
MPI
MESSAGE PASSING INTERFACE

David COLIGNON, ULiège

CÉCI - Consortium des Équipements de Calcul Intensif
http://www.ceci-hpc.be

http://www.ceci-hpc.be

2

Outline
• Introduction

• From serial source code to parallel
execution

• MPI functions I

‣ Global Environment

‣ Point-to-Point Communication

• Exercice

• MPI functions II

‣ Collective Communication

‣ Global Reduction Operations

‣ Communication Modes

Slides & Examples
• On every CÉCI cluster :  
 
/CECI/proj/INFO0939/MPI/C/  

• And on NIC4:  
 
module add openmpi/1.6.4/gcc-4.8.1  
 
(more on this later)

3

!"#$%&'$())* +

,-./0-12/34$!3560#

! !"#$%&'(#)**('%$"*%+,*%(-.%&'+/",)%0)0('1

! !2&3+#+,%#(004.+#",+(.

! !2&3+#+,%*1.#$'(.+5",+(.

! 6+77+#43,%,(%&'(8'"0%94,%.(:7)-%$+;;).%*+;)<)77)#,*

=.,)'#(..)#,

>?@

A)0('1

>?@

A)0('1

>?@

A)0('1

>?@

A)0('1

>?@

A)0('1

>?@

A)0('1

4

Introduction: Target

Each server/node has its own memory
From one cpu per node to 2 or 4 multicore cpus...  
→ Each core has its separate address space

5

• What is parallel programming ?

• What are the (your) goals ?

‣

‣

Introduction: Goal

6

• What is parallel programming ?

• What are the (your) goals ?

‣ Decrase the total execution time

‣ Solve bigger problems

• Solution: Partition the work so that all
nodes/cpus work together at the same time

• Partitioning a problem into workable
subproblems: OK

Introduction: Goal

7

Introduction: the MPI solution

• How to partition efficiently my problem to
solve it in // ?

• How can we get nodes/cpus to work in // ?

• Solution: by exchanging messages

• To achieve a common parallel task, data are
shared by sending/receiving "messages"

• Message Passing Interface: most widely used
standard for parallel programming

8

• It's not a new programming language:  
it's a library of normalized functions for  
inter-process communication  
(can be called from Fortran, C, C++, ...)

‣ Every cpu runs the same executable

‣ Processes communicate with each other
through the "infrastructure" provided by MPI.

• At first, no need to know the details of the
implementation. You just need to know how
to take advantage of it

Introduction: the MPI solution

9

• Carefully designed to permit maximum
performance on a wide variety of systems

• Emphasis on Portability and Efficiency

• Hides many details but exposes many others
to the programmer

• Sometimes called the "assembly language" of
parallel computing

Introduction: the MPI solution

10

• each core (pure MPI, one process per core)  
runs the same executable  
and works on its local data

• Data are shared by sending/receiving
"messages"

• MPI functions

‣ Global management of the communications

‣ Point-to-Point communication

‣ Global communication

Introduction: the MPI solution

11

// serial

#include <stdio.h>

int main(int argc,
 char **argv) {

printf("Hello, World !");

}

// gcc hello_1.c

// ./a.out

// parallel

#include <stdio.h>
#include <mpi.h>

int main(int argc,
 char**argv) {

MPI_Init(&argc,&argv);

printf("Hello, World !");

MPI_Finalize();
}

// mpicc hello_mpi_1.c

// mpirun -np 3 ./a.out

From serial source code to parallel execution

12

Tips & Tricks
• Questions: Which compilers are available ? Where ?  

 Is MPI installed ? Where ?  
 Which version should I use ?

• Answers: R T F M !  
 echo $PATH  

 mpi “+ TAB”  

 module available ; module add...  

 mpicc -show  

 gcc -v ; icc -V  

 which mpirun ; type mpirun  

13

MPI : Overview
• All MPI function begins with MPI_

• All MPI function returns an error code 
(= MPI_SUCCES if OK)  
 

int err; 
err = MPI_*(*) ;

• Each node/core runs exactly the same executable:  
 

mpirun -np 4 prog.exe < input.txt 
 
mpirun -np 4 /path_to/prog.exe < /path_to/input.txt

14

MPI: Global Environment

• A minimal MPI program (like hello_mpi.c)
contains:

‣ #include <mpi.h>

‣ MPI_Init(&argc, &argv);  
 before any call to a MPI function, in
order to initialize the environment

‣ MPI_Finalize();  
 after the last call to a MPI function

15

MPI: Global Environment

• A Communicator is a pool of processes that
can communicate together

• MPI_COMM_WORLD is the default
communicator which contains all the active
processes  
mpirun -np 8 [-machinefile mach.txt] ./a.out

