current.
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