• In a communicator, each process get identified 
 by his rank , from 0 to (np - 1)

16

MPI: Global Environment

• A process can get back the total number of processes 
 in a communicator with:  
 

int nbproc ; 

MPI_Comm_size(MPI_COMM_WORLD, &nbproc)  

• A process can know his rank inside the communicator
with:  
 

int myrank ; 

MPI_Comm_rank(MPI_COMM_WORLD, &myrank)

17

#include <stdio.h>

#include <mpi.h>

int main(int argc, char **argv) {

 int nbproc, myrank ;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &myrank)

 MPI_Comm_size(MPI_COMM_WORLD, &nbproc)

 printf("Hello, World ! from proc %d of %d",

 myrank, nbproc);

 MPI_Finalize();

}

Hello, World ! 2.0

18

Point-to-Point Communication
• Bilateral communication between two

processes (emitter and receiver), identified by
their rank in their common communicator

• SEND and RECEIVE are mandatory

• Message = Envelope + Body

• Envelope:

‣ rank of the source process

‣ rank of the destination process

‣ tag (integer) to classify the messages

‣ communicator 

19

Point-to-Point Communication
• Message = Envelope + Body

• Body:
‣ buffer (start of the memory area where

the data are located)

‣ count (number of elements)

‣ datatype

MPI Type C Type
MPI_INT int

MPI_FLOAT float

MPI_DOUBLE double

MPI_CHAR signed char

MPI_PACKED

20

MPI_Send & MPI_Recv

• MPI_Send(BUF, COUNT, DTYPE,  
 DEST, TAG, COMM)

• MPI_Recv(BUF, COUNT, DTYPE,  
 SOURCE, TAG, COMM, STATUS)

‣ envelope (SOURCE, TAG, COMM) determines
which message can be received

‣ “wild cards” MPI_ANY_SOURCE &  
 MPI_ANY_TAG can be used

‣ STATUS contains SOURCE & TAG (if wild cards
were used), and number of received data

21

MPI_Send & MPI_Recv

• MPI_Recv(BUF, COUNT, DTYPE,  
 SOURCE, TAG, COMM, STATUS)

• STATUS is a structure (MPI_Status mystatus) that contains three
fields named MPI_SOURCE , MPI_TAG , and MPI_ERROR  
(The structure may contain additional fields.) mystatus.MPI_SOURCE
, mystatus.MPI_TAG and mystatus.MPI_ERROR contain the source,
tag, and error code of the received message.

• The count argument specified to the receive routine is the
number of elements for which there is space in the receive
buffer. This will not always be the same as the number of
elements actually received.

• MPI_Get_count(STATUS , DTYPE , COUNT)

22

MPI_Send & MPI_Recv

• MPI_Send(BUF, COUNT, DTYPE,  
 DEST, TAG, COMM)

• MPI_Recv(BUF, COUNT, DTYPE,  
 SOURCE, TAG, COMM, STATUS) 

‣ error if received message longer than expected 
(by COUNT and DTYPE)

‣ DTYPE of MPI_SEND and MPI_RECV must match

23

MPI_Send & MPI_Recv

• MPI_Send and MPI_Recv are blocking !  
operation must be completed (...) before jump to  
next instruction

•Asynchronous communication: possible delay  
between Send and Receive, sent data could be
buffered. Even if Send is completed, it doesn’t always
mean that message has already been received

•Be cautious with Deadlocks: two processes waiting
for a message that never come

24

MPI_Send & MPI_Recv : Deadlocks
// this code hangs !

if(myrank == 0) {

 MPI_Recv(&b, 100, MPI_DOUBLE,

 1, 39, MPI_COMM_WORLD, status);

 MPI_Send(&a, 100, MPI_DOUBLE, 

 1, 17, MPI_COMM_WORLD);

else if (myrank ==1) {

 MPI_Recv(&b, 100, MPI_DOUBLE,

 0, 17, MPI_COMM_WORLD, status);

 MPI_Send(&a, 100, MPI_DOUBLE,

 0, 39, MPI_COMM_WORLD);

}

25

MPI_Send & MPI_Recv : Deadlocks
// this code hangs !

if(myrank == 0) {

 MPI_Recv(&b, 100, MPI_DOUBLE, &

 1, 39, MPI_COMM_WORLD, &status);

 MPI_Send(&a, 100, MPI_DOUBLE, & 

 1, 17, MPI_COMM_WORLD); }

else if (myrank == 1) {

 MPI_Send(&a, 100, MPI_DOUBLE,

 0, 39, MPI_COMM_WORLD);

 MPI_Recv(&b, 100, MPI_DOUBLE,

 0, 17, MPI_COMM_WORLD, &status); }

26

Exercice: Sum of the first N Integers
// serial solution

int main() {

 int N = 1000, sum = 0, i ;

 for(i = 1 ; i<= N ; i++)

 sum = sum + i ;

 }

 printf(" The sum from 1 to %d is: %d", N, sum);

}

27

Sum of the first N Integers: Parallel

• How to Partition ?

• Magic Formula:  
 
 startval = N * myrank / nbproc + 1 
 
 endval = N * (myrank+1) / nbproc

• ! Caution ! Integer division

• Process of rank 0 receive partial sums and add 
(and also calculate its part !)

28

Exercice: Sum of the first N Integers
// SOME HINTS

#include <stdio.h>

#include <mpi.h>

int myrank, nbproc, mytag=23, N=1000 ;

MPI_Status mystatus ;

MPI_Init(&argc, &argv) ;

MPI_Comm_rank(MPI_COMM_WORLD , &myrank) ;

MPI_Comm_size(MPI_COMM_WORLD , &nbproc) ;

MPI_Send(&aaaa, 1, MPI_INT,

 dest, mytag, MPI_COMM_WORLD) ;

MPI_Recv(&bbbb, 1, MPI_INT,

 from, mytag, MPI_COMM_WORLD, mystatus) ;

MPI_Finalize();

29

Exercice: Sum of the first N Integers
// parallel solution
#include <stdio.h>
#include <mpi.h>
int main(int argc, char *argv[]){
 int myrank, np, i, j ;
 int startval, endval, partial_sum, temp_sum, N=1000 ;
 MPI_Status mystatus1 ;
 MPI_Init(&argc , &argv);
 MPI_Comm_size(MPI_COMM_WORLD , &np);
 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);
 startval = N * myrank / np + 1
 endval = N * (myrank+1) / np
 partial_sum = 0 ; tmp_sum = 0
 for(i=startval ; i<=endval ; i++)
 partial_sum = partial_sum + i ;
 printf("Partial sum from %d to %d on proc %d equals %d",
 startval, endval, myrank, partial_sum) ;

30

Exercice: Sum of the first N Integers
 if(myrank != 0)

 MPI_Send(&partial_sum , 1 , MPI_INT ,

 0 , 23 , MPI_COMM_WORLD) ;

 else

 for(j=1 ; j<np ; j=j+1) {

 MPI_Recv(&temp_sum , 1 , MPI_INT ,

 j , 23 , MPI_COMM_WORLD , &mystatus1);

 partial_sum = partial_sum + temp_sum ;

 }

 if(myrank == 0)

 printf(" The sum from 1 to %d is: %d ",

 N , partial_sum);

 MPI_Finalize();

}

31

Point-to-Point Communication

Edinburgh Parallel Computing Centre 11

If a program breaks these rules, unpredictable behaviour can result: programs may
run successfully on one implementation of MPI but not on others, or may run success-
fully on some occasions and “hang” on other occasions in a non-deterministic way.

The standard send has the following form

MPI_SEND (buf, count, datatype, dest, tag, comm)

where

• buf is the address of the data to be sent.

• count is the number of elements of the MPI datatype which buf contains.

• datatype is the MPI datatype.

• dest is the destination process for the message. This is specified by the rank of
the destination process within the group associated with the communicator
comm.

• tag is a marker used by the sender to distinguish between different types of
messages. Tags are used by the programmer to distinguish between different
sorts of message.

• comm is the communicator shared by the sending and receiving processes. Only
processes which have the same communicator can communicate.

• IERROR contains the return value of the Fortran version of the synchronous
send.

Completion of a send means by definition that the send buffer can safely be re-used i.e.
the data has been sent.

3.2.2 Synchronous Send

If the sending process needs to know that the message has been received by the
receiving process, then both processes may use synchronous communication. What
actually happens during a synchronous communication is something like this: the
receiving process sends back an acknowledgement (a procedure known as a ‘hand-
shake’ between the processes) as shown in Figure 4:. This acknowledgement must be
received by the sender before the send is considered complete.

 Figure 4: In the synchronous mode the sender knows that the other one has received the mes-
sage.

The MPI synchronous send routine is similar in form to the standard send. For exam-
ple, in the blocking form:

MPI_SSEND (buf, count, datatype, dest, tag, comm)

0

4

2

3

5
1

communicator

32

Point-to-Point Communication

Edinburgh Parallel Computing Centre 13

shown in Figure 5:, the sending process simply throws the message out onto the com-
munication network and hopes that the receiving process is waiting to catch it. If the
receiving process is ready for the message, it will be received, else the message may be
silently dropped, an error may occur, etc.

 Figure 5: In the ready mode a process hopes that the other process has caught the message

The idea is that by avoiding the necessity for handshaking and buffering between the
sender and the receiver, performance may be improved. Use of ready mode is only
safe if the logical control flow of the parallel program permits it. For example, see Fig-
ure 6:

 Figure 6: An example of safe use of ready mode. When Process 0 sends the message with tag
0 it ``knows'' that the receive has already been posted because of the synchronisation inherent

in sending the message with tag 1.

Clearly ready mode is a difficult mode to debug and requires careful attention to par-
allel program messaging patterns. It is only likely to be used in programs for which
performance is critical and which are targeted mainly at platforms for which there is a
real performance gain. The ready send has a similar form to the standard send:

MPI_RSEND (buf, count, datatype, dest, tag, comm)

Non-blocking ready send has no advantage over blocking ready send (see
“Non-Blocking Communication” on page 19).

3.2.5 The standard blocking receive

The format of the standard blocking receive is:

MPI_RECV (buf, count, datatype, source, tag, comm, status)

where

0

4

2

3

5
1

communicator

Process 0

non!blocking receive from
process 0 with tag 0

blocking receive fro
process 0 with tag 1

ynchronous send to
rocess 1 with tag 1

ready send to
process 1 with tag 0

Process 1
time

received

test non!blocking
receive

Writing Message Passing Parallel Programs with MPI

14 Course notes

• buf is the address where the data should be placed once received (the receive
buffer). For the communication to succeed, the receive buffer must be large
enough to hold the message without truncation — if it is not, behaviour is un-
defined. The buffer may however be longer than the data received.

• count is the number of elements of a certain MPI datatype which buf can con-
tain. The number of data elements actually received may be less than this.

• datatype is the MPI datatype for the message. This must match the MPI da-
tatype specified in the send routine.

• source is the rank of the source of the message in the group associated with the
communicator comm. Instead of prescribing the source, messages can be re-
ceived from one of a number of sources by specifying a wildcard,
MPI_ANY_SOURCE, for this argument.

• tag is used by the receiving process to prescribe that it should receive only a
message with a certain tag. Instead of prescribing the tag, the wildcard
MPI_ANY_TAG can be specified for this argument.

• comm is the communicator specified by both the sending and receiving process.
There is no wildcard option for this argument.

• If the receiving process has specified wildcards for both or either of source or
tag, then the corresponding information from the message that was actually re-
ceived may be required. This information is returned in status, and can be
queried using routines described later.

• IERROR contains the return value of the Fortran version of the standard receive.

Completion of a receive means by definition that a message arrived i.e. the data has
been received.

3.3 Discussion

The word “blocking” means that the routines described above only return once the com-
munication has completed. This is a non-local condition i.e. it might depend on the state
of other processes. The ability to select a message by source is a powerful feature. For
example, a source process might wish to receive messages back from worker proc-
esses in strict order. Tags are another powerful feature. A tag is an integer labelling
different types of message, such as “initial data”, “client-server request”, “results
from worker”. Note the difference between this and the programmer sending an inte-
ger label of his or her own as part of the message — in the latter case, by the time the
label is known, the message itself has already been read. The point of tags is that the
receiver can select which messages it wants to receive, on the basis of the tag.
Point-to-point communications in MPI are led by the sending process “pushing” mes-
sages out to other processes — a process cannot “fetch” a message, it can only receive
a message if it has been sent. When a point-to-point communication call is made, it is
termed posting a send or posting a receive, in analogy perhaps to a bulletin board.
Because of the selection allowed in receive calls, it makes sense to talk of a send
matching a receive. MPI can be thought of as an agency — processes post sends and
receives to MPI and MPI matches them up.

33

Outline
• Introduction

• From serial source code to parallel
execution

• MPI functions I

‣ Global Environment

‣ Point-to-Point Communication

• Exercice

• MPI functions II

‣ Collective Communication

‣ Global Reduction Operations

‣ Communication Modes

34

Collective Communications

• Global function called within all the
processes  
of a specified communicator

• cannot interfere with p2p communications

• All the processes must call the same
sequence of global functions in the same
order

• MPI_Barrier(MPI_COMM_WORLD) ;

blocks the calling process untill all others

35

9.1. Gaussian Elimination 540

Process 0

databuffer databuffer

x00 x01

Process 1

Process 2

x00 x01

x00 x01

x00 x01

Figure 9.7: MPI Bcast schematic demonstrating a broadcast of two data objects from process
zero to all other processes.

We now present a parallel implementation of Gaussian elimination with back substitution.
As a model problem, we solve for the interpolating polynomial of the Runge function (see
section 3.1.4) by forming a Vandermonde matrix based on the Chebyshev points. Recall that
the goal is to find the polynomial coefficients by solving the system Ax = b where A is the
Vandermonde matrix and b is the function of interest evaluated at the interpolation points.

To better explain the code, we have broken the entire program into six parts, labeled
part one through part six. The six parts break down the code as follows:

1. Part 1 - MPI initialization/setup and initial memory allocations.

2. Part 2 - Generation of the matrix rows local to each process.

3. Part 3 - Gaussian elimination of the augmented matrix.

4. Part 4 - Preparation for back substitution.

5. Part 5 - Back substitution to find the solution.

6. Part 6 - Program finalization and clean-up.

For each part, we will first present the code and then present a collection of remarks
elucidating the salient points within each part.

Part 1 - MPI initialization

#include <iostream.h>
#include <iomanip.h>
#include "SCmathlib.h"
#include "SCchapter3.h"
#include<mpi.h>

void ChebyVandermonde(int npts, double *A, int row);

Broadcast: MPI_Bcast

36

MPI_Bcast

Tree Implementation

• MPI_Bcast(buffer, count, datatype, root, comm)

• A broadcast has a specified root process and every
process receives one copy of the message from the
root.

• All processes must specify the same root (and
communicator).

• The root argument is the rank of the root process.

• The buffer, count and datatype arguments are
treated as in a point-to-point send on the root and
as in a point-to-point receive elsewhere.

37

MPI_Bcast

38

MPI_Bcast Example
#include <stdio.h>
#include <mpi.h>
int main(int argc , char *argv[]) {
 int myrank, np ;
 double param=0 ;

 MPI_Init(&argc , &argv);
 MPI_Comm_size(MPI_COMM_WORLD , &np);
 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

 if(myrank == 0) param = 23.7853 ;

 MPI_Bcast(¶m , 1 , MPI_DOUBLE,
 0 , MPI_COMM_WORLD) ;

 printf("On proc %d , after broadcast, param = %g" ,
 myrank, param) ;

 MPI_Finalize() ;
}

Writing Message Passing Parallel Programs with MPI

42 Course notes

MPI_BARRIER (COMM)

MPI_BARRIER blocks the calling process until all other group members have called it.

In one phase of a computation, all processes participate in writing a file. The file is to
be used as input data for the next phase of the computation. Therefore no process
should proceed to the second phase until all processes have completed phase one.

7.2 Broadcast, scatter, gather, etc.

 Figure 24: Schematic illustration of broadcast/scatter/gather operations. The circles represent
processes with ranks as shown. The small boxes represent buffer space and the letters represent
data items. Receive buffers are represented by the empty boxes on the ``before'' side, send buff-

ers by the full boxes.

This set of routines distributes and re-distributes data without performing any opera-
tions on the data. The routines are shown schematically in Figure 24:. The full set of
routines is as follows, classified here according to the form of the routine call.

7.2.1 MPI_BCAST

A broadcast has a specified root process and every process receives one copy of the
message from the root. All processes must specify the same root (and communicator).

MPI_BCAST (buffer, count, datatype, root, comm)

The root argument is the rank of the root process. The buffer, count and
datatype arguments are treated as in a point-to-point send on the root and as in a
point-to-point receive elsewhere.

7.2.2 MPI_SCATTER, MPI_GATHER

These routines also specify a root process and all processes must specify the same root
(and communicator). The main difference from MPI_BCAST is that the send and
receive details are in general different and so must both be specified in the argument
lists. The argument lists are the same for both routines, so only MPI_SCATTER is
shown here.

B B BBBB

A B C D E

A B C D E A B C D EA B C D EA B C D EA B C D E

ROOT

ROOT

A B C D E F G H I J K L M N O P Q R S T U V W X Y

A G M YB C D EF H I JK L N OP Q R S TU V W X

1 2 3 4 1 2 3 4RANK

MPI_BCAST

MPI_SCATTER

MPI_GATHER

MPI_ALLGATHER

MPI_ALL_TO_ALL

Before After

A B C D E

C D EA B

A B C D E

ROOT

C D EA B C D EA B

A B C D E F G H I J K L M N O P Q R S T U V W X Y

C D EA B C D EA B

0 0

39

40

MPI_Scatter

41

MPI_Scatter
• MPI_Scatter(sendbuf, sendcount, sendtype, 

 recvbuf, recvcount, recvtype,  
 root, comm)

• Specify a root process and all processes must specify the
same root (and communicator)

• The main difference from MPI_Bcast is that the send
and receive details are in general different and so must both
be specified in the argument lists

• Note that the sendcount (at the root) is the number of
elements to send to each process, not to send in total.  
Therefore if sendtype = recvtype, sendcount = recvcount.

• The sendbuf, sendcount, sendtype arguments are significant
only at the root

42

MPI_Scatter Example
#include <stdio.h>
#include <mpi.h>
int main(int argc , char *argv[]) {
 int i, myrank, np, sendcount, recvcount=1 ;
 double array[8], myparam ;
 MPI_Init(&argc , &argv);
 MPI_Comm_size(MPI_COMM_WORLD , &np);
 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

 if(myrank == 0) {
 for(i=0 ; i<8 ; i++)
 array[i] = 10000. + i*i ;
 sendcount = 1 ;
 }
 MPI_Scatter(array , sendcount , MPI_DOUBLE ,
 &myparam , recvcount , MPI_DOUBLE ,
 0 , MPI_COMM_WORLD) ;

 printf("On proc %d, after scatter, myparam = %g" ,
 myrank , myparam) ;
 MPI_Finalize();
}

43

MPI_Gather

44

MPI_Gather
• MPI_Gather(sendbuf, sendcount, sendtype, 

 recvbuf, recvcount, recvtype,  
 root, comm)

• The argument list is the same as for MPI_Scatter

• Specify a root process and all processes must specify the
same root (and communicator)

• Note that the recvcount (at the root) is the number of
elements to be received from each process, not in total.
Therefore if sendtype = recvtype , sendcount = recvcount

• The recvbuf , recvcount , recvtype arguments are significant
only at the root

• datas in recvbuf are held by rank order

45

MPI_Gather Example
#include <stdio.h>
#include <mpi.h>
int main(int argc , char *argv[]) {
 int i, myrank, np, sendcount=1, recvcount=1 ;
 double array[8] , myparam ;
 MPI_Init(&argc , &argv);
 MPI_Comm_size(MPI_COMM_WORLD , &np);
 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);
 myparam = 20000. + myrank*myrank ;

 MPI_Gather(&myparam, sendcount , MPI_DOUBLE ,
 array , recvcount , MPI_DOUBLE ,
 0 , MPI_COMM_WORLD) ;

 if(myrank == 0)
 for(i=0 ; i < 8 ; i++)
 printf("On proc %d , after gather, array[%d] = %g " ,
 myrank, i, array[i]) ;
 MPI_Finalize();
}

46

10.2. Householder Deflation 619

Remarks

• MPI Alltoall is a collective operation (i.e., it should be called by all processes within
the communicator).

• Both the sendbuf and recvbuf arrays are relevant on all processes in the communicator.

• In most cases the sendtype and recvtype are identical and the value of sendcount and the
value of recvcount are identical. MPI requires that the amount of data sent (sendcount
times the size in bytes of the datatype sendtype) equals the amount of data received
(recvcount times the size in bytes of the datatype recvtype) per process/root pair.

• The allocated size of both the sendbuf and recvbuf arrays should be at least equal to
the value of recvtype times the number of processes (totalnodes).

Process 0

senddata

Process 1

Process 2

x00 x01 x02 x03 x04 x05

x10 x11 x12 x13 x14 x15

x20 x21 x22 x23 x24 x25

recvdata

x00 x01 x10 x11 x20 x21

x02 x03 x12 x13 x22 x23

x04 x05 x14 x15 x24 x25

Figure 10.1: MPI Alltoall schematic demonstrating data distribution to all processes of two data
objects from each process.

We now present an MPI program to accomplish one iteration of the previously presented
Householder deflation algorithm. In this program, we assume that the size of the matrix is
divisible by the number of processes used. For the purpose of this example, we will once again
use the Vandermonde matrix formed at the Chebyshev points. It will be distributed by rows
across the processes (each process forming only those rows which it needs). Observe that
we will once again use MPI Allreduce and MPI Allgather (as part of the power method
algorithm), and that we introduce the use of MPI Alltoall. We now present the source code
for this program, and will provide some remarks following it.

#include <iostream.h>
#include <iomanip.h>
#include "SCmathlib.h"
#include "SCchapter3.h"
#include<mpi.h>

void ChebyVandermonde(int npts, double *A, int row);

// Global variable to set size of the system
const int size = 10;

MPI_Alltoall

data distribution to all processes of
two data objects from each process

MPI_Alltoall(sendbuf, sendcount, sendtype, 
 recvbuf, recvcount, recvtype, 
 comm)

47

// parallel solution
#include <stdio.h>
#include <mpi.h>
int main(int argc, char *argv[]){
 int myrank, nbproc, i, j ;
 int startval, endval, partial_sum, tmp_sum, N=1000 ;
 MPI_Status status ;
 MPI_Init(&argc , &argv);
 MPI_Comm_size(MPI_COMM_WORLD , &nbproc);
 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);
 startval = N * myrank / nbproc + 1
 endval = N * (myrank+1) / nbproc
 partial_sum = 0 ; tmp_sum = 0
 for(i=startval ; i<=endval ; i++)
 partial_sum = partial_sum + i ;
 printf("Partial sum from %d to %d on proc %d equals %d",
 startval, endval, myrank, partial_sum) ;

Back to Sum of the first N Integers

48

 if(myrank != 0)

 MPI_Send(&partial_sum , 1 , MPI_INT ,

 0 , 23 , MPI_COMM_WORLD) ;

 else

 for(j=1 ; j<np ; j=j+1) {

 MPI_Recv(&temp_sum , 1 , MPI_INT ,

 j , 23 , MPI_COMM_WORLD , &status) ;

 partial_sum = partial_sum + temp_sum ;

 }

 if(myrank == 0)

 printf(" The sum from 1 to %d is: %d ",

 N , partial_sum);

 MPI_Finalize();

}

Back to Sum of the first N Integers

49

Sum of the first N Integers: MPI_Reduce

 MPI_Reduce(&partial_sum, &tmp_sum, 1, MPI_INT,

 MPI_SUM, 0, MPI_COMM_WORLD) ;

 if(myrank == 0)

 printf(" The sum from 1 to %d is: %d ",

 N , partial_sum);

 MPI_Finalize();

}

50

MPI_Reduce

Collective Communication

Edinburgh Parallel Computing Centre 45

7.3.3 MPI_REDUCE

This is illustrated in Figure 25:.

 Figure 25: Global reduction in MPI with MPI_REDUCE. o represents the reduction operator.
The circles represent processes with ranks as shown. The small boxes represent buffer space and
the letters represent data items. After the routine call, the light-shaded boxes represent buffer

space with undefined contents, the dark-shaded boxes represent the result on the root. Only one
of the four results is illustrated, namely A o E o I o M o Q, but the other four are similar --- for
example, the next element of the result is B o F o J o N o R. Receive buffers are represented by

the empty boxes on the ``before'' side, send buffers by the full boxes.

MPI_REDUCE (sendbuf, recvbuf, count, datatype, op, root, comm)

All processes in the communicator must call with identical arguments other than
sendbuf and recvbuf. See “Operators” on page 45 for a description of what to spec-
ify for the operator handle. Note that the root process ends up with an array of
results — if, for example, a total sum is sought, the root must perform the final sum-
mation.

7.3.4 Operators

Reduction operators can be predefined or user-defined. Each operator is only valid for
a particular datatype or set of datatypes.

7.3.4.1 Predefined operators

These operators are defined on all the obvious basic C and Fortran datatypes (see
Table 7:). The routine MPI_MAXLOC (MPI_MINLOC) allows both the maximum (mini-
mum) and the rank of the process with the maximum (minimum) to be found. See

1

2

3

4

RANK

ROOT

A B C D

MPI_REDUCE

0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

AoEoIoMoQ

51

Writing Message Passing Parallel Programs with MPI

46 Course notes

“Global reduction operations in MPI” on page 43. More details with examples can be
found in the MPI document [1].

7.3.4.2 User-defined operators

To define his or her own reduction operator, in C the user must write the operator as a
function of type MPI_User_function which is defined thus:

typedef void MPI_User_function (void *invec, void *inoutvec, int

*len, MPI_Datatype *datatype);

while in Fortran the user must write an EXTERNAL subroutine of the following type

SUBROUTINE USER_FUNCTION (INVEC(*), INOUTVEC(*), LEN, TYPE)

<type> INVEC(LEN), INOUTVEC(LEN)

INTEGER LEN, TYPE

The operator must be written schematically like this:

for(i = 1 to len)

inoutvec(i) = inoutvec(i) o invec(i)

where o is the desired operator. When MPI_REDUCE (or another reduction routine is
called), the operator function is called on each processor to compute the global result
in a cumulative way. Having written a user-defined operator function, it has to be reg-
istered with MPI at run-time by calling the MPI_OP_CREATE routine.

MPI_OP_CREATE (function, commute, op)

Table 7: Predefined operators

MPI Name Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum & location

MPI_MINLOC Minimum & location

52

• Exemple of Global Reduction Operation

• MPI_Reduce(senbuf, recvbuf, count, datatype, 
 operation, root, comm)

• All processes must specify the same root (and
communicator).

• Possibility to define your own reduction operation
acting on your own datatype ...

• The operation must be associative (evaluation order
doesn't account)

53

MPI_Reduce

Collective Communication

Edinburgh Parallel Computing Centre 47

These return the operator handle op, suitable for use in global reduction calls. If the
operator is commutative (A o B = B o A) — the value commute should be specified as
TRUE, as it may allow MPI to perform the reduction faster.

7.3.5 MPI_ALLREDUCE, MPI_REDUCE_SCATTER,
MPI_SCAN

These are variants of MPI_REDUCE. They are illustrated in Figure 26:,

 Figure 26: Global reduction in MPI with MPI_ALLREDUCE. The symbols are as in Figure
25:. The only difference from MPI_REDUCE is that there is no root --- all processes receive the

result.

1

2

3

4

RANK

A B C D

0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

MPI_ALLREDUCE

AoEoIoMoQ

54

(No Root)

55

MPI_Allreduce

56

Communication Modes
•The standard MPI_Send call is blocking :  

it does not return until the message data and envelope
have been safely stored away so that the sender is free
to modify the send buffer.

•“Completion” of a send means by definition that the
send buffer can safely be re-used.

•The message might be copied directly into the
matching receive buffer, or it might be copied into a
temporary system buffer.

•To be continued, see good References next slide

57

Communication Modes
•References:

‣Standard Send and Recv:  
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node41.htm

‣Communication Modes:  
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node53.htm

‣"MPI par l'exemple" :  
http://algernon.cism.ucl.ac.be/mpi/mpi.html

‣epcc "Writing Message Passing Parallel Programs with MPI"
http://www.ia.pw.edu.pl/~ens/epnm/mpi_course.pdf  
Section 4 page 25

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node41.htm
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node53.htm
http://algernon.cism.ucl.ac.be/mpi/mpi.html
http://www.ia.pw.edu.pl/~ens/epnm/mpi_course.pdf

58

MPI Tips

• Load Balancing: Distribute evenly the work
among all the processes

• Minimize the communication:  
Because of the latency, even a zero-byte
message takes an uncompressible minimum
time.

• Superpose/Mix calculation and communication

59

4 Communication Modes
Completion Condition

Synchronous Send
Only completes when the receive has

completed.
MPI_Ssend

Buffered Send

Always completes (unless an error occurs),
irrespective of whether the receive has

completed.
MPI_Bsend

Standard Send Either synchronous or buffered. MPI_Send

Ready Send

Always completes (unless an error occurs),
irrespective of whether the receive has

completed.
MPI_Rsend

Receive Completes when a message has arrived. MPI_Recv

60

4 Communication Modes

• All four modes exist in both blocking and non-
blocking forms.

• In the blocking forms, return from the routine
implies completion.

• In the non-blocking forms, all modes are tested for
completion with the usual routines (MPI_Test,
MPI_Wait, etc.). See mpi_isend_irec.c

61

MPI References
• MPI standard :  

http://www.mpi-forum.org/

• MPICH :  
http://www.mpich.org/

• Open-MPI :  
http://www.open-mpi.org/

• Where can I learn about MPI ? Are there tutorials available ?  
http://www.open-mpi.org/faq/?category=all

• epcc "Writing Message Passing Parallel Programs with MPI" 
http://www.ia.pw.edu.pl/~ens/epnm/mpi_course.pdf

• "MPI par l'exemple" :  
http://algernon.cism.ucl.ac.be/mpi/mpi.html

http://www.mpi-forum.org/
http://www.mpich.org/
http://www.open-mpi.org/
http://www.open-mpi.org/faq/?category=all
http://www.ia.pw.edu.pl/~ens/epnm/mpi_course.pdf
http://algernon.cism.ucl.ac.be/mpi/mpi.html

62

MPI References (2)
• ME964: High-Performance Computing for Engineering

Applications (Dan Negrut)  
http://sbel.wisc.edu/Courses/ME964/2008/LectureByLecture/
me964Nov11.pdf

• 03-29-2011 - Running MPI on Newton. MPI Point-to-Point
and Collective Communication.  
http://sbel.wisc.edu/Courses/ME964/2011/Lectures/
lecture0329.pdf

• HLRS - Parallel Programming Workshop ONLINE 
 https://fs.hlrs.de/projects/par/par_prog_ws/  
https://fs.hlrs.de/projects/par/par_prog_ws/pdf/mpi_1_rab.pdf

• A Comprehensive MPI Tutorial Resource  
http://mpitutorial.com/

• ...  

http://sbel.wisc.edu/Courses/ME964/index.htm
http://sbel.wisc.edu/Courses/ME964/2008/LectureByLecture/me964Nov11.pdf
http://sbel.wisc.edu/Courses/ME964/2011/Lectures/lecture0329.pdf
https://fs.hlrs.de/projects/par/par_prog_ws/
https://fs.hlrs.de/projects/par/par_prog_ws/pdf/mpi_1_rab.pdf
http://mpitutorial.com/

63

